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Abstract
Sliding window correlation (SWC) is utilized in many studies to analyze the temporal characteris-

tics of brain connectivity. However, spurious artifacts have been reported in simulated data

using this technique. Several suggestions have been made through the development of the

SWC technique. Recently, it has been proposed to utilize a SWC window length of 100 s given

that the lowest nominal fMRI frequency is 0.01 Hz. The main pitfall is the loss of temporal reso-

lution due to a large window length. In this work, we propose an average sliding window corre-

lation (ASWC) approach that presents several advantages over the SWC. One advantage is the

requirement for a smaller window length. This is important because shorter lengths allow for a

more accurate estimation of transient dynamicity of functional connectivity. Another advantage

is the behavior of ASWC as a tunable high pass filter. We demonstrate the advantages of

ASWC over SWC using simulated signals with configurable functional connectivity dynamics.

We present analytical models explaining the behavior of ASWC and SWC for several dynamic

connectivity cases. We also include a real data example to demonstrate the application of the

new method. In summary, ASWC shows lower artifacts and resolves faster transient connectiv-

ity fluctuations, resulting in a lower mean square error than in SWC.
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1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) (Friston et al., 1995)

allows for a noninvasive way of investigating temporal changes of

localized brain activations (Friston et al., 1998; Friston, Holmes, Price,

Buchel, & Worsley, 1999). Since its early years, event-related neural

activations have been detected using fMRI in response to varied types

of stimuli and task-based experiments (Friston et al., 1999; Josephs &

Henson, 1999). In addition, spontaneous activations occurring while

subjects are not engaged in goal-directed external tasks (also known

as resting state) have been consistently observed through the brain

(Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995; Cordes et al., 2000).

These resting state activations were discovered in localized brain

areas forming a consistent set of resting state networks (RSNs) with

highly replicable activation patterns (Damoiseaux et al., 2006). One of

the first and most widely used methods to study the relationship

between RSN activations is temporal correlation which is considered

as an assessment of functional connectivity (FC) between two RSNs

(Allen et al., 2011; Biswal et al., 1995; Horwitz, 2003; Toro, Fox, & Paus,

2008). These ideas lead to the discovery of FC abnormalities in brain

function linked to neuropsychiatric disorders (Calhoun, Maciejewski,

Pearlson, & Kiehl, 2008; Greicius, 2008; Woodward & Cascio, 2015).

Many studies make one FC assessment for the whole duration of

the fMRI scan assuming a static FC. This view has been challenged by

evidence that FC does fluctuate with time even in resting state experi-

ments when no particular external attention is required (Chang &

Glover, 2010; Sako�glu et al., 2010; Sakoglu & Calhoun, 2009a;

Sakoglu & Calhoun, 2009b) and that resting state FC changes are

related to a succession of mental states occurring within the duration

of an fMRI scan (Allen et al., 2014; Chang, Liu, Chen, Liu, & Duyn,

2013). Two major measures can be considered: static functional con-

nectivity (sFC) or dynamic functional connectivity (dFC) that considers

the existence of spontaneous fluctuations of FC. One of the main

differences among these two FC assessments is the time scale

employed. Functional connectivity estimated over a long period of time

(generally above 5 min) corresponds to sFC, while a relatively short
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time window between 30 and 100 s has been proposed as a compara-

tively good window length for dFC (Wilson et al., 2015). Temporal vari-

ation in dFC is commonly obtained by sliding the time window

(advancing the position) at a regular interval of typically one step, which

has been used in other fields previously (Schulz & Huston, 2002), a pro-

cedure commonly known as sliding window correlation (SWC). Other

window-based methods of dFC estimation have been developed; how-

ever, there is evidence that their performance is similar to SWC for typ-

ical window lengths (larger than 30 s) (Xie et al., 2018). SWC has

become a common technique to assess dFC (Hutchison et al., 2013;

Sako�glu et al., 2010; Shakil, Lee, & Keilholz, 2016), offering both easy

implementation and easy interpretation. In the current state of the art,

window length selection remains one of the most discussed topics and

further development is necessary to determine the best choice for this

parameter (Preti, Bolton, & Van De Ville, 2017).

In spite of evidence for the existence of temporal FC fluctuations,

an important concern in the field is to identify whether estimated dFC

is effectively due to real changes of FC or corresponds to a static sig-

nal corrupted by unrelated nuisances and artifacts. The relatively short

temporal span of SWC makes it particularly sensitive to nuisances

such as scanner drift, head motion, and physiological noise (Hutchison

et al., 2013). Statistical tests for the detection of dynamicity in esti-

mated time series of FC have been proposed based on different factors

such as variance (Hindriks et al., 2016; Sako�glu et al., 2010), Fourier-

transformed time-series (Handwerker, Roopchansingh, Gonzalez-

Castillo, & Bandettini, 2012) and nonlinear statistics (Zalesky, Fornito,

Cocchi, Gollo, & Breakspear, 2014). Most statistical procedures look to

test the null hypothesis H0 that FC does not change with time. Once

H0 has been rejected, the next important step is to reduce variability

due to random noise and nuisances without compromising the estima-

tion of the true dFC.

In addition to scanner drift, head motion, and physiological noise

(Hutchison et al., 2013), SWC outcomes can be affected by the selec-

tion of the window length parameter (Sako�glu et al., 2010; Shakil

et al., 2016). Window length is expected to be large enough to allow

for a robust estimation of the correlation coefficient, but also small

enough to detect transient variations (Hutchison et al., 2013; Sako�glu

et al., 2010). Some studies warn about the existence of spurious fluc-

tuations in the SWC method proposing a rule of thumb to reduce

these nuisances that sets the SWC window length to 1/f0 s or larger,

where f0 corresponds to the smaller frequency in the spectrum

(Leonardi & Van De Ville, 2015; Zalesky & Breakspear, 2015). The

spectrum of interest for fMRI has been proposed to start at 0.01 Hz

after studying frequencies dominated by neuronal activity and away

from physiological noise such as cardiac and respiratory activity

(Chen & Glover, 2015; Fransson, 2005). At the higher end, it has been

found that neuronal information is concentrated in the range below

0.10 Hz (Cordes et al., 2001), but evidence suggests that important

contributions of lower amplitude exist for frequencies above 0.10 Hz

(Chen & Glover, 2015). Because of the rule of thumb 1/f0, it has been

suggested that dFC will suffer from spurious artifacts unrelated to the

true signal if the window length is chosen below 100 s (Leonardi &

Van De Ville, 2015). Although choosing larger window lengths is an

option, time scales well beyond a minute (i.e., including the 100 s

mark) may suppress frequency content that characterizes dFC

(Zalesky & Breakspear, 2015). Instead of a large time scale, this work

proposes to perform an average SWC (ASWC) seeking a better dFC

estimation and reducing the window length. In general, averaging

repeated measures of correlation coefficients is a way of increasing

the accuracy of estimated correlation (Corey, Dunlap, & Burke, 1998;

Silver & Dunlap, 1987). This idea derives from the basic statistical

principle that the standard error of the average decreases as the num-

ber of observations increases. The proposed procedure is to average a

predefined number of consecutive SWCs and then advance one step

and average the next set of SWCs. Through theoretical mathematical

characterization and simulation experiments, we demonstrate that

ASWC time scales of about 94 s (windowing plus averaging) are

enough to reduce spurious artifacts and account for the 0.01 Hz fre-

quency cut-off. Optimal SWC and ASWC configurations are com-

pared and the effect of reduced sensitivity to dFC variations is

demonstrated through simulations.

