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Abstract

Subcortical ischemic vascular disease (SIVD) is a major subtype of vascular dementia with

features that overlap clinically with Alzheimer's disease (AD), confounding diagnosis.

Neuroimaging is a more specific and biologically based approach for detecting brain

changes and thus may help to distinguish these diseases. There is still a lack of knowl-

edge regarding the shared and specific functional brain abnormalities, especially func-

tional connectivity changes in relation to AD and SIVD. In this study, we investigated

both static functional network connectivity (sFNC) and dynamic FNC (dFNC) between

54 intrinsic connectivity networks in 19 AD patients, 19 SIVD patients, and 38 age-

matched healthy controls. The results show that both patient groups have increased

sFNC between the visual and cerebellar (CB) domains but decreased sFNC between the

cognitive-control and CB domains. SIVD has specifically decreased sFNC within the sen-

sorimotor domain while AD has specifically altered sFNC between the default-mode and

CB domains. In addition, SIVD has more occurrences and a longer dwell time in the

weakly connected dFNC states, but with fewer occurrences and a shorter dwell time in

the strongly connected dFNC states. AD has both similar and opposite changes in certain

dynamic features. More importantly, the dynamic features are found to be associated

with cognitive performance. Our findings highlight similar and distinct functional connec-

tivity alterations in AD and SIVD from both static and dynamic perspectives and indicate

dFNC to be a more important biomarker for dementia since its progressively altered pat-

terns can better track cognitive impairment in AD and SIVD.
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1 | INTRODUCTION

Vascular cognitive impairment and dementia (VCID), due to disease of

the small vessels, produces a progressive decline in cognition related

to pathological changes in the vascular system (Hachinski et al., 2006;

Zhang et al., 2013). VCID, which is the second most common type of

dementia after Alzheimer's disease (AD), has aroused widespread con-

cern because of its high occurrences in older individuals and its poten-

tial relationships to the pathogenesis of AD (Corriveau et al., 2016;

Román, 2002a; Rosenberg, 2017). Subcortical ischemic vascular
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disease (SIVD), a clinically homogeneous disease resulting from lacu-

nar infarcts and hypoxic hypoperfusion of the deep white matter

(WM), is a major cause of VCID (Román, Erkinjuntti, Wallin, Pantoni, &

Chui, 2002b; Sun et al., 2011). The clinical features of SIVD share

overlapping symptoms with AD, such as psychomotor slowness, loss

of memory, and changes in speech and mood (Román et al., 2002b),

making the clinical differentiation of SIVD from AD at times difficult

(Jagust, 2001). It is estimated that over half of AD patients present

with white-matter infarction and patients with vascular dementia may

also meet the criteria for AD (Sarangi, San Pedro, & Mountz, 2000).

However, there is still a lack of criteria for distinguishing these two

forms of dementia, and research efforts are underway to elucidate

more reliable and applicable brain abnormalities and biomarkers to

improve clinical diagnosis.

Resting-state functional connectivity (rs-FC) derived from func-

tional magnetic resonance imaging (fMRI) reflects synchronizations

between spontaneous neurophysiological events in spatially remote

brain regions (Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995; Cordes

et al., 2001; Greicius, Krasnow, Reiss, & Menon, 2003). There have

been numerous research efforts using rs-FC to examine the functional

organization of the brain in various psychiatric disorders, such as

schizophrenia (Calhoun & Adali, 2012; Jafri, Pearlson, Stevens, &

Calhoun, 2008), autism (Cerliani et al., 2015; Kana, Keller, Cherkassky,

Minshew, & Just, 2006), and different types of dementia including AD

(Dai et al., 2012; Greicius, Srivastava, Reiss, & Menon, 2004; Wang

et al., 2006) and SIVD (Sang et al., 2018; Sun et al., 2011; Zhang et al.,

2013). Specifically, reported rs-FC changes in AD in comparison to

healthy controls (HCs) have mainly involved the frontal, sensorimotor

(SM), parietal, default-mode (DM), and cerebellar (CB) regions (Agosta

et al., 2012; Badhwar et al., 2017; Jones et al., 2011; Tucholka et al.,

2018; Zheng, Liu, Song, Li, & Wang, 2017), most of which also showed

abnormalities in patients with SIVD or WM hyperintensities (WMHs)

(Cheng et al., 2017; Liang et al., 2016; Sun et al., 2014; Yi et al., 2012).

