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Abstract
A wealth of neuroscience evidence demonstrates that diet and nutrition play an important role

in structural brain plasticity, promoting the development of gray matter volume and mainte-

nance of white matter integrity across the lifespan. However, the role of nutrition in shaping

individual differences in the functional brain connectome remains to be well established. We

therefore investigated whether nutrient biomarkers known to have beneficial effects on brain

structure (i.e., the omega-3 polyunsaturated fatty acids; ω-3 PUFAs), explain individual differ-

ences in functional brain connectivity within healthy older adults (N = 96). Our findings demon-

strate that ω-3 PUFAs are associated with individual differences in functional connectivity

within regions that support executive function (prefrontal cortex), memory (hippocampus), and

emotion (amygdala), and provide key evidence that the influence of these regions on global net-

work connectivity reliably predict general, fluid, and crystallized intelligence. The observed find-

ings not only elucidate the role of ω-3 PUFAs in functional brain plasticity and intelligence, but

also motivate future studies to examine their impact on psychological health, aging, and disease.
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1 | INTRODUCTION

Nutritional cognitive neuroscience is an emerging interdisciplinary

field of research that seeks to understand nutrition's impact on human

cognition and brain health across the life span (Zamroziewicz & Bar-

bey, 2016). Research in this burgeoning field demonstrates that many

aspects of nutrition—from entire diets to specific nutrients—affect

brain structure and function, and therefore have important implica-

tions for understanding the nature of psychological health, aging, and

disease. Accumulating evidence indicates that the long-chain polyun-

saturated omega-3 fatty acids (ω-3 PUFAs) docosahexaenoic acid

(DHA) and eicosapentaenoic acid (EPA) promote healthy brain struc-

ture and function. Both DHA and EPA are found in neural tissue and

play fundamental roles in supporting brain function by regulating

release of neurotransmitters and their binding to postsynaptic recep-

tors (Chalon, 2006; Kidd, 2007), thereby assisting in neurotransmis-

sion (Chang, Ke, & Chen, 2009). Furthermore, evidence indicates that

ω-3 PUFAs may promote neurogenesis by facilitating the production

of brain-derived neurotrophic factor (BDNF) (Jiang, Shi, Wang, &

Yang, 2009) and the maintenance of healthy cerebral perfusion

through vasodilation (Calder, 2006; Sinn & Howe, 2008). The role of

these mechanisms in promoting healthy brain aging has been
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supported by numerous studies investigating the effects of ω-3

PUFAs on brain and cognition in elderly adults (Bos, van Montfort,

Oranje, Durston, & Smeets, 2016; Kobe et al., 2016; McNamara, Asch,

Lindquist, & Krikorian, 2018; Zamroziewicz, Paul, Rubin, & Barbey,

2015; Zamroziewicz, Paul, Zwilling, & Barbey, 2017a, 2018; Zwilling

et al., in press). This literature provides evidence for structural changes

in gray matter volume within brain regions widely implicated in execu-

tive functions (frontal and parietal cortex), episodic memory (hippo-

campus), and emotion (amygdala). Additional findings demonstrate

positive associations between ω-3 PUFA, white matter structural

integrity, and cognitive measures of executive function in older adults

(Gu et al., 2016; Witte et al., 2014).

Despite recent advances in understanding the impact of ω-3

PUFAs on brain health, remarkably little is known about their role in

shaping individual differences in functional brain connectivity. Indeed,

dietary intake of ω-3 PUFAs represent a primary source of individual

differences in nutritional status (Ervin, Wright, Wang, & Kennedy-Ste-

phenson, 2004). Moreover, individuals exhibit sizeable inter-individual

differences in brain structure and function, which are closely linked to

cognitive and behavioral traits (Seghier & Price, 2018). The present

study therefore investigated whether plasma biomarkers of ω-3

PUFAs reliably predict individual differences in the functional brain

connectivity as measured by resting state functional magnetic reso-

nance imaging (fMRI).

The emerging field of Network Neuroscience has established a

data-driven technique for connectome-wide association studies that

provides a comprehensive voxel-wise survey of brain-nutrition rela-

tionships to characterize individual differences in the functional brain

connectome, entitled Multivariate Distance-based Matrix Regression;

MDMR; (Shehzad et al., 2014; Talukdar et al., 2017; Talukdar, Roman,

Operskalski, Zwilling, & Barbey, 2018). This approach represents a sig-

nificant methodological advance—breaking away from the standard

assumption that brain-nutrition associations are univariate, whereby

nutrition is associated with only one functional connection at a time

(i.e., between regions of interest or between voxels in a whole-brain

analysis). In this multivariate framework, the simultaneous contribu-

tion of entire sets of functional connections to ω-3 PUFA status are

evaluated, enabling the simultaneous assessment of multiple connec-

tions that may characterize the global effects of nutritional status on

individual differences in functional connectivity more accurately.

The functional connectivity patterns obtained from MDMR can

be further examined for their contributions to general, fluid, and crys-

tallized intelligence. In particular, brain regions representing sources

of inter-individual variability are likely to exhibit differential network

connectivity across the connectome—providing an index of global

brain network influence that may predict cognitive performance

(Barbey, 2018). Indeed, recent studies demonstrate that ω-3 PUFA's

are associated with increased functional brain activity and cognitive

performance in healthy adults (Boespflug, McNamara, Eliassen, Schi-

dler, & Krikorian, 2016; Bos et al., 2015), raising the question of

whether these findings are also demonstrated in healthy older adults.

Specifically, are ω-3 PUFAs associated with individual differences in

the functional brain connectome and do these neurobiological differ-

ences predict performance on tests of intelligence?