2 | ANALYSIS OF AVERAGE SLIDING
WINDOW CORRELATION

2.1 | Background

Leonardi and Van De Ville (Leonardi & Van De Ville, 2015) proposed

an approximate model to warn about the presence of artifacts in the

SWC approach. Their theoretical development utilizes properly nor-

malized cosines x k½ � = ffiffiffi
2

p
cos ωkTRð Þ and y k½ � = ffiffiffi

2
p

cos ωkTR + θð Þ of

angular frequency ω = 2πf (where the frequency f is measured in

Hertz) and a phase difference of θ. The two cosines are evaluated

at time points kTR where the constant TR is specific to the fMRI

scanning protocol and k 2 {0, 1, 2, …}. The purpose of factor
ffiffiffi
2

p

is to normalize variances Cxx and Cyy to one. Under the condition

that Cxx = Cyy = 1, it follows that covariance equals correlation

ρxy = Cxy=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CxxCyy

p
= Cxy . Furthermore, the phase difference θ is

related to correlation by ρxy = cos(θ) if the correlation is calculated

over a window length 1/f (i.e., over a period of the cosines). To study

the effects caused by other windowing conditions, we define the

SWC length as h = 2ΔTR where Δ 2 {1, 2, …} is a predefined number

of time points. For a more detailed explanation of the setting

h = 2ΔTR see the Supporting Information Appendix S1 Part 1. Defining

�x n½ � and �y n½ � as the cosine averages at point n over the interval

[(n − Δ)TR, (n + Δ)TR], the covariance at each point n can be written as

Cxy n½ � = TR
h

Xn + Δ

k = n−Δ + 1

x k½ �y k½ �− �x n½ ��y n½ �: ð1Þ

A closed-form equation for the covariance term was then

obtained after approximating the sum using integrals (see Supporting

Information Appendix S1 Part 3) resulting in (Leonardi & Van De

Ville, 2015)

Cxy n½ �= cos θð Þ+ 1
hω

cos 2ωnTR+ θð Þsin 2ωΔTRð Þ

−
8

h2ω2
cos ωnTRð Þcos ωnTR+ θð Þsin2 ωΔTRð Þ:

ð2Þ
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Simulation results of this model are summarized in Figure 1.

Figure 1a shows two properly normalized cosines used for further

simulation. Figure 1b displays the outcome of varying the SWC length

h and sliding the window at different time points nTR replicating the

same simulation experiments found through the literature (Leonardi &

Van De Ville, 2015; Zalesky & Breakspear, 2015). As the SWC length

h increases the terms at the right of cos(θ) in (2) vanish and the covari-

ance approaches the correlation. The suggestion of limiting h to 1/fmin

can be understood by recognizing that artifacts have their largest

dynamic range in the interval 0 < h < 1/f (between 0 and 40 s in

Figure 1b). Notice that larger window lengths (i.e., 1/f < h) result in

smaller artifact fluctuations. Also notice that, in spite of artifact reduc-

tion, the observed nuisance fluctuations are not guaranteed to disap-

pear for 1/f < h. This fact is demonstrated by the second artifact lobe,

occurring at h = 48 s in Figure 1b. In this work, we propose the use of

ASWC to further reduce artifacts. Averaging has been performed in

Figure 1c for the second lobe of artifacts in Figure 1b (h = 48 s),

briefly illustrating how artifacts can be reduced through ASWC. In the

following sections, we will make a theoretical characterization of the

artifact reduction shown in Figure 1c to better explain the effects

of ASWC.

2.2 | Mathematical characterization of ASWC

As displayed in Figure 1, mismatches between window length h and

frequency f introduce spurious fluctuations unless tuning h = 1/f is

achieved. This tuning is obtained from setting ωΔTR = π and solving

for h = 2ΔTR, which complies with the rule of thumb h ≥ 1/f

(Leonardi & Van De Ville, 2015) and sets the two sine functions in

(2) to zero. As the frequency spectrum of real data is generally not

FIGURE 1 Averaging of the cosine model for a simulated correlation of 0.2. (a) The two cosines at the upper left plot were generated assuming a

TR = 1 s, a frequency of f = 0.025 Hz and a phase difference given by θ = arccos(0.2). (b) Sliding window correlations (SWCs) were estimated at
all possible shifts of one TR and for SWC lengths from 2 to 120 s. For a given window length, the SWC value depends on the time shift. SWCs
for all time shifts are plotted on the upper right figure using small black dots. In this example, following the recommended SWC length
(Leonardi & Van De Ville, 2015) will result in fmin = 0.025 Hz and hmin ≥ 1/fmin = 40 s. However, this figure shows that artifacts are still strong
around approximately h = {50, 70, � � �}. (c) The bottom left plot shows the effect of averaging for the window length h = 48 s, point where the
stronger artifacts occur for that lobe. Spurious variability of SWCs disappears at the averaging length g =1/2f = 20 s. (d) the bottom right plot
shows the resulting SWC value (black line) as a function of h at averaging length g = 20 s. The SWC values are independent of the time shift
selected. For comparison, the asymptotic averaging result g ! ∞ obtained in quation 5 is displayed in red. The two average settings g = 1/2f and
g ! ∞ lead to the same result [Color figure can be viewed at wileyonlinelibrary.com]
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composed of a singleton frequency, imperfect tuning is likely to exist

along with spurious fluctuations from untuned frequencies. Given that

spurious fluctuation artifacts might be unavoidable, the next option is

to minimize the impact of artifacts. One possibility to address the lack

of tuning is to consider large window lengths given the factor 1/h in

(2), which predicts improved estimation accuracy as h increases. This

procedure is not convenient as larger window lengths decrease the

sensitivity of detecting transient fluctuations of FC (Hutchison et al.,

2013). Instead of increasing h as a method of decreasing artifacts, we

consider the option of taking g consecutive SWCs and averaging them

to improve the estimation of correlation. To mathematically character-

ize ASWC, we define the averaging interval g = 2rTR from m − r to

m + r (where r is a parameter used to select the averaging length)

and perform a similar integral approximation as that proposed in

(Leonardi & Van De Ville, 2015). We thus define the average correla-

tion �Cxy m½ � at a time point defined by m over the averaging interval

[(m − r)TR, (m + r)TR] as

Cxy m½ �= TR
g

Xm+r

m−r+1

Cxy m½ �≈ 1
g

ðm+rð ÞTR

m−rð ÞTR

Cxy tð Þdt: ð3Þ

After performing the integral (3) described in the Supporting Informa-

tion Appendix S1 Part 4, the averaging equation can then be written as

�Cxy m½ � = cos θð ÞK h,ω, TRð Þ + cos 2ωmTR + θð ÞΨ g, h,ω, TRð Þ ð4Þ

where

K h,ω, TRð Þ = 1−
4

h2ω2
sin 2 ωΔTRð Þ

� �

and

Ψ g,h,ω,TRð Þ= 2
ghω2

sin 2ωrTRð Þsin ωΔTRð Þ cos ωΔTRð Þ− 2
hω

sin ωΔTRð Þ
� �

:

The first term cos(θ)K(h, ω, TR) of (4) describes the effects that

are independent of averaging length g and averaging position m since

none of the factors cos(θ) and K(h, ω, TR) include g or m. On the other

hand, the second term of (4) cos(2ωmTR + θ)Ψ(g, h, ω, TR) describes

sinusoidal type artifacts containing a frequency 2ω twice higher than

that of the original signal. This term can be zeroed by setting it at sin

(2ω r TR) = 0, which results in Ψ(g, h, ω, TR) = 0. This condition can

be met if 2ω r TR = kπ where k 2 {…, −2, −1, 0, 1, 2, …}. As g = 2 r TR

and ω = 2πf, solving 2ω r TR = kπ for g results in g = k/(2f ).