For instance, Zheng et al. (2017) have found that patients with AD

show decreased rs-FC in visual and SM networks, which are signifi-

cantly associated with cognitive decline. Similarly, disrupted rs-FC

associated with visual and SM networks have been identified in SIVD

patients (Sun et al., 2011; Zhang et al., 2013). Previous studies also

reported AD-related rs-FC abnormalities in frontal–parietal, subcorti-

cal (SC), and CB networks (Binnewijzend et al., 2012; Wang et al.,

2007), which are widely observed in patients with WM diseases

(Liang et al., 2016; Sang et al., 2018). However, most of the previous

studies focused on just one type of dementia (e.g., AD or SIVD), ignor-

ing the comparison and relationship between them. The exploration

of shared and specific rs-FC abnormalities between different demen-

tias can help to capture reliable biomarkers for clinical assessment and

advance the knowledge of the pathological mechanism underlying AD

and SIVD.

In addition, the above-mentioned research employed static rs-FC

that may be limited because of the assumption of spatial and temporal

stationarity of functional interactions throughout the resting-state

(Allen et al., 2014; Chang & Glover, 2010). Recent progress in fMRI

studies has provided a large body of evidence showing that the

fluctuations in FC are of neural origin and even more prominent during

the resting period when mental activity is unconstrained (Allen et al.,

2014; Calhoun, Miller, Pearlson, & Adalı, 2014; Hutchison, Womelsdorf,

Allen, et al., 2013a; Hutchison & Morton, 2015; Hutchison, Womelsdorf,

Gati, Everling, & Menon, 2013b). Although there has been work using

dynamic rs-FC to investigate impairments in AD (de Vos et al., 2018;

Guo, Liu, Chen, Xu, & Jie, 2017), it is unclear whether dynamic rs-FC is

similarly affected in SIVD and whether dynamic rs-FC can provide addi-

tional information about SIVD and AD beyond static rs-FC. In our previ-

ous work, we have proposed a dynamic analysis framework that is based

on group independent component analysis (ICA) (Calhoun, Adali,

Pearlson, & Pekar, 2001), the Pearson correlation coefficient, sliding win-

dow approach, and k-means clustering to characterize dynamic changes

in whole-brain rs-FC (or its among-network relative, functional network

connectivity [FNC], which focuses on connectivity between networks)

associated with brain disorders (Damaraju et al., 2014; Fu et al., 2017; Fu

et al., 2018). This framework has been widely employed in neuroscience

research and has successfully identified numerous dynamic FNC (dFNC)

biomarkers for different brain disorders, including schizophrenia

(Damaraju et al., 2014; Du et al., 2018; Fu et al., 2017), bipolar disorder

(Rashid et al., 2016; Rashid, Damaraju, Pearlson, & Calhoun, 2014),

autism (Fu et al., 2018), and Parkinson's disease (Kim et al., 2017). For

example, Kim et al. applied this framework to study Parkinson's disease,

showing that they have fewer occurrences in the sparsely connected

dynamic state but more in the strongly interconnected dynamic state.

Interestingly, the opposite findings are observed in schizophrenia, where

patients with schizophrenia spend more time in a disconnected state

(Damaraju et al., 2014; Du, Pearlson, et al., 2016b).