To investigate this hypothesis, we examined whether the global

network influence of regions sensitive to ω-3 PUFAs reliably predict

general, fluid, and crystallized intelligence (as measured by the Wechs-

ler Abbreviated Scale of Intelligence; WASI-II). The present study

therefore examined: (i) whether ω-3 PUFA status is associated with

individual differences in functional brain connectivity—conducting a

connectome-wide association study; and (ii) whether the global net-

work influence of ω-3 PUFA-sensitive regions reliably predict perfor-

mance on tests of intelligence. Thus, by conducting a comprehensive

investigation based on a connectome-wide association study, the pre-

sent work examined the respects in which the functional brain

connectome—spanning all regions and functional connections—is

associated with ω-3 PUFAs, moving beyond standard univariate

methods to elucidate the global effects of ω-3 PUFAs on individual

differences in functional brain plasticity.

2 | MATERIALS AND METHODS

2.1 | Study participants

The present study examined 96 healthy elderly adult patients from

the Illinois Elderly Adult Cohort recruited through Carle Foundation

Hospital. The research conducted in the present study is unique and

complements prior research conducted from this cohort

(Zamroziewicz & Barbey, 2016, 2018; Zamroziewicz et al., 2015,

2018; Zamroziewicz, Paul, et al., 2017a, 2016a; Zamroziewicz, Taluk-

dar, Zwilling, & Barbey, 2017b; Zamroziewicz, Zwilling, & Barbey,

2016b). No participants were cognitively impaired, as defined by a

score of lower than 26 on the Mini-Mental State Examination

(Folstein, Folstein, & McHugh, 1975). Participants with a diagnosis of

mild cognitive impairment, dementia, psychiatric illness within the last

3 years, stroke within the past 12 months, and cancer within the last

3 years were excluded. Participants were also excluded for current

chemotherapy or radiation, an inability to complete study activities,

prior involvement in cognitive training or dietary intervention studies,

and contraindications for magnetic resonance imaging (MRI). All par-

ticipants were right handed with normal, or corrected to normal vision

and no contraindication for MRI.

2.2 | Standard protocol approval and participant
consent

This study was approved by the University of Illinois Institutional

Review Board and the Carle Hospital Institutional Review Board and,

in accordance with the stated guidelines, all participants read and

signed informed consent documents.

2.3 | Biomarker acquisition and analysis

Plasma lipids were extracted by the method of Folch, Lees, and Sloane

Stanley (1957). Briefly, the internal standard (25 μg each of PC17:0)

was added to 200 μl of serum, followed by 6 ml of choloroform:meth-

anol:BHT (2:1:100 v/v/w). The protein precipitate was removed by

centrifugation (2,500g, 5 min, 4 �C). Then 1.5 ml of 0.88% KCl was

added to the supernatant, shaken vigorously, and the layers were
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allowed to settle for 5 min. The upper layer was discarded and 1 ml of

distilled water:methanol (1:1 v/v) was added, the tube was shaken

again and the layers allowed to settle for 15 min. The lower layer was

transferred into a clean tube and evaporated to dryness under nitro-

gen. The phospholipid subfraction was separated by solid-phase

extraction using aminopropyl columns as described by Agren, Julku-

nen, and Penttila (1992). Then the phospholipid fraction was methyl-

ated by adding 2 ml of 14% BF3-MeOH and incubating at 95�C for

1 hr (Morrison & Smith, 1964). The supernatant containing the fatty

acid methyl esters (FAMEs) was dried down under nitrogen, resus-

pended in 100 μl of hexane, transferred into amber GC vials and

stored at −20 �C until the time of analysis.

The phospholipid FAMEs were analyzed by a CLARUS 650 gas

chromatograph (Perkin Elmer, Boston MA) equipped with a 100 m ×

0.25 mm i.d (film thickness 0.25 μm) capillary column (SP-2560,

Supelco). Injector and flame ionization detector temperatures were

250 and 260 �C, respectively. Helium was used as the carrier gas

(2.5 ml/min) and the split ratio was 14:1. The oven temperature was

programmed at 80 �C, held for 16 min and then increased to 180 �C

at a rate of 5 �C/min. After 10 min, the temperature was increased to

192 �C at a rate of 0.5 �C/min and held for 4 min. The final tempera-

ture was 250 �C reached at a rate of 405 �C/min and held for 15 min.

Peaks of interest were identified by comparison with authentic fatty

acid standards (Nu-Chek Prep, Inc. MN). The plasma phospholipid

lipids of interest were eicosapentaenoic acid (EPA, 20:5n-3) and doco-

sahexaenoic acid (DHA, 22:6n-3). These fatty acids were used to gen-

erate an index of ω-3 PUFA status, defined as the percentage of

EPA + DHA of total red blood cell fatty acids (Harris, 2008). This

index calculated for each participant was also adjusted for six poten-

tial confounding variables, including age (continuous), gender (nominal,

man/woman), education (nominal, five fixed levels), income (nominal,

six fixed levels), body mass index (continuous, hereafter BMI), and

depression status (nominal, yes/no) in accordance with prior studies

(Witte et al., 2014; Zamroziewicz, Talukdar, et al., 2017b).

2.4 | Neuropsychological tests

General intelligence was measured by the Wechsler Abbreviated Scale

of Intelligence—second edition (WASI-II) (Stano, 1999). The WASI-II

assesses general intelligence by investigating performance on four

subtests: block design, matrix reasoning, vocabulary, and similarities.