Figure 1c shows an averaging simulation where the different points

of sin(2ω r TR) = 0 can be observed. This means for example that if

f= 0.025 Hz the specific averaging length is g = 1/(2 * 0.025) s = 20 s

to zero the second term in (4). Although a similar analysis could be

applied to h by forcing sin(ωΔTR) = 0 in (4), setting h = 1/f causes esti-

mation inaccuracies due to effects described by K(h, ω, TR) that will

be explained in the next section. In addition, Figure 1d illustrates how

all estimation variability is eliminated once g = k/(2f ), including arti-

facts in the range h ≥ 1/f. Notice that Figure 1d replicates the simula-

tion experiment from Figure 1b, but includes an averaging step of

length g = 1/(2f )= 20 s, zeroing all artifacts for h ≥ 1/f. As we have

set Ψ(g, h, ω, TR) = 0 in Figure 1d, the observed behavior corresponds

to K(h, ω, TR) where the estimation inaccuracy follows a monotonic

trend in the range h ≤ 1/f.

Equations developed in this section predict a series of advanta-

geous effects after averaging. The SWC artifact fluctuations due to

lack of the tuning h = 1/f (illustrated in Figure 1b) can be completely

obliterated by the implementation of the ASWC method with appro-

priate tuning g = 1/(2f ) as predicted by (4) and simulated in

Figure 1d. While it is true that real data are characterized by complex

frequency spectrums that do not allow for complete artifacts elimina-

tion, there is an important reduction of artifacts even for nonmatching

averaging lengths. This reduction is illustrated in Figure 1c where a

wide range of averaging lengths were tested, showing that artifacts

are the strongest for the no averaging case (g=0). The equations we

present show that ASWC have weaker artifacts than SWC because of

two important factors. First, the strongest SWC artifacts diminish at a

rate of 1/h as shown in the second term of (2). In contrast, it is predicted

by (4) that artifact reduction in ASWC is stronger through a quadratic

factor 1/h2 and a factor with combined window and averaging lengths

1/gh. Second, in both SWC and ASWC it is expected that artifact fluctua-

tions diminish as the frequency increases. However, ASWC artifacts

decrease quadratically through the factor 1/ω2 (ω = 2πf) compared with

the SWC artifacts with a slope that depends on 1/ω. Equations also pre-

dict an ASWC with advantages over SWC even for non-ideal matching

between configured parameters and frequency. It is evident at this point

that studying the effects of frequency is an important next step in this

development since real signals likely contain complex frequency content.

2.3 | Asymptotic analysis of artifacts and frequency

Our discussion will now move away from the averaging artifact term

Ψ(g, h, ω, TR) discussed in the previous subsection and focus on the

term K(h, ω, TR) that has a strong dependence with frequency. As pre-

viously explained, factor Ψ(g, h, ω, TR) can be zeroed out by tuning

the averaging length, but also by taking the asymptote g ! ∞.

For the current presentation, we introduce the use of the function

sinc(x) = sin(πx)/πx to simplify K(h, ω, TR) as K(h, f, TR) = (1 − sinc2(fh)).

The derivation of this equation can be found in the Supporting Informa-

tion Appendix S1 Part 5. When the averaging length approaches the

values of interest g ! ∞ and g ! 1/(2f ) leading to Ψ(g, h, ω, TR) = 0,

this produces the frequency dependent limit

lim
g! ∞

or

g!1= 2fð Þ

Cxy m½ �= cos θð Þ 1− sinc2 fhð Þ
� �

: ð5Þ

For the purpose of simplifying the exposition, we will call (5) the

asymptotic behavior of (4). Notice that the results from averaging over

a long time scale (i.e., g ! ∞) are more compatible with real data than

tuning g ! 1/(2f ). For the moment, we assume that either asymptote

will be achieved and �Cxy m½ � can be described by cos(θ)(1 − sinc2(fh)).

Mathematically, the function is an inverted sinc2(x) where the highest

variability occurs at its main lobe with some small side lobes for values

x > 1. Figure 2a displays the inverted lobe behavior of (1 − sinc2(x))

for the product x = fh. Notice that achieving (1 − sinc2(fh)) = 1 in

(5) allows for a perfect estimation. In this case, deviations from

(1 − sinc2(fh)) = 1 describe the estimation error. These deviations

from 1 occur because of the side lobes of (1 − sinc2(fh)) that weaken
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as the product fh increases. The maximum error occurs at the first side

lobe (see Figure 2a) where (1 − sinc2(fh)) = 0.9528 (an error of

1 − (1 − sinc2(fh)) = 0.0472) representing the largest estimation error

according to (5) for the range fh ≥ 1. Under the studied conditions,

this estimation error is less than a 5% error. The effect of this asymp-

totic behavior for different values of f and h is illustrated in Figure 2b

where the neighborhood of fh = 1 (the first wide white band after the

dark red area in Figure 2b) results in an exact estimation while some

small vanishing lobes (less than 5% error as discussed) are observed

for fh > 1.

The next step in our analysis focuses on the interplay between

frequency ω = 2πf and window length h. As a first sanity check, let h

! ∞ or ω ! ∞ to see that K(h, ω, TR) approaches 1; that is a perfect

asymptotic estimation according to (5). For the other direction h ! 0

or ω ! 0, Figure 2a illustrates how small values of h or ω fall within

the main inverted lobe with a behavior given by the limit

h!0K h,ω, TRð Þ = ω!0K h,ω, TRð Þ = 0. Thus, the power for low frequen-

cies is reduced all the way down to zero similar to a high pass filter.

The point of perfect estimation is defined by sinc2(fh) = 0, or fh = 1 !
h = 1/f, providing a second sanity check point. Notice that all

described conditions h = 1/f, h ! ∞ and ω ! ∞ agree with the SWC

features previously predicted for SWC; see (2) and (Leonardi & Van

De Ville, 2015). In contrast to SWC, the ASWC equations predict a

high pass filter behavior. In the next section, we theoretically demon-

strate that the resulting ASWC filter can be tuned to remove low fre-

quency content, allowing the removal of frequencies below 0.01 Hz.

2.4 | ASWC filtering

Here, we refocus our attention on the analysis of the ASWC/SWC

problem from the frequency perspective. The approximation in

(5) allows tracking the magnitude of covariance for a singleton fre-

quency given that the sliding window length h is constant. This

assumption is more relevant in practice since the window length is

commonly chosen and left unchanged through the analysis of real

data (Allen et al., 2014). For the moment, we will continue assuming

the asymptotic behavior (5), where �Cxy m½ � = cos θð Þ 1 − sinc2 fhð Þ	 

.

Setting h constant leaves frequency f as the only variable of interest.