Herein, to fully and systematically explore the rs-FC abnormalities

that are associated with different types of dementia, we combined a

dFNC analysis framework with a static FNC (sFNC) analysis and stud-

ied the brain connectivity changes from both static and dynamic per-

spectives. To our knowledge, no prior work has investigated static

and dFNC changes in SIVD and AD individuals and compared such

changes between them. Traditional group ICA studies generally esti-

mated group-level independent components (ICs) using only the dis-

covery data set and therefore the identified target components are

variable across studies (Allen et al., 2014; Calhoun et al., 2001; Miller,

Yaesoubi, & Calhoun, 2014). In the present study, we performed

group ICA on two independent public available data sets with large

sample sizes and matched their estimated group components for fur-

ther intrinsic connectivity networks (ICNs) identification to overcome

this limitation. With the help of a spatially constrained ICA approach

(Du, Allen, et al., 2016a; Du & Fan, 2013), we estimated subject-

specific component spatial maps and time courses for our VCID data

sets. The homologous and heterogeneous symptoms between SIVD

and AD led us to hypothesize the presence of both similar and distinct

changes in sFNC and dFNC between these two patient groups. We

also hypothesized that the altered FNC features would be associated

with the levels of cognitive impairment and the dFNC might provide

more information on cognitive impairments that cannot be captured

from the sFNC.
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2 | METHODS

2.1 | Participants

The data set was from an ongoing study of VCID at the University of

New Mexico (UNM). All participants provided written informed con-

sent approved by the UNM Human Research Protections Office.

This data set included 159 subjects who received resting-state fMRI

scans. All subjects underwent a research level MRI and a cerebrospinal

fluid biochemical analysis (Erhardt et al., 2018; Jack et al., 2018;

Rosenberg et al., 2016). HCs were recruited from the community with

normal neuropsychological and neurological examinations. Patients

were recruited from the neurologists' cognitive disorders clinics. Three

neurologists arrived at a consensus diagnosis after reviewing the med-

ical history, physical and neurological examinations, clinical MRI, and

basic laboratory studies for the diagnosis of patients. The patients

comprised a diverse group diagnosed with different causes of cogni-

tive dysfunction (e.g., Parkinson's disease, dementia with Lewy bodies,

frontotemporal dementia, psychiatric disorders, AD, and SIVD).

In the present study, we selected data samples according to the

following criteria: (a) patients diagnosed with AD based on McKhann

criteria for probable diagnosis (McKhann et al., 1984); (b) patients

diagnosed with SIVD show extensive SC WM signal abnormality with

clinical support for ischemic injury (gait disorder, focal exam abnormal-

ity); (c) HCs without any dementia diagnosis history; (d) subjects with

head motion ≤3� and ≤3 mm; and (e) subjects with functional data

providing near full brain successful normalization (by comparing the

individual mask with the group mask. Detailed procedures are pro-

vided in Appendix S1). These criteria yielded a total of 76 subjects

(38 HCs, 19 patients with AD, and 19 patients with SIVD) in which

the controls and patients were matched by number and age

(p = 0.1843, analysis of variance [ANOVA]). Among the selected sub-

jects, 74 subjects had been assessed with cognitive tests. Cognitive

tests were administered by a trained research psychologist (JP) and

trained research coordinators and scored according to standard proce-

dures. Standardized (T) scores were calculated for each test. Average

composite T-scores were calculated for five domains: memory

(Hopkins Verbal Learning Test-Delay, Rey Complex Figure Test-Long

Delay), executive function (Digit Span Backwards, Trail Making Test B,

Stroop Interference Score, and Controlled Oral Word Association

[FAS]), attention (Digit Span Forward, and Trial Making Test A), lan-

guage (Boston Naming 60 item test, Controlled Oral Word Associa-

tion [Animals]), and processing speed (Digit Symbol and Symbol

Search, both based on WAIS-3). HCs underwent the same neuropsy-

chological test battery. Demographic information is provided in

Table 1. Past research has demonstrated multiple tests can provide a

more reliable estimate of a cognitive construct than any single test

(Anastasi & Urbina, 1997). It is also suggested that the objective tests

should focus on multiple cognitive domains to increase the ability to

detect full cognitive impairments (Bondi et al., 2014; Ferman et al.,

2013; Loewenstein et al., 2009). Our study performed a comprehen-

sive neuropsychological assessment for each participant and the test

scores were assigned to different cognitive domains. We believed that

the use of summarized scores for different cognitive domains would

help capture more reliable cognitive impairments in dementia.