In the block design subtest, participants were asked to reproduce pic-

tured designs using specifically designed blocks as quickly and accu-

rately as possible. In the matrix reasoning subtest, participants were

asked to complete a matrix or serial reasoning problem by selecting

the missing section from five response items. In the vocabulary subt-

est, participants were asked to verbally define vocabulary words

(i.e., “What does lamp mean?”) that became progressively more chal-

lenging. In the similarities subtest, participants were asked to relate

pairs of concepts (i.e., “How are a cow and bear alike?”) that became

progressively more challenging. Per scoring guidelines, participants'

raw scores were converted to standardized scores and combined into

an estimated intelligence quotient score, which provided a measure of

general intelligence. In addition, participants' fluid intelligence was

assessed from the combined block design and matrix reasoning

subtests; and their crystallized intelligence was assessed from the

combined vocabulary and similarities subtests.

2.5 | MRI data acquisition

All data were collected on a Siemens Magnetom 3 T Trio scanner

using a 32-channel head coil in the MRI Laboratory of the Beckman

Institute Biomedical Imaging Center at the University of Illinois. A

high-resolution multi-echo T1-weighted magnetization prepared

gradient-echo structural image was acquired for each participant

(0.9 mm isotropic, TR: 1,900 ms, TI: 900 ms, TE = 2.32 ms, with

GRAPPA and an acceleration factor of 2). The functional neuroimaging

data were acquired using an accelerated gradient-echo echoplanar

imaging (EPI) sequence (Auerbach, Xu, Yacoub, Moeller, & Ugurbil,

2013) sensitive to blood oxygenation level dependent (BOLD) con-

trast (2.5 × 2.5 × 3.0 mm voxel size, 38 slices with 10% slice gap, TR =

2,000 ms, TE = 25 ms, FOV = 230 mm, 90� flip angle, 7 min acquisi-

tion time). During the resting-state fMRI scan, participants were

shown a white crosshair on a black background viewed on a LCD

monitor through a head coil-mounted mirror. Participants were

instructed to lie still, focus on the visually presented crosshair, and to

keep their eyes open.

2.6 | MRI data preprocessing

All MRI data processing was performed using FSL tools available in

FMRIB Software Library version 5.0 (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/). The high-resolution T1 Magnetization-Prepared Rapid

Gradient-Echo (MPRAGE) was brain extracted using the Brain Extrac-

tion Tool (BET) (Smith, 2002). FMRIB's Automated Segmentation Tool

(FAST) segmentation (Zhang, Brady, & Smith, 2001) was performed to

delineate gray matter, white matter, and cerebral spinal fluid (CSF)

voxels. The resting-state fMRI data were pre-processed using the FSL

FMRI Preprocessing and Model-Based Analysis (FEAT) analysis tool

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012; Sat-

terthwaite et al., 2013). Pre-processing entailed: slice timing correc-

tion, motion correction, spatial smoothing (3 mm full width at half

maximum kernel), nuisance signal regression (described below), stan-

dard fMRI temporal bandpass filtering (0.009–0.1 Hz; 47,52), linear

registration of functional images to structural images, and nonlinear

registration of structural images to the MNI152 brain template (2 mm

isotropic voxel resolution). Nuisance variables were modeled via Gen-

eral Linear Modeling (GLM) analyses to remove spurious correlations,

noise introduced by head motion, and variables of no interest. These

included head motion correction parameters (using the extended

12 motion parameters estimated in FEAT preprocessing), as well as

modeling of individual volume motion outliers estimated using DVARS

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). Briefly, DVARS

was used to identify shifts in global signal intensities between each

successive volume, with outliers flagged using the boxplot cutoff 1.5

times interquartile range. White matter (WM) and cerebrospinal fluid

(CSF) signals were also averaged across all voxels identified from the

segmentation of the high resolution MPRAGE. The fully preprocessed

resting state fMRI data was then residualized by regressing out the

effect of both head motion and shifts in global signal intensities
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identified from DVARS, along with the mean WM and CSF signals

through a GLM framework. The residuals were transformed into nor-

malized MNI152 space and re-sampled to 4 mm isotropic voxels in

order to reduce computational complexity in post data processing for

MDMR analysis.

2.7 | Multivariate distance-based matrix regression

MDMR was applied to investigate whether individual differences in

resting state functional connectivity patterns were related to ω-3

PUFA status. The MDMR analysis pipeline involves: (1) extracting

resting state preprocessed BOLD time series signal from participants'

fMRI scans; (2) computing a distance matrix indicating pairwise dissim-

ilarity between participants' functional connectivity profiles for each

brain region; (3) performing multivariate regression with ω-3 PUFA

status as input and the distance matrix computed for each brain

region as output; and (4) generating a statistical map of brain regions,

which have significant associations with individuals' ω-3 PUFA status.

MATLAB R2014a was used to generate code and analysis scripts for

performing the MDMR analysis. Craddock's 800 parcellated brain

atlas in MNI space (Craddock, James, Holtzheimer, Hu, & Mayberg,

2012) was applied as a mask to extract the mean BOLD time course

from gray matter voxels within each parcel. A large parcellation con-

sisting of 800 gray matter units was chosen in order to maintain

regional specificity and also because reproducibility analysis by Sheh-

zad et al. (2014) revealed substantial overlap at this resolution with

whole-brain, voxel-wise MDMR analyses.

The distance matrix used in MDMR was derived from individual

differences in functional connectivity profiles between each brain par-

cel. For each participant, functional connectivity was computed from

pairwise correlations between mean BOLD time courses extracted

from gray matter parcels that were common to all participants. A total

of 665 parcellated regions comprising gray matter voxels across the

whole brain were found to be common across all participants. The

correlations were Fisher's Z-transformed to improve normality. Next,

dissimilarities between participants' functional connectivity profiles

were calculated based on the distance metric d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1− rð Þp

, where,

r represents the Pearson correlation between the connectivity profiles

for a participant pair and brain region. All pairwise dissimilarities were

then entered into a distance matrix. MDMR was then applied in the

final step to test the degree to which ω-3 PUFA status explained vari-

ability in the distances between participants' functional connectivity

profiles at each region separately. MDMR is designed to identify the

presence of an association between ω-3 PUFA status and distances

between subjects' functional connectivity patterns and, as a conse-

quence, does not assess the directionality of the observed

associations.