Figure 2c illustrates how Equation 5 describes a high pass filter type

FIGURE 2 Asymptotic response of ASWCs. (a) The left top plot displays the shape of asymptote (5) described by (1 − sinc2(x)) for the factor

x = fh, where f is the frequency and h is the window length. (b) The right top plot illustrates the deleterious effects (perfect covariance estimation

( �Cxy = 1) is indicated by white areas) predicted by (5) on covariance estimation for a range of values of f and h. This result indicates that low

frequencies and low window lengths (dark red areas) must be avoided as they result in the largest deviation from ground truth. (c) The bottom left

panel features a 15 min simulation using two identical cosines with �Cxy = 1 for the same window length of 44 s but varying frequency. Since h =

44 s the cutoff frequency estimated by (6) is 0.01 Hz which is indicated by the circle drawn in the plot. The plot also shows how the filter
compares to second order Butterworth filters using cutoffs of 0.01 Hz and 0.025 Hz. (d) The bottom right plot shows the root mean square error
(RMSE) (averaged over 15 min) after setting h = 44 s for different frequencies and averaging lengths. The largest observed RMSE was 1.27, but
fitting the color range to this value left obscured other smaller errors; hence, this plot was instead scaled to the (0, 0.5) range. The figure clearly
shows the cut-off 0.5 at 0.01 Hz, an observation that does not change with the averaging length [Color figure can be viewed at
wileyonlinelibrary.com]
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relationship between averaged covariance and frequency with an

approximate product hf0 (where f0 is the cut-off frequency)

hf0 ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10
π2

1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

6
5

1−
ffiffiffiffiffiffiffiffiffiffi
1− α

p� �r !vuut ≈0:4441jα = 1=2: ð6Þ

The approximation (6) can be obtained using the Taylor expansion

of sinc(x) ≈ 1 − π2x2/6 + π4x4/120 and its derivation is displayed in

the Supporting Information Appendix S1 Part 6. We present the

whole approximation for the general case where a covariance thresh-

old �Cth (α = �Cth= �Cmax ) is required. For the purposes of filter design,

the cut-off frequency is the point where the filter cuts frequency

power in half; thus the value αcut− off = �Cth= �Cmax = 1=2. Equation 6

was evaluated for α = 1/2 to provide a simple way of tuning the

ASWC window length to the required frequency response.

2.5 | Comparing tuned SWC and tuned ASWC

In wide band signals, both techniques SWC and ASWC will suffer

from spurious fluctuations due to the existence of non-tuned frequen-

cies. The important concern we must answer next is, if there are

values satisfying the inequality gASWC + hASWC < hSWC with reduced

power of unavoidable artifact fluctuations. We did this comparison

using a simulation spanning frequencies from 0 to 0.10 Hz. Before

estimating the SWC, we applied a typical high pass fifth-order Butter-

worth filter but did not use the filter for the ASWC. With this proce-

dure, we are using the natural filtering characteristics of ASWC shown

in Figure 2c. The Butterworth filter order in the SWC simulation is the

same as that previously recommended (Allen et al., 2011). As we are

interested in a cut-off frequency of f0= 0.01 Hz, we set hSWC = 1/f0.

Following the recommendation in Equation 6, we set hASWC = 0.4441/

f0≈ 44 s. The frequency response for hASWC= 44 s is illustrated in

Figure 2c As illustrated in Figure 1, the averaging length should be

gASWC = 1/(2f0) and adjusting to the current frequency of interest

(i.e., 0.01 Hz) gives gASWC=50 s. Notice that selected values comply

with the inequality gASWC + hASWC < hSWC. Figure 3 displays the simu-

lation outcomes where hSWC= 100 s, hASWC= 44 s and gASWC= 50 s.

According to Equation 6, larger window lengths decrease the ASWC

cut-off, but we need to keep low frequencies of no interest controlled

by fixing the cut-off at 0.01 Hz. Shorter window lengths will move the

ASWC cut-off above 0.01 Hz, thus removing important frequency

content. We compared the power of artifact fluctuations by estimat-

ing their standard deviations σSWC and σASWC for each corresponding

method. Figure 3c displays the ratio σSWC/σASWC for each frequency.

The plots for SWC and ASWC show similar trends for low frequen-

cies, but this trend is in part related to the fifth-order filter. The

frequency cut-off in ASWC can be clearly observed in Figure 3b at

0.01 Hz, where the predicted covariance is 0.5. At higher frequencies,

the fluctuations in ASWC look smaller compared to those from the

SWC. The plot for σSWC/σASWC in Figure 3c further confirms this

observation. Starting from the cut-off 0.01 Hz, we can see that ASWC

has a clear advantage over SWC. At higher frequencies, the ratio

σSWC/σASWC peaks close to 210 and indicates that the standard devia-

tion of SWC fluctuations could be as high as 1,024 times larger than

fluctuations in ASWC.

2.6 | Sharp phase transitions

Sliding windows are used in the context of dynamic changes of coher-

ence, but equations so far have been applied to a static constant

phase. This is not practical as the focus of dynamic connectivity is to

study the temporal changes of correlation ρxy. Correlation dynamics

can be characterized in the single frequency covariance model by tem-

poral variations of the cosine phase θ. The following analysis presents

a theoretical development based on the simple and tractable case of a

sharp cosine phase transition and also generalizes to describe a more

practical situation.

FIGURE 3 Comparing larger SWC length versus averaging using the same number of samples. The simulation in this plot was performed with a

TR = 1 s and estimations were taken over 5 min. In the first panel (a), a window length of hSWC= 100 s was selected and the result was not
averaged. A fifth-order high pass Butterworth filter with cut-off 0.01 Hz was applied to remove low frequencies of no interest. We can see the
existence of spurious SWCs at frequencies not tuned to 1/100 Hz. In panel (b), time points were redistributed to have a window length of
hASWC= 44 s and an averaging length of gASWC= 50 s. No filter was applied; the simulation used the natural filtering of ASWC described in
Figure 2c, a tuned fit the 0.01 Hz cut-off. (c) The ratio of standard deviations σSWC/σASWC has been plot in a logarithmic scale showing that SWC
exhibit higher artifact power than ASWC at frequencies higher than the cut-off 0.01 Hz [Color figure can be viewed at wileyonlinelibrary.com]
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The next stage is to mathematically characterize phase transi-

tions. The simplest of these transitions is a sharp change at a given

time point t0 = 0. Before t0, let the two cosines x[k] and y[k] have

phases γ and θ respectively, and after t0, let the phases update to φ

and φ. We first reformulate the SWC analysis from (2) in a way that

includes the four phases (γ, θ, φ, and ϕ), resulting in

To go from the first line to the second, we used the identity

cos a + bð Þ cos a + cð Þ = 1
2 cos b− cj j + cos 2a + b + cð Þð Þ. The covari-

ance then approximates a weighted sum of the cosines of phase dif-

ferences plus a term ℶh that depends on 1/h. The covariance term can

be expressed as

Cxy n½ � = Δ− nð ÞTR
h

cos γ − θj j + Δ + nð ÞTR
h

cos φ−ϕj j + ℶh: ð7Þ

The next step is to average (7) to obtain the ASWC equation. Due

to their linearity, averaging the weighted sum Δ− nð ÞTR
h cos γ − θj j +

Δ + nð ÞTR
h cos φ−ϕj j does not change the sum. For a more formal analy-

sis see the Supporting Information Appendix S1 Part 7. On the other

hand, the artifacts term ℶh changes and the averaged result �ℶh, g

depends on the window length h and the averaging length g. The

ASWC version of the sharp phase transition model is then

�Cxy m½ � = Δ−mð ÞTR
h

cos γ − θj j + Δ + mð ÞTR
h

cos φ−ϕj j + �ℶh, g: ð8Þ

Simulations of the sharp phase transition model are presented in

Figure 4. In this figure and the other figures ahead in this work, we fol-

lowed the convention that covariance estimates are positioned in the

middle of the computation range. For example, the range in an SWC is

[(n − Δ)TR, (n + Δ)TR] and covariance Cxy[n] is defined at the time point

nTR. Thus, the first time point suitable for a complete SWC simulation

starts at ΔTR. At the other end, simulations stop at ΔTR seconds before the

last sample of the sinusoidal time course. In the case of ASWC, the total

range of correlation plus averaging is [(m − (r + Δ))TR, (m + (r + Δ))TR]

and the time shifts that apply at both ends of the simulation are defined

by (r + Δ)TR. Figure 4b displays a simulation result where the influence

of the SWC term ℶh is evident from the observed spurious fluctuations.