2.2 | Data sets acquisition and preprocessing

All participants were scanned during a rest condition with eyes closed.

The study's fMRI scans were acquired on a 3T Siemens TIM Trio scan-

ner. This ongoing VCID study employed two different head coils, a

12-channel radio-frequency (RF) coil and a 32-channel RF coil with a

multiband sequence during different stages of recruitment. The

12-channel fMRI data were scanned using gradient-echo echo planar

imaging (EPI) with a field of view (FOV) = 240 mm; a 3.5 mm slice

thickness, and 30% distance factor; a 3.75 × 3.75 mm2 in-plane

resolution, repetition time (TR) = 2000 ms, echo time (TE) = 29 ms;

anterior–posterior (AP) phase encoding direction; and 165 measure-

ments collected for a total acquisition time of 5.5 min. The

32-channel fMRI data were acquired using a multiband EPI sequence

with an FOV = 248 mm; 3 × 3 × 3 mm3 voxel resolution; multiband

factor = 8, TR = 460 ms, TE = 29 ms; AP phase encoding direction;

and 650 measurements collected for a total acquisition time of 5 min.

Data for distortion correction were collected using two additional EPI

spin-echo sequences run in AP and posterior–anterior (PA) phase

encoding directions. The image resolution, echo-spacing, and band-

width of the EPI fMRI sequence and the EPI spin-echo sequence were

matched.

The fMRI data were preprocessed using a combination of tool-

boxes: AFNI3 (https://afni.nimh.nih.gov), SPM12 (http://www.fil.ion.

ucl.ac.uk/spm/), GIFT4.0b (http://mialab.mrn.org/software/gift), and

custom code written in MATLAB. A slice-timing correction was first

performed to account for timing differences in slice acquisition. After

that, a rigid body motion correction was performed to correct the

head motion of the fMRI scans. A despiking procedure was then con-

ducted on the fMRI data using the AFNI3 3dDespike algorithm to mit-

igate the impact of outliers. The fMRI data were subsequently warped

to a Montreal Neurological Institute space using the tissue probabilis-

tic maps in the SPM toolbox and were resampled to 3 mm3 isotropic

voxels. Finally, the fMRI data were smoothed using a full width at half

maximum Gaussian kernel of 6 mm. We performed additional distor-

tion correction on the 32-channel fMRI data. Before motion

correction, a distortion field was calculated from the AP and PA

phase-encoded EPI data by the TOPUP/FSL algorithm (Andersson,

Skare, & Ashburner, 2003) and used to correct the fMRI scans.

2.3 | Framework for static and dynamic connectivity
in AD and SIVD

The framework used to investigate AD and SIVD for specific and com-

mon connectivity changes and their associations with cognitive

performance is as follows (shown in Figure 1): (a) group ICA was per-

formed and individual spatial maps and time courses were computed

using spatially constrained ICA with the group template as a prior;

(b) sFNC was calculated using the Pearson correlation coefficient and

group differences were examined; (c) dFNC was calculated using a
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sliding window approach and a k-means clustering-based state analy-

sis were conducted on dFNC estimates. The group difference in frac-

tion rate of occurrences and mean dwell time of dFNC states was

examined; and (d) altered static and dynamic features (sFNC, occur-

rences and mean dwell time of dFNC states) were correlated with

cognitive scores to investigate potential associations between neuro-

imaging features and cognitive impairment.