A pseudo-F statistic was computed at each region/parcel repre-

senting the proportion of variance explained in ω-3 PUFA status by

the distances between participants' connectivity profiles. A p-value

was then computed for each region by comparing the pseudo-F statis-

tic from the original data to a simulated null distribution derived from

performing 10,000 random permutations of the participant indices

and computing the pseudo-F statistic at each iteration. The p-values

were converted to one-sided Z-scores and adjusted for multiple

comparisons using Gaussian Random Field (GRF) correction (Li, Guo,

Nie, Li, & Liu, 2009). The Z-scores were then projected back onto the

MNI152 brain template. Next, FSL autoaq tool was used to determine

center of mass (COM) coordinates of clustered regions by applying a

one-tailed voxel level threshold of Z > 1.6 (p < 0.05) and a minimum

cluster size of 10 voxels.

2.8 | Support vector regression

Prior research suggests that individual differences in functional brain

connectivity predict performance on tests of intelligence (Talukdar

et al., 2017, 2018; Barbey, 2018), motivating an investigation of

whether the observed individual differences associated with ω-3

PUFA status predict performance on these measures. To test this rela-

tionship, we applied support vector regression (SVR) to assess

whether ω-3 PUFA sensitive regions reliably predict measures of intel-

ligence (general, fluid, and crystallized) based on their whole brain

connectivity strength. We chose SVR over a standard multiple linear

regression framework as SVR can operate on a high dimensional fea-

ture space and provides a sparse solution that is more generalizable

and less prone to over-fitting (Smola & Schölkopf, 2004). A linear SVR

kernel was applied so that individual weights computed for each fea-

ture (the whole brain connectivity strength of each ω-3 PUFA sensi-

tive region) could be easily interpreted in terms of their relative

contributions toward predicting scores derived for general, fluid, and

crystallized intelligence. The analysis framework for SVR was con-

ducted using the Python “scikit-learn” machine learning modules

(http://scikit-learn.org/stable/index.html). The SVR analysis entailed

the following steps.

1. SVR Inputs. Inputs to SVR were comprised of whole brain connec-

tivity strength values derived for each ω-3 PUFA sensitive region.

Graphs were constructed with nodes representing each of the

665 brain parcels and edges representing Fisher's Z-transformed

pairwise correlations between the mean time series extracted

from the brain parcels. A Bonferroni-corrected statistical Z-

threshold was applied to the edges in order to identify significant

positive correlations (p < 0.05). The thresholded Z-scores were

next rescaled to represent connection weights ranging from 0 to

1. Subject-wise whole brain connectivity strength values were

then obtained for each ω-3 PUFA sensitive region from the sum

of weights of all edges linked to that region.

2. SVR Parameter Tuning. Linear kernel SVR requires tuning two

meta-parameters ε and C, which determine model complexity.

The parameter ε is used to control the width of the “epsilon-

insensitive tube,” or loss function, such that points that fall inside

the tube carry no loss. The parameter C controls the trade-off

between how strongly points beyond the epsilon-insensitive tube

are penalized and the flatness of the regression line (larger values

of C allow the regression line to be less flat) (Dosenbach et al.,

2010). Optimal combination of the meta-parameters ε and C were

determined separately for each input/output dataset comprising

whole brain connectivity strength values and scores on corre-

sponding measures of intelligence (general/fluid/crystallized). A

grid search was performed on ε (0.001, 0.01, 0.1, 1, 5) and C (0.1,

1890 TALUKDAR ET AL.

http://scikit-learn.org/stable/index.html


1, 5, 10, 15) to select the optimal parameters, which yielded the

best R-squared value in the SVR model fit between each input/

output dataset.

3. SVR Model Weights. Individual weights of the input variables,

which are determined from the SVR model fit, indicate their rela-

tive contribution to the prediction of the output variables. SVR

model weights for the ω-3 PUFA sensitive regions were assessed

separately for each of the three measures of intelligence. To

determine the confidence interval for the SVR model weights,

participants' input/output dataset were bootstrapped 10,000

times with replacement. SVR was then applied to the boot-

strapped samples using the optimal parameters ε and

C determined in step (2) with respect to each measure of intelli-

gence. The SVR model fit on each bootstrapped sample was

assessed from the standardized beta coefficient of the linear

regression line representing the fit between the predicted and

observed intelligence scores. The distribution of SVR model

weights for each ω-3 PUFA sensitive region was next determined

from the bootstrapped SVR model fits, which produced significant

correlations between predicted and observed intelligence scores

(p < 0.01). Significance of each ω-3 PUFA sensitive region in pre-

dicting intelligence scores was then determined from the 99%

confidence interval of their mean SVR model weight and cor-

rected for multiple comparisons using a false discovery

rate q = 0.05.

4. SVR Weight Map. The ω-3 PUFA sensitive regions that were found

to be significant predictors of general, fluid, and crystallized intelli-

gence scores were displayed on surface brain maps with their

mean SVR model weights represented by standardized Z-scores.

Cluster peaks were identified from each of the three surface brain

maps using FSL autoaq tool.

3 | RESULTS

3.1 | Participant characteristics

Our study sample comprised 96 older adults (age range: 65–70; mean

age: 69 years; 61% females). Participant demographics are reported in

Table 1.

