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Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with considerable neuroana-

tomical heterogeneity. Thus, how and to what extent the brains of individuals with ASD differ

from each other is still unclear. In this study, brain structural MRI data from 356 right-handed,

male subjects with ASD and 403 right-handed male healthy controls were selected from the

Autism Brain Image Data Exchange database (age range 5–35 years old). Voxel-based mor-

phometry preprocessing steps were conducted to compute the gray matter volume maps for

each subject. Individual neuroanatomical difference patterns for each ASD individual were cal-

culated. A data-driven clustering method was next utilized to stratify individuals with ASD into

several subtypes. Whole-brain functional connectivity and clinical severity were compared

among individuals within the ASD subtypes identified. A searchlight analysis was applied to

determine whether subtyping ASD could improve the classification accuracy between ASD and

healthy controls. Three ASD subtypes with distinct neuroanatomical difference patterns were

revealed. Different degrees of clinical severity and atypical brain functional connectivity pat-

terns were observed among these three subtypes. By dividing ASD into three subtypes, the clas-

sification accuracy between subjects of two out of the three subtypes and healthy controls was

improved. The current study confirms that ASD is not a disorder with a uniform neuroanatomi-

cal signature. Understanding neuroanatomical heterogeneity in ASD could help to explain diver-

gent patterns of clinical severity and outcomes.
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1 | INTRODUCTION

Autism spectrum disorder (ASD) is a condition characterized by defi-

cits in social communication skills and restricted patterns of behavior,

interests, or activities. Although a clear definition and reliable diagnos-

tic criteria for ASD are available in the current version of Diagnostic

and Statistical Manual of Mental Disorders (DSM), additional features

are also associated with ASD including atypical language development

and abilities, motor abnormalities and increased attention to detail

(Lai, Lombardo, & Baron-Cohen, 2014). Clinical manifestation in indi-

viduals with ASD is highly variable (Huerta & Lord, 2012). These indi-

vidual differences within ASD have hindered attempts at

understanding the neurobiological mechanisms of the disorder

(Amaral, 2011).
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It is generally recognized that ASD is a neurodevelopmental disor-

der, and atypical neuroanatomy has been widely documented in indi-

viduals with ASD (Radua, Via, Catani, & Mataix-Cols, 2011). However,

inconsistencies exist in the regional specificity of these neuroanatomi-

cal findings. Carper and Courchesne reported increased gray matter

volume in dorsolateral prefrontal regions (Carper & Courchesne,

2005), while Girgis found decreased gray matter volume in the right

lateral orbitofrontal cortex (Girgis et al., 2007), and another study

exploring the size of orbitofrontal cortex in ASD reported no differ-

ence at the significance level of p < .05 (Hardan, et al., 2006). Factors

such as age, gender, and IQ are thought to explain these inconsistent

results (Amaral, Schumann, & Nordahl, 2008). Zhang et al.’s recent

work based on a large-scale multi-site dataset reported a significant

three-way interaction of diagnosis by age by sex on hippocampal vol-

umes. However, another multisite meta-analysis reported no signifi-

cant three-way interaction of diagnosis by age by sex on subcortical

volumes (Van Rooij, et al., 2017). Therefore at present, the effect of

age and gender on brain volume in ASD is still unclear.

We hypothesized that individual differences among high-

functioning individuals with ASD might be another factor contributing

to the highly variable neuroanatomical deficits reported in ASD. At

the genetic level, ASD is thought to be linked with more than

400 kinds of genetic mutations (Bourgeron, 2015). A recent study

using 26 different autism mouse models showed that different

autism-related genes caused different neuroanatomical abnormalities

(Ellegood et al., 2015), indicating the genetic bases of structural het-

erogeneity in ASD. Subjects with ASD showing different clinical symp-

toms exhibited different neuroanatomical abnormalities (Katuwal,

Baum, Cahill, & Michael, 2016). However, the extent of brain struc-

tural abnormality differences among individuals with ASD is unclear.

We hypothesized that high-functioning individuals with ASD

would exhibit different atypical patterns of neuroanatomy. Based on

the different individual neuroanatomical patterns, we predicted that

individuals with ASD could be subdivided into several subtypes. We

further tested whether different neuroanatomical subtypes of ASD

could be a source of the variance in the clinical severity and functional

connectivity patterns observed within ASD. Finally, we tested

whether this subtyping of ASD could improve the ability to identify

structural imaging-based biomarkers of ASD.