2.4 | Group ICA

Previous studies typically conducted group ICA on the exploratory data

set and identified targeted ICs as ICNs for FNC analysis. However, due

to the difference among data sets (e.g., sample size, data dimensions, or

data qualities), the identified ICNs are variable and not necessarily con-

sistent across studies. Therefore, to identify reliable ICNs that are robust

and consistent across data sets, we performed group ICA on two inde-

pendent data sets with large sample sizes and different temporal resolu-

tions (Human Connectome Project and Genomics Superstruct Project

[GSP], details are provided in Appendix S1).

ICs from the two data sets were matched by comparing their

corresponding group-level spatial maps. We examined whether an IC

from one data set has a matched IC from the other data set when their

spatial correlation is larger than 0.25. A correlation value around 0.25 is a

reasonable choice for showing the correspondence between ICs from dif-

ferent data sets (Segall et al., 2012; Smith et al., 2009). This threshold also

conservatively represents a significance level of p < .005, corrected

(Smith et al., 2009). Then, we characterized a subset of matched ICs as

ICNs by considering their peak activations and power spectrum. ICNs

should exhibit peak activations in gray matter; have low spatial overlap

with known vascular, ventricular, motion, and susceptibility artifacts; and

have dominant low-frequency fluctuations on their time courses (Allen

et al., 2014). ICNs were categorized into different domains based on

anatomy and prior knowledge of their function (Allen et al., 2014; Allen,

Damaraju, Eichele, Wu, & Calhoun, 2018; Damaraju et al., 2014). The

components were evaluated by three experts. After identifying the ICNs,

we used the group template of GSP data set as a reference within a spa-

tially constrained ICA algorithm to compute individual spatial maps and

time-courses for the VCID data set (Du et al., 2016a). Before calculating

the sFNC and dFNC between time courses of ICNs, we conducted post-

processing procedures on time courses to remove remaining noise

sources, including (a) detrending linear, quadratic, and cubic trends;

(b) conducting multiple regressions of the six realignment parameters and

their temporal derivatives; (c) despiking detected outliers; and (d) low-

pass filtering with a cutoff frequency of 0.15 Hz.

2.5 | sFNC and dFNC analysis

We calculated sFNC using the Pearson correlation coefficients

between the time courses of ICNs. This resulted in an sFNC matrix

with the dimension of C × C (C is the number of ICNs identified) for

each subject. Since the VCID data set was scanned using two differ-

ent head coils, before investigating the group differentiating sFNC,

we regressed out head coil effects from each sFNC cell. Only the HCs

were used for the estimation to avoid introducing confounding effects

related to diseases. Diagnosis effects on sFNC were estimated in an

ANOVA model, controlling age, and gender. If the effects were signifi-

cant, a general linear model (GLM) including age and gender was con-

ducted to examine the group difference between pairs of groups

(HC vs. AD, HC vs. SIVD, and AD vs. SIVD).

For each subject sub = 1 … N, we estimated dFNC using a sliding

window approach. Since the subject data were scanned with differ-

ent head coils and thus have different temporal resolutions

(TR = 0.46 and 2 s), we interpolated the subject time courses with

larger TR to construct new time courses and used the same length of

data for each subject. This procedure helps to control the potential

impacts on the dynamic analysis caused by the different temporal

resolutions. Prior studies have shown that such an interpolation

strategy is valid for characterizing dynamic brain connectivity in data

sets with different temporal resolutions (de Lacy, Doherty, King,

Rachakonda, & Calhoun, 2017; Du et al., 2017). We used individual

time courses with 630 observations for the dFNC estimation. A

tapered window was obtained by convolving a rectangle (window

size = 20, TRs = 9.2 s) with a Gaussian (σ = 3) to localize the data

set at each time point. This window was slid in steps of 1 TR,

resulting in total T = 610 windows. In order to capture more tran-

sient variations on the dFNC, we selected a shorter window size for

the dFNC estimation. Our previous work demonstrated that the win-

dow size problem is not trivial since it stems from the fundamental

bias–variance tradeoff problem in the estimation theory. Many

dynamic connectivity studies chose a window size in the range of

30 s–1 min because their data sets typically have the TR = 2 s

(15–30 time points are used for the estimation) and they want to

TABLE 1 Participant demographics

Phenotypic HC, mean (SD) AD, mean (SD) SIVD, mean (SD) p-Value (ANOVA)