3.2 | Multivariate distance-based matrix regression

We applied multivariate distance-based matrix regression (MDMR) to

investigate whether individual differences in functional brain connec-

tivity were associated with nutrient biomarkers of ω-3 PUFAs (see

Methods section for details on the MDMR framework). Results from

the MDMR analysis are presented in Figure 1a, which illustrates brain

regions whose patterns of connectivity have significant associations

with ω-3 PUFA status (p < 0.05, cluster corrected using Gaussian ran-

dom field theory, GRF). Table 2 presents cluster peaks of brain regions

identified from the map in Figure 1a. A broadly distributed pattern of

cortical regions was observed, including areas within the frontal (fron-

tal pole and anterior cingulate gyrus), temporal (hippocampus and

amygdala), parietal (posterior cingulate gyrus and precuneus), and

occipital cortex (primary visual cortex and lateral occipital cortex) (see

Table 2 and Figure 1a). As Figure 1a illustrates, several brain regions

have large spatial extent. Specifically, the cluster peak region identi-

fied as the right cingulate gyrus (R. CNG: x = 6.3, y = 38.9, z = 10.2)

extends to the anterior division in both the right and left hemispheres.

In addition, the right precuneus (R. PCUN: x = 8.02, y = −56.4,

z = 21.8) is part of a broadly distributed area that spans the precuneal

regions, the posterior cingulate gyrus and also the lingual gyrus.

3.3 | Support vector regression

We investigated whether the global network influence of ω-3 PUFA-

sensitive regions predict general, fluid, and crystallized intelligence

(as measured by the WASI-II battery). We applied linear support vec-

tor regression (SVR) with tuned parameters (ε = 1, C = 1, see

Methods—SVR Parameter Tuning) to model the relationship between

general intelligence scores and whole brain connectivity strength of

ω-3 PUFA-sensitive regions. Subject-wise whole brain connectivity

strength measure was derived from 655 brain parcels/nodes repre-

sentative of gray matter voxels, of which 20 brain parcels/nodes over-

lapped with the ω-3 PUFA-sensitive regions (see Methods—SVR

Inputs). The connectivity strength of these 20 brain parcels/nodes and

general intelligence scores were fit by a SVR model with 10,000 boot-

strap samples. This model produced a mean correlation coefficient

TABLE 1 Participant characteristics

Demographics N = 96

Age in years (M � SD) 69 � 3

Female (%) 61

Education (%)

Some high school 1

High school degree 11

Some college 17

College degree 71

Income (%)

<$15,000 1

$15,000–$25,000 3

$25,000–$50,000 15

$50,000–$75,000 23

$75,000–$100,000 26

>$100,000 32

Body mass index (M � SD) 26 � 4

Depression indicated (%) 5

Plasma phospholipid nutrients (M � SD)

Eicosapentaenoic acid (20:5n-3; μmol/L) 24.9� 17.3

(20:5n-3; %FA) 0.9 � 0.6

Docosahexaenoic acid (22:6n-3; μmol/L) 79.7 � 32.5

(22:6n-3; %FA) 3.0 � 1.0

ω-3 PUFA status (%) 3.9 � 1.5

Psychometrics (M � SD)

General intelligence score 114 � 13

Fluid intelligence score 112 � 14

Crystallized intelligence score 113 � 14

Abbreviations: M, mean; SD, standard deviation; %FA, percent of total red
blood cell fatty acids.
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r = 0.450 between the predicted and observed general intelligence

scores. As a further test, 9,820 out of the 10,000 bootstrapped sam-

ples also produced significant correlations (p < 0.01) with mean corre-

lation coefficient r = 0.454. Overall, the SVR model revealed that 7 of

the 20 ω-3 PUFA-sensitive brain parcels/nodes significantly predicted

general intelligence scores (FDR, p < 0.05). The relative contribution

of these regions in predicting general intelligence scores is shown by

the weight map in Figure 1b. These weights standardized to Z-scores

reflect the mean bootstrapped SVR model weights assessed at the

99% confidence interval and corrected for multiple comparisons (see

Methods—SVR Model Weights). As Table 3 illustrates, the identified

regions include areas within the prefrontal cortex (paracingulate and

anterior cingulate gyrus), in addition to temporal and parietal lobe

structures (amygdala, posterior cingulate gyrus, and precuneus). Each

of these regions contributes differentially to the prediction of general

intelligence scores. The left and right anterior cingulate regions, the

right posterior cingulate region, and the left amygdala demonstrated

positive weights. A positive weight indicates that higher whole brain

connectivity strength is associated with greater general intelligence

scores. The right paracingulate gyrus and the right precuneus, on the

other hand, have negative weights, which indicates that lower whole

brain connectivity strength in these regions are associated with higher

general intelligence scores.

The SVR results for the fluid and crystallized intelligence mea-

sures are shown in Figure 1c,d. SVR model fitting for both these

measures was carried out using tuned parameters ε = 1, C = 0.1 and

produced significant correlations between the predicted and observed

measures for each type. Specifically, 9,726 out of the 10,000 boot-

strapped samples produced significant correlations (p < 0.01) between

predicted and observed fluid intelligence measures, having a mean

correlation coefficient of r = 0.43. Table 4 indicates cluster peak

regions identified from the SVR weight map (see Figure 1c) showing

FIGURE 1 MDMR and SVR results. (a) Panels illustrate the MDMR statistical Z-score map indicating brain regions whose inter-individual

variation in functional connectivity is significantly associated with ω-3 PUFA status (p < 0.05, cluster corrected using GRF); (b–d) panels illustrate
ω-3 PUFA-sensitive regions that reliably predict general intelligence, fluid intelligence and crystallized intelligence based on SVR. Color bar
represents statistical Z-score value [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 MDMR results: Listed are cluster peaks of brain regions

having significant association with ω-3 PUFA status (p < 0.05, cluster
corrected using GRF)