2 | MATERIALS AND METHODS

2.1 | Participant selection

Structural MRI data, resting-state fMRI data and phenotype data were

downloaded from the ABIDE-I and ABIDE-II databases (http://fcon_

1000.projects.nitrc.org/indi/abide/) (Di Martino et al., 2017; Di Mar-

tino et al., 2014). The exclusion criteria were as follows: (i) female sub-

jects; (ii) left- or mixed-handed subjects and subjects with no

handedness information; (iii) subjects older than 35 years of age;

(iv) subjects missing full scale IQ (FIQ) data; (v) subjects with low qual-

ity structural images, as determined by an initial manual check on all

structural images and a second manual check on voxel-based mor-

phometry (VBM) maps exhibiting low homogeneity; (vi) data collection

sites with less than 25 Healthy Controls (HCs). After applying these

exclusion criteria, data from 781 subjects (ASD = 356; HC = 425)

from eight sites remained. Detailed information regarding participant

demographics can be found in Table 1 and subject IDs are listed in

anat_ID.txt.

2.2 | VBM map construction

VBM maps were constructed using structural MRI data from each

subject. The Computational Anatomy Toolbox 12 (CAT12 http://dbm.

neuro.uni-jena.de/cat/) was utilized to calculate the gray matter vol-

umes of voxels in individual brains. The steps were: (1) manual core-

gistration to set the anterior commissure of each T1 image at the

origin of the Montreal Neurological Institute (MNI) coordinate system;

(2) segmentation of the coregistered images into gray matter (GM),

white matter (WM) and cerebrospinal fluid (CSF); (3) normalization

of the GM and WM maps into MNI space; (4) modulation to convert

the voxel values of tissue concentration (density) to volume;

(5) smoothing with an isotropic Gaussian kernel (full width at half

maximum = 8 mm).

TABLE 1 Participant demographics

ASD HCa

p value
Number of participants 356 425 –

Mean SD Range Mean SD Range

Age 14.2 5.52 5–35 14.72 5.73 6–34 0.23

FIQ 105.1 16.1 69–148 112.5 12.0 79–144 <0.001

ADOSb: –

Social 7.70 2.73 2–14 –

Communication 3.58 1.59 0–9 –

RRB 1.95 1.68 0–8 –

Total 11.33 3.78 2–23

Severity 7.18 2.08 1–10

The p values were calculated using a two-sample t-test.
ADOS, autism diagnostic observation schedule; FIQ, full-scale IQ; RRB, restricted repetitive behavior.
a HC: an individual-level match strategy was used in our study. Here HC means the candidate HC for ASD individuals.
b ADOS total scores were available for 247 subjects; ADOS social scores were available for 223 subjects; ADOS communication scores were available for
223 subjects; ADOS RRB scores were available for 216 subjects. ADOS Severity scores were available for 211 subjects.
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We calculated the homogeneity of the segmented GM maps

between subjects using the CAT12 toolbox. Maps with low mean

homogeneity (lower than mean – 2 * SD of the maps from same site)

with others were rechecked manually. Homogeneity is defined as the

Pearson correlation coefficients between the normalized gray matter

maps of each pair of subjects.

2.3 | Structural difference map

As previous studies have revealed significant relationships between

age, FIQ, gender, handedness, and brain structure (Gong, Sluming,

Cezayirli, Mayes, & Roberts, 2001; Smith, Chebrolu, Wekstein,

Schmitt, & Markesbery, 2007; Srinivasan, 1993), we first constructed

the individual structural difference map for each subject with ASD

(Figure 1). For each subject with ASD, we first selected n HCs from

the same site with the most similar age and FIQ to the corresponding

ASD subject. Gender and handedness were not considered, as we

only included male, right-handed subjects. Here, n is set to 20, as this

number produced the most stable performance (details of the selec-

tion of n can be found in Supporting Information: Selection of the

number of the corresponding HCs for each ASD subject).