However, averaging reduces the spurious artifacts as shown in Figure 4b

Simulation results thus suggest that �ℶh, g characterizes weaker artifacts

as those described by ℶh. In addition, the artifact term �ℶh, g depends

on both 1/h and 1/g, hence generally exhibiting a weaker strength

than ℶh that only depends on 1/h.

Although the closed form of the artifact terms ℶh and �ℶh, g were

not developed due to their complexity, we can expect that averaging

reduces artifacts following a similar behavior as that described in

(2) and (4). We will call the first two terms in (7) and (8) the estimation

terms since they allow tracking the covariance variation of the sharp

phase transition. Figure 4 displays a sharp phase transition simulation

for SWC and ASWC versions of the covariance estimation and assume

a perfect tuning for two intervals where correlation is constant. As in

the static case of (2) and (4), averaging in Figure 4b decreased the arti-

fact fluctuations present in SWC. The most important result from

(8) is that averaging does not change the estimation terms of the

sharp edge Equation 8. Thus, the averaging length does not affect the

estimation terms and only decreases the strength of the artifact term

�ℶh, g . This is illustrated by Figure 4b,c where there are small changes in

fluctuation but not in the overall estimation when averaging length is

doubled. On the contrary, the window length has a key role in defining

the weights within the estimation terms. Thus, the window length has

a large influence on the estimation. Figure 4d illustrates the loss of

estimation sharpness due to doubling the window length. These

results indicate that it is more important to reduce the window length

h than reduce the averaging length g as h has a greater influence in

the estimation.

2.7 | A moving average model (beyond sharp phase
transitions)

Figure 4 shows the complete obliteration of ASWC sinusoidal artifacts

as predicted by (4) for properly tuned window and averaging lengths.

The sharp edge transition explains how the selection of a window

length can have a large impact in resolving transient changes in phase.

Despite predicting artifact reduction after averaging, the sharp phase

transition model is limited to one phase transition between two con-

stant phase intervals. Nonetheless, the trend of reduced artifacts can

be expected to be similar for more complex configurations. For exam-

ple, two sharp transitions will eventually be characterized as the

weighted sum of the three different phases plus the artifact term,

which in our case will depend on the choice of SWC or ASWC. Fur-

thermore, increasing the number of sharp transitions can characterize

increasingly smooth changes of phase and correlation through time.

After considering a sufficiently large number of transitions, SWC can

be described by the weighted average over a large number of time

intervals, each with a weight wk, and a given phase difference θk plus

an artifact term such that

Cxy n½ � =
X
k

wk cos θkð Þ
 !

+ ℶ
0
h: ð9Þ

Similar to Equation 7, weight values will depend on the size of

intervals between sharp transitions. However, let us assume that all

Cxy n½ �= TR
h

Xn+Δ
k = n−Δ+1

x k½ �y k½ �≈ 2
h

ð0
n−Δð ÞTR

cos ωt+ γð Þcos ωt+ θð Þdt+
ðn+Δð ÞTR

0

cos ωt+φð Þcos ωt+ϕð Þdt

2
64

3
75

=
Δ−nð ÞTR

h
cos γ−θj j+ Δ+ nð ÞTR

h
cos φ−ϕj j+ 1

h

ð0
n−Δð ÞTR

cos 2ωt+ γ + θð Þdt+
ðn+Δð ÞTR

0

cos 2ωt+φ+ϕð Þdt

2
64

3
75:
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sharp edge transitions are equal and of the same length of one TR. In

these conditions, all weights are of the same value and the equation

above describes a moving average (MA) system plus the correspond-

ing artifact term ℶ
0
h. In the frequency domain, MA systems behave like

a low pass filter. As the frequency response of MA systems is well

known (Oppenheim & Schafer, 2010), it is convenient to continue

analyzing (9) in the frequency domain without loss of generality.

Denote the MA corresponding frequency response as SWC
h H fð Þ, where

h = 2ΔTR, and by Θ(f ) the frequency content of cos(θk). Equation 9

can then be expressed as

Cxy fð Þ = SWC
h H fð ÞΘ fð Þ + ℶ

0
h fð Þ: ð10Þ

where the MA frequency response can be written for any 0 < f < 1/

(2TR) as (Oppenheim & Schafer, 2010)

SWC
h H fð Þ
��� ��� = 1

2Δ + 1
sin πTRf 2Δ + 1ð Þð Þ

sin πTRf
: ð11Þ

The MA frequency response has a low pass response and it is

zero at any point where sin(πTRf(2Δ + 1)) = 0. Using the approxima-

tion hSWC ≈ (2Δ + 1)TR, the first zeroing is obtained at an

approximate frequency f1 = 1/hSWC. This is illustrated in Figure 5a

where the frequency response for the nominal value hSWC = 100 s has

been plotted. At frequency 1/hSWC it will not be possible to measure

any signal as
P
k
wk cos θkð Þ

� �
= 0 and the only surviving term ℶ

0
h rep-

resents the artifact fluctuations. Thus, it is of interest to set hSWC as

small as possible to resolve faster fluctuations of correlation.

Up to this point, we have not established ASWC as a simple MA

of SWC because the MA concept was not needed to develop the

ASWC equations for the static correlation case of (4). In the more gen-

eral case of the SWC in (10), ASWC can be described by applying an

additional MA to SWC in (9). The frequency response of the ASWC

can be obtained by multiplying a second MA response ASWC
g H fð Þ corre-

sponding to the averaging part by the first MA response ASWC
h H fð Þ and

corresponding to the sliding window part resulting in

�Cxy fð Þ = ASWC
g H fð ÞASWC

h H fð ÞΘ fð Þ + �ℶ
0
h, g fð Þ: ð12Þ

Equation 12 exhibits two zeroing frequencies 1/hASWC and 1/gASWC.

The larger of the two parameters hASWC and gASWC will determine the

characteristics of resolving high frequency content.

FIGURE 4 This plot shows a sharp correlation transition from 0.5 to − 0.5. (a) The two cosines (f = 0.025 Hz) suffer a phase change at time t = 0

defining four different phases distributed among the two cosines. The phases were selected to simulate the configured correlations: Cosine in
blue shifted phase from π/4 to −π/4 radians, the red cosine from (π/4 − 0.5) to (−π/4 + 0.5) radians. (b) Performing a tuned SWC with h = 40 s
shows the effect of the phase transition resulting in sinusoidal-like artifacts. The effect of averaging with g = 1/2f = 20 s reduces the artifacts,
but neither the phase transition nor the weighted averaging trend are removed as predicted in (7) and (8). (c) In this plot we doubled the averaging
length (g = 40 s) resulting in little change with respect to the original setup. (d) Larger differences are observed when doubling the window length
(h = 80 s). As predicted in (8), changes in the window length will have a larger effect than changes in the averaging length [Color figure can be
viewed at wileyonlinelibrary.com]
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The goal of finding settings gASWC + hASWC < hSWC has yet another

advantage as SWC will be more restrictive with a first zeroed fre-

quency at 1/hSWC that is lower than those obtained in ASWC with a

less restrictive characteristics given by 1/hASWC or 1/gASWC. Figure 5

shows the comparison for the nominal setting previously suggested

where TR= 1 s, hSWC= 100 s, hASWC = 44 s and gASWC=50 s. As gASWC

is larger than hASWC the first zero in (12) is given by 1/gASWC. Based on

these nominal values, ASWC will be able to resolve frequencies in Θ(f )

up to 1/gASWC= 0.02 Hz, which is a higher limit to that in SWC (up to

0.01 Hz). Higher frequencies than the first zeroing correspond to side

lobes exhibiting decreasing magnitude as the frequency increases.