Region Z stat Cluster size X Y Z

R. CNG 2.75 1,176 6.3 38.9 10.2

R. PCUN 2.69 1,096 7.08 −73.6 49.8

R. PCUN 1.99 1,088 8.02 −56.4 21.8

R. LOC 2.03 496 50 −71.7 −13.9

R. VC 2.21 312 17.8 −85.3 −11.1

L. AMG 1.68 248 −20.7 −9.19 −12.5

L. FP 1.91 184 −31.4 54 −2.04

L. HIPP 1.65 168 −28.2 −35.8 −9.76

Each region name is presented in column 1, and the region's significance
value, cluster size and the cluster center of mass in MNI coordinates are
presented in columns 2–6 respectively.
Abbreviations: L, left; R, right; Z stat, test statistic; CNG, cingulate gyrus;
PCUN, precuneus; LOC, lateral occipital cortex; VC, primary visual cortex;
AMG, amygdala; FP, frontal pole; HIPP, hippocampus.
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relative contribution of the ω-3 PUFA-sensitive brain regions, which

significantly predicted fluid intelligence measures (FDR, p < 0.05). The

observed regions largely overlap with the SVR weight map obtained

for the general intelligence measure (see Figure 1b). However, several

distinct regions were also observed, including the right paracingulate

gyrus, which demonstrated a positive weight, and the left anterior cin-

gulate gyrus and right lateral occipital cortex, both of which exhibited

negative weights.

In the case of crystallized intelligence, SVR model fitting resulted

in 9,824 out of the 10,000 bootstrapped samples having significant

correlations (p < 0.01) between the predicted and observed measure-

ment data, with a mean correlation coefficient of r = 0.44. The SVR

weight map is displayed in Figure 1d and the corresponding cluster

peak regions identified are listed in Table 5. The observed regions,

which have largely positive weights, include the right anterior cingu-

late gyrus, posterior cingulate gyrus in the left and right hemispheres,

as well as the right amygdala. Negatively weighted regions were also

identified, including the right precuneus and right lateral occipital

cortex.

4 | DISCUSSION

By conducting a comprehensive investigation based on connectome-

wide association study methods, the present study examined the

respects in which the functional brain connectome—spanning all

regions and functional connections—is associated with ω-3 PUFAs.

Our findings support the following primary conclusions.

4.1 | Brain regions sensitive to ω-3 PUFA status

The MDMR findings lend support to previous functional neuroimaging

studies demonstrating that ω-3 PUFAs are associated with increased

functional connectivity within frontal lobe regions mediating execu-

tive functions and temporal lobe structures involved in memory and

emotion (Almeida, Jandacek, Weber, & McNamara, 2017; McNamara

et al., 2010, 2013). In addition, these findings motivate fundamental

questions about the neurobiological pathways that link ω-3 PUFAs to

individual differences in functional brain connectivity. Although direct

evidence to address this issue is not currently available, prior research

has identified multiple, complementary mechanisms that warrant fur-

ther investigation. For example, evidence indicates that ω-3 PUFAs

may influence the production of growth factors, such as the Brain

Derived Neurotrophic Factor (BDNF), which promote neuronal sur-

vival, growth and differentiation (Jiang et al., 2009). By inducing pro-

duction of BDNF, ω-3 PUFAs may support neurogenesis and synaptic

transmission, thereby affecting functional connectivity between brain

regions (Thomason, Yoo, Glover, & Gotlib, 2009). ω-3 PUFAs are also

known to enhance cerebral blood flow through vasodilation (Calder,

2006; Sinn & Howe, 2008). The maintenance of cerebral blood flow is

critical for normal brain function as neurons require a constant supply

of oxygen and nutrients. ω-3 PUFAs may therefore impact functional

connectivity by enhancing cerebral blood flow through vasodilation

(Sinn & Howe, 2008).

4.2 | Global network influence and general
intelligence

We applied SVR to identify ω-3 PUFA-sensitive regions that reliably

predict general intelligence. Our SVR findings revealed a core set of

regions (see Figure 1b), whose global network influence reliably pre-

dicted general intelligence, including the anterior cingulate gyrus, the

posterior cingulate gyrus, and the amygdala. The anterior and poste-

rior cingulate, for example, are known to mediate self-referential judg-

ments, decision making, and attentional modulation (Buckner,

Andrews-Hanna, & Schacter, 2008)—cognitive skills that represent

executive control processes. The amygdala, on the other hand, is

involved in social and emotional information processing (Cabeza & St

Jacques, 2007; Sheline et al., 2009).

In addition, we observed that global network influence of the pre-

cuneus and the paracingulate gyrus was negatively associated with

general intelligence. The precuneus is known to support memory

(e.g., episodic memory retrieval) and attention (e.g., orientation and

shifting), in addition to core visual processes (Fletcher et al., 1995;

Lundstrom et al., 2003). The paracingulate gyrus is known to support

executive functions required for social information processing, such as

TABLE 3 SVR results: Listed are cluster peaks of ω-3 PUFA-sensitive

regions predictive of general intelligence scores

Region Z stat Cluster size X Y Z

R. PCUN −5.49 296 11.6 −56.8 32.6

L. PCUN −16.7 264 −2.21 −75.6 47.2

R. CNG 5.37 256 10.7 −50.9 7.38

L. AMG 5.58 248 −20.7 −9.19 −12.5

R. CNG 11.3 240 11.3 31.9 22.5

R. PCNG −5.36 200 9.72 44.2 20.6

L. CNG 8.2 176 −5.36 46.6 5.91

Peaks were identified from the SVR weight map indicating relative contri-
bution of ω-3 PUFA-sensitive regions toward predicting general
intelligence.
Each region name is presented in column 1; columns 2–6 represent the
SVR weight standardized to Z-score, cluster size and the cluster center of
mass in MNI coordinates, respectively.
Abbreviations: L, left; R, right; Z stat, test statistic; CNG, cingulate gyrus;
PCNG, paracingulate gyrus; PCUN, precuneus; AMG, amygdala.