For each voxel of the gray matter map of each subject, we

defined the structural difference value as:

Vd ¼
VASD−VHC
� �

std VHCð Þ

where, VASD denotes the value of volume of the subject with ASD,

VHC represents the mean value of volumes of the HCs corresponding

to the subject with ASD, std(VHC) represents the standard deviation of

the values of volume of the HCs corresponding to the subject with

ASD. The structural difference values Vd were then calculated to mea-

sure the deviation level of the volume of a given subject with ASD

from matched HCs. To exclude the effects of covariates such as age and

FIQ, a GLM method was used to regress out age, FIQ, site (using a

dummy coding scheme such that the site of interest was assigned a value

of 1 while all other sites were assigned 0) (Cohen, Cohen, West, & Aiken,

2003), the difference of age, FIQ between the ASD subjects and the cor-

responding HCs, the standard deviation of age, FIQ of the corresponding

HCs for each ASD subject and a vector of ones representing the mean

value for each voxel. As early overgrowth of brain volume is one feature

of ASD (Courchesne, 2004), the total brain volume was not regressed

here. After regression, the mean values were added back from the beta

value of the vector of ones from the regression model. These steps were

constrained in the gray matter mask obtained from the tissue probability

map of SPM12 (probability threshold = 0.25). The cerebellum was

excluded from analyses.

2.4 | Non-negative matrix factorization
decomposition

We utilized a non-negative matrix factorization (NMF) method to

extract the major patterns of the structural difference patterns of

ASD compared with HC (Lee & Seung, 1999). Compared with other

decomposition methods like the Principal Components Analysis (PCA)

and Independent Components Analysis (ICA), NMF is able to capture

the non-negative regional structural difference patterns (Lee & Seung,

1999). As sparsity is introduced by the non-negative property, only

the structural difference patterns that were commonly distributed in

ASD subjects remained.

The NMF is defined as:

argmin M−W ×Hð Þ W,H>0

where, M is the original non-negative matrix (here, the stacked differ-

ence map across subjects, where the matrix dimensions are subject

number × voxel number), and W and H are the non-negative factors

which need to be calculated. Here, W represents the factorized com-

ponent and H is the coefficient for each column of W for each subject.

We first divided the structural difference maps into positive and

negative parts for each subject and then applied the NMF on the

FIGURE 1 Data analysis flowchart analysis flowchart. (a) For each

subject, a VBM map was calculated. For each ASD subject, 20 HC
subjects who were most matched with the corresponding ASD
subject were selected (see Methods: Structural difference map). In
panel a, HC subjects with the same color with ASD subjects were
selected as the most matched HC subjects. (b) For each ASD subject,

a structural difference map was calculated. Then the structural
difference maps were divided into positive and negative (see
Methods: Structural difference map). (c) A non-negative matrix
factorization (NMF) method was used to reduce the feature
dimensions. Red cells represent the coefficients of positive
components and blue cells represent the coefficients of negative
components. (d) The coefficients corresponding to the NMF
components of each subject were used as features in cluster analyses
(see Methods: Cluster analysis). (e) Subsequent analyses compared
the behavior and brain functional traits of ASD subtypes (see
Methods: Clinical severity and neuroanatomical subtypes of ASD and
methods: Functional connectivity and neuroanatomical subtypes of
ASD), and explored the advantages of subtyping ASD to classify ASD
and HC based on the neuroanatomical images (see Method:
Classification between subtypes of ASD and HC) [Color figure can be
viewed at wileyonlinelibrary.com]

630 CHEN ET AL.

http://wileyonlinelibrary.com


positive and negative structural difference maps separately to extract

the major structural difference patterns across ASD subjects com-

pared with HCs. As the optimal component number is unknown, we

tried 20, 30, and 40 in accordance with previous comparable compo-

nent factorization studies (Smith et al., 2009). We next manually

checked the factorized patterns and chose a value of 30, resulting in

60 components of the structural difference map (30 positive and

30 negative) and the corresponding coefficients that represent the

level of structural difference components. The cluster analysis was

also conducted based on 20 and 40 components.

2.5 | Cluster analysis

For each subject, we extracted 60 coefficients that measured the

degree of the corresponding local structural difference patterns. We

then used these 60 coefficients as features to explore the difference

patterns across subjects using a cluster analysis.

A k-means clustering method was utilized based on the 356 × 60

matrix (356 represents the subject number, 60 represents 60 features).