3 | WIDE BAND FREQUENCY DATA

All the numerical simulations presented in the previous section were

based on single sinusoidal signals, covariance measurements, and

designed to aid interpreting covariance-based derivations. The objec-

tive now is to simulate the effectiveness of the presented develop-

ment for more realistic cases with a wide-band frequency content.

Thus, we applied SWC and ASWC to simulated data with wider spec-

trum signals and using Fisher transformed correlations instead of

covariance. Code and basic data for all simulations and examples are

open and can be downloaded at http://mialab.mrn.org/software.

3.1 | Simulation

In contrast to the single frequency analysis used in (2) and (4), this par-

ticular analysis used a wide frequency band signal simulated by simply

adding several cosines with selected frequency, amplitude and phase.

We followed the Fourier series approach in the sense that any signal

can be represented as a sum of several sinusoidal components. This

procedure is especially useful as our purpose is to configure the fre-

quency spectrum to produce controlled changes of correlation

through time. The frequency spectrum of interest can be set to be

from 0.01 to 0.10 Hz as is often suggested in literature (Cordes et al.,

2001; Damoiseaux et al., 2006; Fransson, 2005). Although other

researchers have found important higher frequency content, such

frequencies have lower magnitude power and thus contribute weakly

to the signal (Chen & Glover, 2015). We will consider frequency spec-

trums below 0.10 Hz with no limitation at the lower end. Simulated

signals will then be high pass filtered at 0.01 Hz using a fifth-order

Butterworth filter, which is a procedure recommended for real data. In

addition, the frequency spectrum was modulated such that lower fre-

quencies exhibited higher amplitude than higher frequencies similar to

observations of spectrums from real data (Kiviniemi, Kantola, Jauhiai-

nen, & Tervonen, 2004; Mantini, Perrucci, Del Gratta, Romani, & Cor-

betta, 2007). Four different correlation dynamic scenarios were

simulated: (a) a static correlation with no changes through time; (b) a

transition from positive to negative [−0.9 to 0.9]; (c) for a single period

sinusoidal correlation behavior; and (d) a sinusoidal dynamic correla-

tion with a period of 100 s. These controlled correlations were imple-

mented by changing the phase of each Fourier component at each

time point. Sliding window correlation was then calculated using a

rectangular window on each simulated case followed by the applica-

tion of Fisher's Z transform. In the case of ASWC, Fisher's transforma-

tion was applied before averaging. We set a constant window length

of 100 s for the SWC method while comparing different window

lengths ranging from 10 to 100 s for the ASWC method. The averag-

ing length was set to half the window length plus one TR following

the mathematical tuning suggested in Figure 1.

Simulations were performed for ASWC window/averaging

lengths 10/50, 20/50, 44/50, 50/50, and 100/50 s. While the magni-

tude of each frequency was constant, the phases were chosen at ran-

dom for one of the time courses. For the other time course, the

phases were shifted on each time step following the ground truth con-

nectivity dynamics. As we are interested in tracking deviations from

ground truth, we calculated the mean square error (MSE) over the

time range of the simulation for ASWC and SWC. We measured the

MSE 100 times with a different selection of random phases per itera-

tion and plotted the MSE. Results are displayed in Figure 6 where the

plotting areas have been divided in two regions: one where ASWC

MSE > SWC MSE and the other one where ASWC MSE < SWC MSE.

Simulation results are displayed in Figures 6 and 7. Figure 7 dis-

plays the actual estimation at each time point for SWC and ASWC for

FIGURE 5 Frequency response of the non-artifact terms for SWC (10) and ASWC (12). The two plots were built for the corresponding nominal

values (a) for SWC hSWC = 100 s the first zeroed frequency corresponding to 0.01 Hz. Correlation variations with this frequency cannot be
resolved. (b) For ASWC hASWC = 44 s and gASWC = 50 s, the first zero frequency is determined by the largest parameter between hASWC and gASWC

which in this case is gASWC = 50 s. The frequency 0.01 Hz is not zeroed and within the first lobe resulting in a better frequency resolution. At the
same time, ASWC exhibit a higher suppression of side lobes [Color figure can be viewed at wileyonlinelibrary.com]

VERGARA ET AL. 2097

http://mialab.mrn.org/software
http://wileyonlinelibrary.com


FIGURE 6 This plot shows the mean square error (MSE) for the ASWC and SWC methods while tracking simulated connectivity dynamics. Four

different connectivity dynamics were simulated as representing the ground truth. Time courses were simulated using a cosine summation with
randomly selected phases and with phase differences at each time point designed to track the ground truth dynamics. One hundred iterations
(each iteration with a different set of random phases) were performed and the MSE displayed for each case. On each ASWC versus SWC plot, a
line divides the plotting area in sections where one method has better performance than the other one [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 This plot displays one iteration of the simulation from Figure 6. Connectivity estimations for ASWC are displayed by the broken lines

in black. Continuous lines in orange represent the SWC estimation. The blue lines represent the ground truth and can be differentiated from the
SWC line because they are completely smooth [Color figure can be viewed at wileyonlinelibrary.com]
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one of the 100 iterations from Figure 6. A look at the actual estima-

tion in Figure 7 complements the outcomes presented in Figure 6. We

included a 44 s window length value from solving (6) for a frequency

of 0.01 Hz (0.4441/[0.01 Hz] = 44.41 ffi 44 s). Averaging length was

set using the recommended length g = 1/2f0 = 50 s. When the con-

nectivity remains approximately constant (the first row in Figure 6

which is the static case), ASWC with window lengths of 44 s and

above achieve better performance than a tuned SWC with a window

length of 100 s. The case of hASWC = 44 s and hASWC = 50 s corre-

sponds to ASWC tuned to 0.01 Hz also illustrated in Figure 3 where it

was shown to provide better performance than tuned SWC. The first

row of Figure 7 allows visualizing how shorter window lengths pro-

duce stronger artifacts until ASWC gets properly tuned to a point

where the ASWC artifacts are weaker than SWC. For the static case,

increasing the window length improves the estimation.

In all other rows of Figure 6, the tuned ASWC case (hASWC = 44 s

and hASWC = 50 s) outperforms SWC. We can explain this by two fac-

tors. First, we have shown that tuned ASWC has weaker artifacts than

tuned SWC. For the second explanation, we need to take a look at

Figure 5 where the phase frequency spectrum response of tuned

ASWC with shorter window lengths can resolve higher frequencies

than tuned SWC, which requires a larger window length. In other

words, as the correlation fluctuates faster, the estimation worsens

with a rate that depends on the window length. ASWC has smaller

window length and thus results in better performance than SWC.

The last row in Figure 6 shows the results for a dynamic correla-

tion varying with a frequency of 100 Hz. In this case, ASWC outper-

forms SWC except at the point where SWC and ASWC have the

same window length in the last column (hASWC = 100 s and hSWC = 100

s for the last row and last column panel). At shorter window lengths

there is more temporal resolution power. The outcome of the last row

in Figure 7 shows how the artifacts, although present, are weak for

the ASWC method with 10 s window length. As the window length

increases, the capability of resolving the 100 Hz frequency diminishes.