Age (76 subjects) 65.82 (10.15) 70.47 (8.46) 68.05 (6.80) 0.1843

Executive (74 subjects) 50.11 (6.00) 42.89 (8.17) 40.16 (8.71) .0033

Memory (74 subjects) 54.38 (10.98) 30.61 (8.59) 45.32 (11.32) 6.52e-8

Attention (74 subjects) 52.81 (7.11) 46.11 (11.17) 40.47 (9.83) .0021

Language (74 subjects) 54.30 (8.30) 42.94 (11.30) 44.42 (10.36) .0034

Processing speed (74 subjects) 56.24 (7.25) 47.83 (12.00) 43.84 (8.41) .0022

Abbreviations: AD, Alzheimer's disease; ANOVA, analysis of variance; HC, healthy control; SIVD, subcortical ischemic vascular disease.
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achieve a balance between estimation accuracy and capturing the

transient patterns. With the multiband sequence technique, our

VCID data set has a relatively shorter TR. Such a high temporal

resolution helps to improve the dFNC estimation in a shorter win-

dow (20 time points are available within each window, which is com-

parable with that used in most of the previous studies). Therefore, it

F IGURE 1 Framework of exploring altered static and dynamic functional network connectivity (FNC) in subcortical ischemic vascular
disease (SIVD) and Alzheimer's disease (AD). Step 1: perform group independent component analysis (ICA) on two independent data sets
and compute individual spatial maps and time courses using spatially constrained ICA with spatial priors from the exploratory data set;
Step 2: estimate static FNC (sFNC) using the Pearson correlation coefficient; Step 3: estimate dynamic FNC (dFNC) using a sliding

window approach and perform a k-means clustering on dFNC estimates; and Step 4: conduct correlation analysis between cognitive
scores and sFNC/dFNC features [Color figure can be viewed at wileyonlinelibrary.com]
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was reasonable to use a shorter window size in the present study for

capturing more transient patterns in dFNC. We also conducted an

analysis based on the dFNC estimates from other window sizes. The

results were highly consistent among a wide range of window sizes

(16–24 TRs), suggesting that the identified altered dFNC is not cau-

sed by random artifacts. The results of other window sizes are pro-

vided in the Appendix S1.

We calculated the covariance matrices
P

sub(t), t = 1 … T, using

the windowed data as estimates of dFNC between ICNs. To assess a

more accurate covariance matrix, we employed a graphical LASSO

method (Friedman, Hastie, & Tibshirani, 2008) to estimate the regular-

ized inverse covariance matrix
P−1

sub tð Þ and then estimated the covari-

ance matrix
PL1

sub tð Þ from the inverse covariance matrix. The

regularization parameter λ was optimized for each subject by using a

cross-validation framework. For each subject, the covariance matrices

of windows were concatenated to form a C × C × T array that

represents the dynamic changes in brain connectivity as functions of

time. Similar to the sFNC, we regressed out the head coil effect from

each dFNC. We calculated the mean dFNC across time for each sub-

ject, applied the GLM to estimate the effect of head coils on mean

dFNC and regressed out this effect from each windowed dFNC

estimate.

After controlling the effect of head coils on the dFNC, we per-

formed a k-means clustering state analysis on dFNC estimates to

explore dFNC patterns that reoccur in time and across subjects. The

basic assumption of this analysis is that during the resting-state, the

whole brain functional network is not stationary, but rather switches

among different dynamic states represented by distinct dFNC pat-

terns that can in part diverge strongly from static connectivity pat-

terns. We used the L1 norm as the distance function and clustered

the windowed covariance matrices into a set of separate clusters

using the k-means clustering method. The optimal number of clusters

F IGURE 2 Spatial maps of identified intrinsic connectivity networks (ICNs) are divided into seven different functional domains and arranged
based on their anatomical and functional properties. Each color in the composite maps corresponds to a different ICN. The detailed component
labels and peak coordinates are provided in Table S1 (see supplementary materials) [Color figure can be viewed at wileyonlinelibrary.com]
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was estimated by the elbow criterion, which is defined as the ratio of