To determine k, we calculated the Silhouette values using k from 2 to

20. According to the Silhouette criteria we found the optimal value of

k to be 3 (Silhouette values are plotted in Supporting Information

Figure S6). To avoid local minima, we repeated the clustering proce-

dure 1,000 times and chose the best one. To validate the stability of

the clustering solutions, we randomly picked 80% of the subjects and

repeated the k-means clustering on this randomly chosen subset. We

then compared the resulting cluster index with the original cluster

index and repeated this procedure 10 times. Results based on

40 (NMF components = 20) and 80 (NMF components = 40) features

are shown in Supporting Information Figures S2 and S3.

To evaluate whether the cluster solution is affected by factors

such as age and FIQ, we used a one-way ANOVA to test the differ-

ence in age, FIQ, the difference of age, FIQ between ASD subjects

and corresponding HCs, the standard deviation of age, and FIQ of the

corresponding HCs for each ASD subject between the ASD subtypes

obtained from the cluster analysis. We applied a chi-square test to

determine the difference of the ratio of sites between ASD subtypes.

2.6 | Clinical severity and neuroanatomical subtypes
of ASD

To assess whether symptom severity differed between subtypes of

ASD, a one-way ANOVA was utilized on the ADOS total, social, com-

munication, RRB and severity (Gotham, Pickles, & Lord, 2009) scores,

respectively. During this step, subjects with missing ADOS scores

were excluded.

We then subdivided the ASD subjects into three sub-groups

according to the ADOS total score [44 subjects with the lowest ADOS

total scores (below 8), 132 subjects with moderate ADOS total scores

(8–13), and 71 subjects with the highest ADOS total scores (above

13); the number of subjects in each severity-based subtype is the

same as that of subjects in corresponding neuroanatomical subtypes

who had ADOS information] and explored whether the different neu-

roanatomical difference patterns of the three ASD subtypes were fully

driven by differences in clinical symptom severity. Details are shown

in Supporting Information: Comparison of ASD subtypes based on

clinical severity and neuroanatomic pattern.

2.7 | Functional connectivity and neuroanatomical
subtypes of ASD

We analyzed resting-state fMRI data from the same subjects included

in the structural MRI dataset. All resting-state fMRI data were prepro-

cessed using the DPARSF advanced edition (http://www.rfmri.org/

DPARSF). The preprocessing, subject exclusion and functional net-

work construction steps are shown in Supporting Information:

Resting-state fMRI data processing.

Next we tested whether individuals within the three different

ASD subtypes would show different atypical patterns of FC networks.

Here we utilized network based statistics (NBS) to assess atypical pat-

terns at the connection level and graph theory to evaluate atypical

patterns at the network level.

NBS offers substantially greater power than generic procedures

for controlling family-wise error rates (Zalesky, Fornito, & Bullmore,

2010). A four-level one-way ANOVA was applied on the HC subjects

and subjects with the three ASD subtypes with age, FIQ, meanFD, site

(using a dummy coding scheme) (Cohen, Cohen, West, & Aiken, 2003)

as covariates (Li et al., 2018). Clusters with connection level p < .05

and cluster level p < .05 were considered as statistically significant.

Simple effects analyses were performed to explore the differences

between ASD subtypes and HC separately within the mask obtained

from the one-way ANOVA. For the simple effects analysis, clusters

with connection level p < .05 and cluster level p < .05/3 (three simple

effects were tested: HC vs. ASD subtype1, HC vs. ASD subtype2 and

HC vs. ASD subtype3) were considered as statistically significant.

We next investigated FC network efficiency between HC and the

three ASD subtypes. Here we calculated the global efficiency and

local efficiency for each subject. First, the FC network was converted

to a binary network according to a predefined cost value (range from

0.1 to 0.5). For each cost, a two-sample t-test was applied to assess

the difference between HC and corresponding ASD subtypes

(p < .05/3 was considered statistically significant).

2.8 | Classification between subtypes of ASD
and HC

A searchlight algorithm was applied to classify ASD and HC (Uddin

et al., 2011) based on the VBM maps (details of the searchlight

method can be found in Supporting Information). Here we performed

four procedures: all ASD individuals versus HCs; individuals with ASD

type1 versus HCs; individuals with ASD type2 versus HCs; individuals

with ASD type3 versus HCs and compared the classification perfor-

mance across these four trials.