At the point where hASWC = 100 s, both SWC and ASWC show similar

performance. This is explained by (10), (12) and Figure 5 in predicting

that a correlation frequency of 0.01 Hz cannot be accurately esti-

mated if the window length is 100 s. The last row of Figure 7 illus-

trates the signal obliteration due to the 100 s window length

configured for tuned SWC. As the estimation term SWC
h H fð ÞΘ fð Þ in

(10) is zero at 0.01 Hz, all that we can see during the last row of

Figure 7 is the artifact term ℶ
0
h of the SWC. When the window length

is set to 100 s in the last column and last row of Figure 7, ASWC also

exhibits a zero estimation term ASWC
g H fð ÞASWC

h H fð ÞΘ fð Þ from (12) and all

that remains is the corresponding artifact term �ℶ
0
h, g .

3.2 | Real data example

Data for this example was borrowed from a previous dynamic connec-

tivity study on polysubstance addiction. We will briefly describe data

essentials from the original study, but a more detailed description can

be found in Vergara, Weiland, Hutchison, and Calhoun (2018)). Rest-

ing state fMRI data were collected on a 3 T Siemens TIM Trio

(Erlangen, Germany) scanner. Participants kept their eyes open during

the 5-min resting scan. Echo-planar EPI sequence images

(TR = 2,000 ms, TE = 29 ms, flip angle = 75�) were acquired with an

8-channel head coil. Each volume consisted of 33 axial slices (64 × 64

matrix, 3.75 × 3.75 mm2, 3.5 mm thickness, 1 mm gap). After the nec-

essary preprocessing steps explained in Vergara, Mayer, Damaraju,

Hutchison, and Calhoun (2017)) and group independent component

analysis, time courses for 39 resting state networks were estimated.

All time courses were filtered using a Butterworth band pass filter

0.01 to 0.15 Hz. The SWC technique was then applied with a window

length of 100 s. In a separate analysis, the ASWC technique was

applied to the filtered time courses with a window length of 44 s and

an average length of 50 s. For the 39 retained resting state networks,

a total of 741 dynamic functional network connectivity (dFNC) values

were estimated for each window. Finally, a k-means procedure was

applied to each technique for SWC and ASWC to detect six different

dFNC states in order to identify dFNC state duration, beginning and

ending points. We utilized the k-means clustering outcome to explore

the difference between SWC and ASWC. Matching between SWC

and ASWC dFNC states was verified by using cross-correlation with a

minimum of 0.997 for paired dFNC states. We used the dFNC states

sequence to get an approximation of temporal changes in dFNC. Such

changes are not the result of a single SWC from a pair of brain areas,

but rather detected using a whole-brain analysis including 741 pairs of

SWC per time point. We assume that dFNC changes from analyzing

the whole set are rooted on temporal dFNC variations of the individ-

ual SWCs. The dFNC analysis allowed us to find different patterns of

temporal dFNC transients to be used as examples.

We pick the three most relevant cases simulated in Figures 6 and 7

static FNC (first row), relatively sharp transition from one dFNC level to a

different one (second row), and a periodic dFNC transient where more

than one period is available (similar to the fourth row of Figure 7). Inter-

estingly, we found each one of these three cases more than once

through the available set of dFNC data. We picked one subject from

each case (tuned SWC and tuned ASWC) and one of the 741 FNCs that

closely fit the detected dFNC transients. The results are presented in

Figure 8 where several observations can be spotted in each case. The

standard deviation in the static case is lower in ASWC than SWC similar

to the simulation in Figure 3. This outcome in real data is similar to what

was observed in the first row of Figure 7, except that true constant cor-

relation is not guaranteed. Yet, fluctuations are weaker for tuned ASWC,

indicating a better estimation for this quasi-static dFNC. The transition

case in the second row of Figure 8 exemplifies how these transitions are

sharper and suffering from weaker artifacts in ASWC. The sharpness of

the estimated transitions can be compared using the differences in slope

between ASWC (0.56/[50 s] = 0.0112 s−1) and SWC (0.35/[50 s] =

0.0070 s−1). For comparing the two slopes, we chose a time lapse of

50 s around the 150 s mark where the effect of the transition is promi-

nent and free of artifacts. We also discarded the artifact overshoot

occurring in SWC around the 200 s mark as seen in Figure 8. The artifact

occurring around 200 s has a weaker amplitude in ASWC, which is con-

sistent with ASWC ability of reducing artifacts for time lapses of approxi-

mately constant connectivity. These results closely resemble the

outcomes in Figure 4 where a sharp transition was enforced as the

ground truth. The last case of rapid fluctuations also shows the advan-

tage of ASWC over SWC. Transient fluctuations were detected with a
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higher magnitude as predicted by the frequency responses of the MA

model. Observed dFNC fluctuations changed at approximately 0.012 Hz.

This frequency is close to the zeroing SWC frequency 0.01 Hz (Figure 5);

thus, it’s strength is highly reduced in SWC estimation. Contrastingly, the

strength is higher in ASWC because the zeroing frequency 0.02 Hz is

not that close to 0.012 Hz as compared to SWC. This difference

between ASWC and SWC also affected the estimated sequence of

dFNC states. The sequence of states in ASWC resembles the oscillatory

variation of the corresponding ASWC dFNC estimation. However, the

SWC state sequence resembles a sharp phase transition in spite of esti-

mating a more oscillatory dFNC. This effect might be a consequence of a

sequence of states estimated from a whole-brain k-means with weaker

signal when compared to ASWC.

4 | DISCUSSION

Several concerns were raised when the first model tracking dynamic

connectivity using covariance was made public (Leonardi & Van De

Ville, 2015). One controversial assertion was the choice of a window

length 1/f0 according with the lowest frequency f0 of the BOLD sig-

nal. Given that a typical low frequency cutoff is 0.01 Hz, the covari-

ance equation leads to a window length of 100 s (Leonardi & Van De

Ville, 2015). As demonstrated by our simulations, a long window

length such as 100 s diminishes the ability of accurately resolving the

functional connectivity dynamics because of the smoothing nature of

performing a correlation over a long period of time. The ASWC

method proposed in this work exhibited better performance over

SWC at both dFNC extremes: very slow (quasi-static) and relatively

fast temporal fluctuations of connectivity. The cost for ASWC

involves an additional processing step that is necessary to perform the

averaging in ASWC as compared to SWC, while the pay-out for this

trivial averaging step is a significant improvement in performance.

In addition to proposing a new technique, we have characterized

and compared ASWC against SWC through this work. The first model

analyzed corresponded to a non-varying correlation or a static case.

This represents the most extreme case of zero fluctuations or fre-

quency zero. The presence of artifacts in the form of spurious fluctua-

tions was the main concern in this static case. Analytical methods

predicted artifact reduction in ASWC beyond that obtained with

FIGURE 8 This plot shows several examples from real data. This set of examples closely resembles the simulations in Figure 6 and 7. Although

there is no ground truth, we can estimate quasi-static, quasi-sharp transitions and fluctuating dFNC using the dynamic state membership functions
of each case. Centroid matrices for the six dynamic states are displayed, but a more detailed version is provided in the Supporting Information
Appendix S2 Figure. To better illustrate the centroids, brain areas were organized into nine domains: Subcortical (SBC), cerebellum (CER), auditory
(AUD), sensorimotor (SEN), visual (VIS), salience (SAL), default mode network (DMN), executive control network (ECN) and precuneus (PRE). Six
brain areas are used: Insula, middle occipital gyrus (MOG), inferior frontal gyrus (IFG), postcentral gyrus, posterior cingulate cortex (PCC), and lingual
gyrus/cerebellar vermis. Displayed coordinates are in MNI space. Brain areas and dynamic states were extracted from previous work (Vergara et al.,
2018). Each row uses data from a different subject where the corresponding pattern was observed. Both SWC and ASWC were tuned to nominal
values based on a lower limit frequency of 0.01 Hz. On the static case, ASWC exhibit weaker fluctuations as expected from an appropriate
estimation of static connectivity. The single transition case was better defined by ASWC where a smoother and shaper slope was estimated. In the
fluctuating dFNC case, ASWC shows a stronger signal than in SWC. The membership function of ASWC was also sensitive to rapid transitions,
whereas the SWC membership resembles more the sharp transition case [Color figure can be viewed at wileyonlinelibrary.com]
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SWC. Real data simulations in Figure 8 corroborate the prediction as

fluctuations were weaker in ASWC when no change in dFNC state

was estimated. The condition in this case was that averaging length

needed tuning using gASWC = 1/(2f0) reducing artifacts for any time-

course frequency f > f0. Notably, in this static connectivity case time

signals can exhibit any frequency while their correlation is constant.