TABLE 4 SVR results: Listed are cluster peaks of ω-3 PUFA-sensitive

regions predictive of fluid intelligence

Region Z stat Cluster size X Y Z

R. PCUN −14.8 544 3.62 −77.5 45.4

R. PCUN −8.72 296 11.6 −56.8 32.6

R. CNG 10.7 240 11.3 31.9 22.5

R. LOCC 7.67 216 52 −64.9 −17.3

R. PCNG 6.43 192 12 39 −2.33

L. CNG −7.54 184 −0.91 37.2 3.17

Peakswere identified from the SVRweightmap indicating relative contribution
of ω-3 PUFA-sensitive regions toward predicting fluid intelligence test scores
assessed from the combined block design andmatrix reasoning subtest scores.
Each region name is presented in column 1; columns 2–6 represent the
SVR weight standardized to Z-score, cluster size and the cluster center of
mass in MNI coordinates, respectively.
Abbreviations: L, left; R, right; Z stat, test statistic; CNG, cingulate gyrus;
PCNG, paracingulate gyrus; PCUN, precuneus; LOCC, lateral occipital
cortex.
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inferring others' thoughts and beliefs (Amodio & Frith, 2006; Van

Overwalle, 2009). Evidence further indicates that these regions are

functionally disengaged at rest but become active in cognitively

demanding executive and attentional control tasks (Gusnard, Akbudak,

Shulman, & Raichle, 2001; Loose, Kaufmann, Auer, & Lange, 2003).

Thus, whole brain connectivity within these regions may vary as a

function of specific cognitive demands.

4.3 | Global network influence and fluid intelligence

The present study investigated whether ω-3 PUFA-sensitive regions

predict fluid intelligence, a core facet of general intelligence that

reflects adaptive reasoning and problem solving skills (Carroll, 1993).

The SVR results (Figure 1c) reveal regions within frontal and parietal

cortex, which have been widely implicated in general intelligence and

executive functions (Barbey, Colom, & Grafman, 2013; Barbey et al.,

2012). Specifically, the anterior cingulate gyrus and paracingulate

gyrus, which are engaged by tasks that require cognitive control pro-

cesses (Ramnani & Owen, 2004), show positive associations between

their whole brain connectivity strength and fluid intelligence.

In addition, regions whose whole brain connectivity strength was

negatively related to fluid intelligence were observed, including the

precuneus and lateral occipital cortex. The precuneus is known to play

a central role in episodic memory retrieval (Fletcher et al., 1995; Lund-

strom et al., 2003) and the lateral occipital cortex mediates visual

information processing (Grill-Spector, Kourtzi, & Kanwisher, 2001).

The negative weights within these regions suggest that fluid intelli-

gence relies less on neural mechanisms for episodic memory and

visual processing compared with frontal and parietal regions that sup-

port executive control and adaptive decision making skills that are

central to fluid intelligence (Cole, Yarkoni, Repovs, Anticevic, & Braver,

2012; Gray, Chabris, & Braver, 2003).

4.4 | Global network influence and crystallized
intelligence

Crystallized intelligence refers to the use of prior knowledge and

experience to solve familiar problems (Carroll, 1993). The SVR results

revealed several brain regions, including the amygdala and anterior

and posterior cingulate gyrus, whose whole brain connectivity

strength was positively associated with crystallized intelligence (see

Figure 1d). The amygdala together with the anterior cingulate gyrus

has been implicated in recognition memory (Canli, Zhao, Desmond,

Glover, & Gabrieli, 1999; Kensinger, Addis, & Atapattu, 2011), while

the posterior cingulate gyrus is known to support episodic memory

retrieval (Nielsen, Balslev, & Hansen, 2005). These memory processes

contribute to representations of prior knowledge and experience, and

therefore play an important role in crystallized intelligence. In addition,

we observed that whole brain connectivity strength within the precu-

neus and lateral occipital cortex—regions implicated in visual and spa-

tial processing (Cavanna & Trimble, 2006; Grill-Spector et al., 2001)—

exhibited a negative association with crystallized intelligence. This

finding suggests that crystallized intelligence is less dependent upon

mechanisms for visual and spatial processing as demonstrated by the

reduced network influence within the precuneus and lateral occipital

cortex.

4.5 | Implications of ω-3 PUFAs on healthy brain
aging

Prior research has demonstrated that ω-3 PUFAs have a host of bene-

ficial effects on brain health and therefore have important implications

for cognitive aging (Bos et al., 2016; McNamara et al., 2018). Specifi-

cally, aging is linked to decline in cognitive abilities such as adaptive

reasoning and problem solving skills (e.g., fluid intelligence) (Johnson

et al., 2007) and is known to impact executive function and memory

(Buckner, 2004; Schacter, Kaszniak, Kihlstrom, & Valdiserri, 1991).