We used a support-vector machine (SVM) implemented in the

LIBSVM software (http://www.csie.ntu.edu.tw/~cjlin/libsvm) with

default parameters (Liao et al., 2018). Accuracy was assessed using a

five-fold cross-validation. As the number of HCs is larger than the num-

bers of ASD and subtypes of ASD, we randomly chose HCs of the same

number of ASD and performed the searchlight procedure. To exclude

the bias caused by this random selection, this step was repeated 10 times

CHEN ET AL. 631

http://www.rfmri.org/DPARSF
http://www.rfmri.org/DPARSF
http://www.csie.ntu.edu.tw/~cjlin/libsvm


and the final accuracy was defined as themean accuracy of these 10 iter-

ations. The values of the accuracy map were then converted to p values

based on the Binomial distribution (Uddin et al., 2011). A Bonferroni

FWE correction was applied to the converted pmaps. p < .05 (FWE cor-

rected) was considered statistically significant.

3 | RESULTS

3.1 | Clustering analysis based on individual
structural difference patterns

We divided subjects with ASD into three subtypes using k-means

clustering applied to the individual structural difference patterns. The

one-sample T map of the structural difference maps for the three sub-

types are shown in Figure 2b. Individuals with ASD subtype1 (63 sub-

jects) showed decreased gray matter volume (GMV) particularly in the

prefrontal lobes. Individuals with ASD subtype2 (190 subjects)

showed both increased and decreased GMV; increases were observed

in the temporal lobes while decreases were observed in occipital and

prefrontal lobes. Individuals with ASD subtype3 (103 subjects)

showed increased GMV compared with HCs in the temporal lobe.

More detailed atypical neuroanatomical pattern descriptions can be

found in Supporting Information. When repeating clustering on a sub-

set of 80% of the whole data, we found that during all 10 iterations,

at least 95% of subjects were clustered to the same subtype as when

clustering was applied to 100% of the subjects.

We did not find significant differences in age, FIQ, site, the differ-

ence of age, FIQ between the ASD subjects and the mean of the cor-

responding HCs, the standard deviation of age, FIQ of the

corresponding HCs for each ASD subject among the three ASD sub-

types. Demographic information for subjects within the three sub-

types is show in Table 2.

3.2 | Clinical symptom severity across three ASD
subtypes

Using an ANOVA, we found significant differences in the ADOS total score

(F = 6.97, p = .001), social score (F = 5.41, p = .005), communication score

(F = 6.16, p = .003), RRB score (F = 4.18, p = .017), and severity score

(F = 4.62, p = .011) among the three ASD subtypes (Figure 3). Using post-

hoc analyses, we found that the severity level of subtype3 was significantly

higher than those of subtype1 and subtype2 (Figure 3 and Table 2).

We found that the neuroanatomical patterns across three

severity–based subtypes were more similar (average correlation coef-

ficient = 0.79, r2 = 0.62) than the ones across the three neuroanatom-

ical subtypes (average correlation coefficient = 0.49, r2 = 0.24). The

explanation rate (r2) of neuroanatomy between severity-based sub-

types is much higher than the neuroanatomical subtypes, showing

that the neuroanatomy between the neuroanatomical subtypes is

more distinct than that observed in severity-based subtypes. These

results might imply that severity cannot fully explain the distinct neu-

roanatomy patterns observed between subjects within the three neu-

roanatomical subtypes identified.

3.3 | Atypical functional connectivity patterns of
three ASD subtypes

Using an NBS method, we found clusters of significant atypical func-

tional connections in ASD subtype1 and subtype3 compared with

HCs (connection level p < .05, cluster level p < .05/3, Figure 4a). Dif-

ferent atypical fronto-parietal network connectivity patterns were

found between subtype1 and subtype3 (Figure 4a). We also found

atypical local efficiency in individuals with ASD subtype2 and sub-

type3 (Figure 4b) compared with HCs.