Figure 1 shows that complete artifact obliteration is achievable for a

single constant sinusoidal signal at f0. The analysis for frequencies

above f0 revealed a better performance of ASWC over SWC. The sim-

ulation in Figure 3 reveals an artifact magnitude of more than 1,000

times larger in SWC compared to ASWC for some frequencies. How-

ever, achieving the better performance was dependent on appropriate

tuning of the ASWC window length. After analyzing the influence of

time signals frequency, it was determined in (6) that the correct tuning

was hASWC = 0.4441/f0. This value if about 44.4% times the tuning

(hSWC = 1/f0) suggested for SWC (Leonardi & Van De Ville, 2015).

While the true rewards of a shorter window length in ASWC are not

fully observable in the static case, there are obvious advantages in

nonstatic cases that we discuss next.

The sharp transition model described sudden changes in connec-

tivity. In this case, the averaging length plays a lesser role. The sharp-

ness resolution is mainly determined by the window length. As tuned

hASWC is less than half hSWC, the model roughly predicts twice the abil-

ity of resolving sudden changes in connectivity. Simulations in

Figure 4 show how doubling the window length, but not the averaging

length, doubled the smoothing of the imposed sudden connectivity

change. This model does not only describe an idealized situation, but

it could also characterize time intervals of quasi-static dynamic con-

nectivity. These quasi-static intervals were suggested with the dawn

of dynamic connectivity to explain why clustering methods might be

able to detect intervals featuring a single dFNC state (Allen et al.,

2014). With respect to our current discussion, the quasi-static case

displayed on the second row of Figure 8 was better described by

ASWC with better definition of the transition interval and flatter

slopes on the quasi-static extremes. Although the real connectivity is

unknown for real data, stronger fluctuations were observed towards

the left and right sides of the SWC estimation. As larger artifact fluc-

tuations are expected in SWC for the static connectivity case depicted

in Figure 3, we can suspect that SWC lobes not present in ASWC are

anything but artifacts.

The most complete description of SWC and ASWC presented in

this work was the moving average model (MA model). In this model,

we divided the signal in an estimation term and an artifact term. The

main interest is to allow for the estimation term to be stronger than

the artifact term. In both SWC and ASWC, the estimation terms are

described by a moving average system. Moving average systems

exhibit a well-known frequency response which allows making further

prediction for SWC and ASWC. The frequencies in the MA model

refer to how fast the correlation between two time signals changes, as

opposed to the frequency of time signals that were characterized in

the static connectivity model. SWC is limited in frequency by the win-

dow length which should be tuned to hSWC = 1/f0, while ASWC

depends on the averaging length tuned at gASWC = 1/(2f0). In simple

terms, the MA model indicates that ASWC will resolve faster tran-

sients than SWC because the correlation frequency spectrum allows

it. Notice that at tuning hSWC
gASWC

= 2, ASWC allows for about two times

higher frequencies than SWC. Real data and wide-band simulations

agree with this prediction. Figure 7 shows how the simulated ground

truth is obliterated in tuned SWC because the correlation fluctuated

with a frequency of exactly 1/hSWC. The fluctuations in this case were

related only to the artifact terms of the MA model. Since it is tuned

differently, ASWC was able to track the relatively fast simulated

changes that SWC could not resolve. The real data example in

Figure 8, shows how the connectivity frequency at 0.012 Hz is

weaker in SWC compared to ASWC because of its proximity to the

zeroing SWC frequency tuned at 0.01 Hz. However, ASWC tuning

permits frequencies up to 0.02 Hz (see Figure 5) resulting in a better

estimation.

4.1 | Limitations

As is the case with other similar studies (Leonardi & Van De Ville,

2015; Zalesky & Breakspear, 2015), the current work does not prom-

ise to eliminate all artifact fluctuations, but focuses on reducing their

magnitude. Other effects due to the intrinsic characteristics of the

hemodynamic response and noise (Hutchison et al., 2013; Lehmann,

White, Henson, Cam, & Geerligs, 2017) are not considered in this

work. However, ASWC might reduce some of these nuisance effects

due to the filtering properties of the MA (Oppenheim & Scha-

fer, 1989).

The improved performance of ASWC over SWC was initially

tested through simulations since a ground truth exists for simulated

data. A similar attempt to use real data confirmed similar trends as

those obtained from simulations. Whether the estimated fluctuations

in real data fully represent neuronal activations or are the result of sig-

nal nuisances still remains to be confirmed and is a question beyond

the topic of this work. However, we might hope that reducing window

length artifacts of dFC signals can allow future research in determin-

ing ways of cleaning the signal from other nuisances.

4.2 | Conclusion

Including an averaging step in the processing of SWC (ASWC) pro-

vided a method for reducing artifact fluctuations due to windowing as

compared to raw SWC. This reduction in artifacts enhances the ability

of the ASWC method to track real dFC fluctuations as compared to

the raw SWC method. In contrast to SWC, which requires only setting

the window length, there are two parameters to define in ASWC, the

window length hASWC and the averaging length gASWC. The optimal

design parameters for ASWC can be written as:

1. Select a design of the lowest allowed frequency f0 for the time

signals to be correlated.

2. Set hASWC = 0.4441/f0 to implement ASWC as a second order

high pass filter with cut-off at f0.

3. Set gASWC = 1/(2f0) to maximize the reduction of artifacts at f0

and for higher frequencies f > f0.

Assuming a cut-off at f0= 0.01 Hz, the configuration values are

hASWC= 44.41 s and gASWC= 50 s. Although 50 s seems like a large
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averaging because gASWC + hASWC= 94 s, this work showed that tem-

poral resolution depends less on the sum gASWC + hASWC and is more

heavily influenced by the individual lengths gASWC and hASWC. The

important point was to reduce window and averaging lengths (or a

combination) for a frequency spectrum that allowed resolving higher

frequencies. In summary, an optimally configured ASWC suggests sev-

eral advantages over the optimal SWC configuration with the recom-

mended length hSWC= 100 s:

1. A smaller optimal window length hASWC = 44.41 s allows for bet-

ter tracking of temporal dFC fluctuations (Figure 6).

2. The ASWC configuration with hASWC= 44.41 s and gASWC= 50 s

behaves similar to a Butterworth filter at 0.01 Hz, thus aiding in

removing nuisance frequencies (Figure 2).

3. Overall, ASWC exhibits less artifact fluctuations when considering

a wide range of frequencies of interest at very low frequencies

(quasi-static). See Figure 3 for temporal signals frequency.

4. ASWC presents a correlation frequency spectrum that allows

resolving higher frequencies than SWC. See Figure 5 for a com-

parison of frequency spectrums. See Figures 6 and 7 for simula-

tion results on correlation frequency.
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