Recent advances in neuroimaging have enabled the study of structural

and functional brain changes that are associated with cognitive aging

(Buckner, 2004). Evidence from structural MRI demonstrates age-

related changes in gray matter volume and white matter structural

integrity. Age-related atrophy has been observed across the entire

cerebral cortex, for example spanning the superior frontal, middle

frontal, and superior parietal cortex (Lockhart & DeCarli, 2014). Many

subcortical regions are also affected, including the caudate nucleus,

cerebellum, and hippocampus (Raz, 2005). Diffusion tensor imaging

provides another method for measuring age-related changes in brain

structure by assessing the microstructural integrity of cerebral white

matter fiber tracts, which can deteriorate with age and lead to a

reduction in structural connectivity between brain regions (Betzel

et al., 2014). Several studies have demonstrated reduced microstruc-

tural integrity of tracts in the frontal lobe, parietal lobe, and corpus

callosum during aging (Nusbaum, Tang, Buchsbaum, Wei, & Atlas,

2001; O'Sullivan et al., 2001).

Age-related changes in brain function have also been investigated

by functional neuroimaging studies (Park & Reuter-Lorenz, 2009). Evi-

dence demonstrates that aging is associated with greater activity in

prefrontal cortical regions and weaker activity in posterior regions

(Davis et al., 2008; Stuss & Knight, 2013); reduced asymmetry in

activity of the prefrontal cortex (Cabeza, 2002); and changes in func-

tional connectivity between brain regions (Lockhart & DeCarli, 2014).

In addition, functional networks that mediate self-referential proces-

sing, cognitive control, and attention, also demonstrated age-related

TABLE 5 SVR results: Listed are cluster peaks of ω-3 PUFA-sensitive

regions predictive of crystallized intelligence

Region Z stat Cluster size X Y Z

R. PCUN −8.58 824 4.34 −74.6 48.7

R. LOCC −12.9 280 48.1 −78.1 −10.7

R. LOCC 6.59 272 19.5 −72.4 51

L. AMG 7.47 248 −20.7 −9.19 −12.5

L. CNG 13 224 −2.14 −55.6 27

R. CNG 14.2 184 11.2 37.2 10.8

Peakswere identified from the SVRweightmap indicating relative contribution
of ω-3 PUFA-sensitive regions toward predicting crystallized intelligence test
scores assessed from the combined vocabulary and similarities subtest scores.
Each region name is presented in column 1; columns 2–6 represent the
SVR weight standardized to Z-score, cluster size and the cluster center of
mass in MNI coordinates, respectively.
Abbreviations: L, left; R, right; Z stat, test statistic; CNG, cingulate gyrus;
PCNG, paracingulate gyrus; PCUN, precuneus; AMG, amygdala; LOCC, lat-
eral occipital cortex.
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decline (Betzel et al., 2014; Marstaller, Williams, Rich, Savage, & Buria-

nova, 2015). Aging is associated with a reduction in within network

connections (as indexed by modularity), indicating that functional net-

works become less differentiated with age (Geerlings et al., 2014).

Our MDMR findings indicate that ω-3 PUFA sensitive regions

overlap with many of the brain regions implicated in the cognitive

aging literature. Several of the ω-3 PUFAs sensitive regions, such as

the frontal pole, hippocampus, amygdala, precuneus and the posterior

cingulate gyrus, have been shown to be vulnerable to aging and

exhibit atrophy in older adults (Fjell et al., 2009, 2013; West, 1996).

Our MDMR findings provide further evidence that ω-3 PUFAs are

associated with functional connectivity patterns primarily within the

frontal and parietal cortex—areas that support cognitive control and

attention. Results from the SVR analysis complement the MDMR find-

ings by revealing that the underlying network connectivity within

many of the ω-3 PUFA sensitive regions is predictive of cognitive

operations linked to executive functions, attention and memory.

These findings motivate further investigation of whether ω-3 PUFAs

confer beneficial effects on functional brain connectivity and serve to

promote the health and longevity of brain regions and associated cog-

nitive skills that are highly susceptible to the effects of aging (Betzel

et al., 2014; Marstaller et al., 2015).

5 | LIMITATIONS

Although the current study represents one of the largest and most

comprehensive investigations of the contributions of ω-3 PUFAs to

individual differences in the functional brain connectivity, it is impor-

tant to present our findings in the light of several limitations. First, the

results of the present cross-sectional study motivate a nutritional

intervention study to investigate the effects of ω-3 PUFAs on func-

tional brain connectivity. A central question is whether the regions

discovered in the present study are indeed impacted by nutritional

supplementation of ω-3 PUFAs. Second, future research should inves-

tigate whether nutritional supplementation of ω-3 PUFAs has favor-

able effects on the brain regions, networks, and cognitive skills

observed in the present study. Third, as this study is based on an indi-

vidual difference framework, our findings are sensitive to the demo-

graphic characteristics of the study sample. Thus, to better

understand the impact of ω-3 PUFAs on functional brain connectivity,

future research should investigate the extent to which the reported

findings replicate in more diverse populations (e.g., with respect to

age, cognitive ability and also gender). Fourth, research investigating

the mechanisms by which ω-3 PUFAs influence functional brain con-

nectivity is needed to further elucidate the role of diet and nutrition in

healthy brain aging.

6 | CONCLUSION

While this study is cross-sectional in nature, our findings provide the

basis for targeting specific brain regions in longitudinal studies investi-

gating the effects of ω-3 PUFAs on functional brain plasticity. Future

longitudinal studies should examine the functional connectivity

patterns within these regions and how they change over the course of

a nutritional intervention—in an effort to further elucidate how the

functional brain connectome is shaped by diet and nutrition to pro-

duce beneficial effects on cognition. These discoveries will increase

our ability to identify abnormalities in nutrition-related neural circuits

and networks relevant to health, aging, and disease. Future investiga-

tions of the neural circuits identified through nutritional intervention

studies will enhance our understanding of their functional significance,

ultimately improving our ability to diagnose and possibly treat a wide

range of health and age-related neurological disorders.
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