3.4 | Improvement of classification between ASD
and HC

Using a searchlight method, we achieved an accuracy of 58.8% when

classifying the entire group of HC and ASD subjects. This accuracy

indicates insignificant capacity to distinguish HC and ASD

(no significant clusters were found at the threshold of p < .05, FWE

corrected). After dividing the ASD subjects into three subtypes, the

classification accuracies were improved (HC vs. ASD subtype1:

79.0%; HC vs. ASD subtype2: 60.2%; HC vs. ASD subtype3: 73.8%).

Significant clusters at the threshold of p < .05 (FWE corrected) were

found for HC versus ASD subtype1 and HC versus ASD subtype3.

FIGURE 2 Distinct neuroanatomical difference patterns across three ASD subtypes. (a) Force-directed graph of all ASD subjects created using

d3.Js (https://d3js.org/). Green nodes represent ASD subjects belonging to subtype1; blue nodes represent ASD subjects belonging to subtype2;
red nodes represent ASD subjects belonging to subtype3. Details of the force-directed graph construction are in Supporting Information. (b) One-
sample t-test of the neuroanatomical difference maps of each ASD subtype. Green box represents subtype1; blue box represents subtype2; red
box represent subtype3 [Color figure can be viewed at wileyonlinelibrary.com]
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Brain regions are listed in Supporting Information Table S2, and Sup-

porting Information Figures S4 and S5.

4 | DISCUSSION

4.1 | Analytic overview

In the present study, we clustered male, high-functioning subjects with

ASD into three subtypes based on individual neuroanatomical difference

patterns. We found different profiles of clinical symptom severity and

brain functional connectivity among these three ASD subtypes. After

dividing the ASD group into three subtypes, we found that accuracy of

classification between two out of the three ASD subtypes and HC was

improved. These results provide evidence of ASD subtypes at the neu-

roanatomical level, and demonstrate different clinical presentation and

brain function associated with different neuroanatomical subtypes of

ASD. Moreover, we illustrate the potential benefit of subdividing ASD

for the development of brain-based biomarkers of the disorder.

4.2 | Neuroanatomical subtypes of ASD

Accumulating studies have suggested that brain structural heteroge-

neity might be one characteristic of ASD (Amaral, 2011; Ellegood

TABLE 2 Participant demographics of three ASD subtypes

ASD subtype1 ASD subtype2 ASD subtype3 Group comparison (p value)

Count 63 190 103

Age 13.96 � 5.45 14.23 � 5.56 14.40 � 5.54 0.88a

FIQ 104.60 � 15.20 104.90 � 16.70 105.77 � 15.61 0.87a

Site 2/8/3/8/7/10/10/6 4/20/9/46/16/26/25/15 3/9/2/23/9/8/18/15 0.73b

ADOS

Social 6.88 � 2.85 7.52 � 2.55 8.55 � 2.79 0.005a

Communication 3.20 � 1.40 3.41 � 1.44 4.14 � 1.82 0.003a

RRB 1.80 � 1.83 1.72 � 1.46 2.45 � 1.85 0.017a

Total 10.16 � 3.53 11.03 � 3.53 12.62 � 4.98 0.001a

Severity 6.94 � 2.20 6.89 � 2.14 7.84 � 1.77 0.011a

All numbers were presented as mean � SD.
a One-way ANOVA test.
b Chi-square test.

FIGURE 3 Different clinical symptom severity across three ASD subtypes. Mean ADOS scores for each ASD subtype. Error bars represent the

standard error of the ADOS scores for each ASD subtype. * represents significant differences (two-sample t-test, p < .05) [Color figure can be
viewed at wileyonlinelibrary.com]
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et al., 2015). Our results support this view, revealing neuroanatomical

difference patterns across a large sample of ASD subjects. Moreover,

we showed that the neuroanatomical difference patterns across ASD

subjects can be clustered into three major distinct patterns.

From the onset of ASD, development heterogeneity exists. Some

children who develop ASD later showed signs of developmental

delays within the first 18 months of life. However, 25–40% of chil-

dren with ASD showed near-normal development at early ages and

regress into ASD after 18 months (Werner & Dawson, 2005). A head

circumference study reported the existence of three different ASD

subtypes with different head circumference at early ages: increased

(most children with ASD), decreased (only a small number of ASD chil-

dren) and moderate head circumference (Muratori et al., 2009). A

recent study using cortical surface information also supported the

existence of distinct subtypes of ASD. Based on a dataset of 107 ASD

subjects, they found three ASD subtypes with different cortical sur-

face measures (Hong, Valk, Di Martino, Milham, & Bernhardt, 2017).

For children with ASD who showed enlarged brain volume, inconsis-

tent results were reported regarding whether this enlargement per-

sists into later childhood and adolescence (Amaral et al., 2008). This

inconsistency might be another source of the different

neuroanatomical difference patterns we observe in ASD in this study.

Studies attributed this variance to age (Aylward, Minshew, Field,

Sparks, & Singh, 2002), intelligence level (Salmond, Vargha-Khadem,

Gadian, de Haan, & Baldeweg, 2007), gender (Lai et al., 2013), and

other factors. Previous study showed that the development is an

important source of neuroanatomical heterogeneity of ASD (Lin, Ni,

Lai, Tseng, & Gau, 2015). Our results indicate that after controlling for

these factors by only including male subjects, regression of age, fIQ

and no difference of age, fIQ between clustered subtypes, the ASD

group still showed inconsistent neuroanatomical difference patterns.

Another ASD subtyping study based on surface morphometry which

reported no significant difference of age, IQ, and site between ASD

subtypes (Hong et al., 2017). These results might suggested that

although age plays an important role on the neuroanatomical hetero-

geneity of ASD, the inter-subjects difference exists during whole age

range and covered the age-heterogeneity in our study. Meanwhile

more than 70% of individuals with ASD have concurrent medical,

developmental, or psychiatric conditions (Lai et al., 2014), such as

intellectual disability, attention-deficit hyperactivity, epilepsy, anxiety,

and so on. Complex comorbidity might be another source of the neu-

roanatomical subtypes of ASD observed here.

FIGURE 4 Different atypical functional connectivity patterns across three ASD subtypes. (a) Different atypical functional connectivity patterns

between HC and ASD subtypes. Blue cells in the functional connectivity matrix represent the connectivity of ASD subtype, which is lower than
HCs. The nodes in the brain maps represent the ROIs located in different sub-networks: Red nodes represent ROIs in default mode network;
yellow nodes represent ROIs in fronto-parietal network; green nodes represent ROIs in cingulo-opercular network; blue nodes represent ROIs in
sensori-motor network and purple nodes represent ROIs in occipital network. We found no FC clusters showing significant differences between
ASD subtype2 and HC. (b) Local efficiency among three ASD subtypes. Red stars represent significant differences found at corresponding cost.
Error bars represent the standard error [Color figure can be viewed at wileyonlinelibrary.com]
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4.3 | Clinical symptom severity and brain functional
connectivity across ASD subtypes

Neuroanatomy is related to human cognition (Loh & Kanai, 2014;

Omura, Todd Constable, & Canli, 2005) and ASD clinical symptomatol-

ogy (Amaral et al., 2008). It is reasonable to assume that subjects

within the three subtypes with different neuroanatomical patterns

would exhibit different clinical patterns. By comparing mean ADOS

scores, we found that subjects within different ASD subtypes did

exhibit different clinical symptom severity levels. Although character-

istics and diagnosis of ASD are clearly defined in the current version

of the DSM (American Psychiatric Association, 2013), several studies

report wide clinical heterogeneity among subjects with ASD, and this

variance hinders the diagnosis and treatment of ASD (Cholemkery,

Medda, Lempp, & Freitag, 2016; Georgiades et al., 2013; Kim, Macari,

Koller, & Chawarska, 2015). Our results demonstrate that the differ-

ent neuroanatomical difference patterns across ASD subjects may

contribute to the observed heterogeneity in clinical presentation.

Brain structure constrains brain function. In the human brain,

completing a specific task is associated with the functional integration

of separate brain regions. We examined brain functional connectivity

and found different atypical brain functional connectivity patterns

across the three subtypes. For ASD, the inconsistent findings of brain

functional connectivity have become a major obstacle to understand-

ing the brain functional mechanisms of ASD (Hull, Jacokes, Torgerson,

Irimia, & Van Horn, 2016). A recent study reported higher inter-

subject variance of brain functional connectivity in ASD and sug-

gested that the higher inter-subject variance might account for the

inconsistent findings (Hahamy, Behrmann, & Malach, 2015). However,

how inter-subject variance influences brain functional connectivity in

subjects with ASD is still unknown. Our results suggest that the vari-

ance of atypical brain function is related to the different atypical neu-

roanatomical patterns across subjects with ASD.

Our results showed different clinical characteristics and brain

functional connectivity patterns across three neuroanatomical ASD

subtypes. These findings might help us to understand inter-subject

clinical and brain functional variance in ASD.

4.4 | Development of brain-based biomarkers

To explore the potential application of subdividing ASD for aiding in

ASD diagnosis, we showed that the classification accuracy between

ASD and HC could be significantly improved after subdividing ASD

group into subtypes. The diagnosis of ASD is currently based on the

observation of behavioral features, which are scored by subjective cri-

teria (American Psychiatric Association, 2013). It is inevitable that sub-

jective bias can contribute to the outcome of ASD diagnosis, despite

the careful application of established criteria (Uddin et al., 2017). Neu-

roanatomical images can provide potential objective biomarkers for

ASD, and early attempts on smaller datasets have achieved high accu-

racy in distinguishing ASD and HC (Uddin et al., 2011). However,

when applied to large multisite datasets, the reported accuracy

decreases to a lower level (about 60%) (Haar, Berman, Behrmann, &

Dinstein, 2016; Katuwal, Cahill, Baum, & Michael, 2015), close to the

classification accuracy (58.8%) based on the entire ASD dataset in the

current study. The improved accuracy after subdividing ASD into

three subtypes suggests that neuroanatomical heterogeneity contrib-

utes to the low classification accuracy levels reported in earlier stud-

ies. The current results demonstrate the utility of subdividing ASD for

the development of neuroanatomical ASD biomarkers.

In the present study, the subjects' ages ranged from 5 to 35 years

old, and the mean age was much older than the age of ASD diagnosis

(usually at the age of 4; Lai et al., 2014). Our results show that subtyp-

ing of ASD is not age-related, and that accounting for individual neu-

roanatomical differences could potentially improve classification

accuracy between ASD and HC. We hypothesized that subtyping

could also improve classification between ASD and HCs. However, as

there is a current lack of large datasets from young children with ASD,

future studies based on children with ASD are needed.

4.5 | Methodological considerations

Previous studies clustering ASD based on cortical features of ASD

subjects have been conducted; one included 64 subjects with ASD

(Hrdlicka et al., 2005) while another one included 107 subjects with

ASD (Hong et al., 2017). Compared with these studies which used the

original or normalized cortical features of ASD subjects, in the current

work we characterized individual neuroanatomical atypical patterns of

ASD individuals. Based on these individual neuroanatomical atypical

patterns compared with HC and utilizing a purely data-driven method

without a priori knowledge, we obtained ASD subtypes with distinct

neuroanatomical atypical patterns. The relatively large dataset

compromising 356 individuals with ASD helped produce more stable

results when exploring the heterogeneity of ASD. Moreover, we dem-

onstrate improvements on previous work aiming to identify potential

neuroanatomical ASD biomarkers by subtyping ASD. Additionally, the

results of reproducibility analysis, such as the replication of different

NMF components and clustering based on sub-datasets, demonstrate

the generalizability of our method.

4.6 | Limitations

To our knowledge, the present study is the largest dataset to date that

has been used to study neuroanatomical heterogeneity in ASD. How-

ever, the biased gender and handedness distribution made it hard to

find female non-right handed subjects within each site in the ABIDE

database. Only including male right-handed subjects limits our ability

to investigate these factors that might further contribute to the het-

erogeneity of ASD. To overcome this problem, larger datasets which

contain female and left-handed subjects are needed.

5 | CONCLUSION

In the present study, we explored the neuroanatomical heterogeneity

of ASD and revealed three subtypes with distinct neuroanatomical dif-

ference patterns. Moreover, ASD subjects belonging to different sub-

types also showed different clinical symptom severity and brain

functional connectivity. By taking these ASD subtypes into account,

ASD-HC classification could be significantly improved. This work
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suggests the existence of ASD subtypes at the neuroanatomical level,

and reveals the potential for such findings to not only improve our

understanding of the neurobiology underlying ASD, but also to lead to

the development of potential brain-based biomarkers of the disorder.
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