within clustering distance to between clusters distance. The number

of clusters was determined as k = 4, which was within a reasonable

range (4–7) consistent with our previous dFNC study on different

brain disorders. We also used Akaike information criterion and

Bayesian information criterion (Li, Adalı, & Calhoun, 2007) to esti-

mate the optimal number of cluster and the results are consistent

(k = 4). After obtaining the state vector for each subject (a vector

representing which state each time point is assigned to), we divided

the number of total windows (610 for every subject) by the number

of windows assigned to each state to measure the fraction rate and

averaged the duration window lengths of each state to measure the

mean dwell time. To investigate the effect of diagnosis on the frac-

tion rate and the mean dwell time of dynamic states, ANOVA was

performed on the dynamic features controlling for age and gender. If

ANOVA identified significant diagnosis effects, a GLM including age

and gender was conducted to examine the group difference between

pairs of groups.

2.6 | Correlation between FNC features and
cognitive scores

We further examined whether sFNC and dFNC changes can predict

cognitive impairment, measured using five cognitive subdomain

scores. This analysis focused on those sFNC and dFNC features with

significant group differences. The GLM was employed to examine the

partial correlations between the cognitive scores and the abnormal

imaging features in the patient groups and in the whole sample

respectively, controlling for age and gender. To further prevent the

potential confounding effect of group label, we repeated this analysis

again by including age, gender, and diagnosis as covariates in the GLM

model. All statistical results were corrected for multiple comparisons

F IGURE 3 Group-discriminating static functional network connectivity (sFNC). Top left: Comparisons between healthy controls (HCs) and
patients with subcortical ischemic vascular disease (SIVD); top right: Comparisons between HCs and patients with Alzheimer's disease (AD);
bottom: Comparisons between SIVD and AD. sFNC with group difference (p ≤ .05) are highlighted in red and blue. Significant group difference
that passes the multiple comparisons is marked by asterisks (false discovery rate [FDR] corrected, q = 0.05) [Color figure can be viewed at
wileyonlinelibrary.com]
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using the false discovery rate (FDR) (Benjamini & Hochberg, 1995)

with a correction threshold of q = 0.05.

3 | RESULTS

3.1 | Group ICA and ICNs identification

Figure 2 displays the spatial maps of ICNs identified with group ICA.

Overall, there were 70 pairs of ICs are matched with a spatial correla-

tion higher than 0.25, of which 54 ICs were identified as ICNs. The

replicated ICNs cover the majority of SC and cortical gray matter,

which are highly consistent with the results in previous high model

order ICA studies. Based on the anatomical and presumed functional

properties, ICNs were arranged into seven functional domains: SC

domain, auditory domain, visual domain (VS), SM domain, cognitive-

control (CC) domain, DM domain, and cerebellar (CB) domain. Previ-

ous studies have shown that such manual arrangement of ICNs is very

similar to various orderings provided by empirical methods (Allen

et al., 2014).

3.2 | Group-discriminating sFNC

The results of altered sFNC in SIVD and AD are shown in Figure 3. The

comparisons were conducted between each pair of the groups (HC vs.

SIVD, HC vs. AD, and SIVD vs. AD) and the results demonstrate shared

and specific sFNC alterations associated with SIVD and AD. Compared

with HC, SIVD has abnormal sFNC related to SM. As displayed in

Figure 4, postcentral gyrus (PoCG) is a key region whose sFNCs are

largely influenced in patients with SIVD. This region has atypical sFNC

with multiple functional domains, such as SM (paracentral lobule

[ParaCL], precentral gyrus [PreCG], and superior parietal lobule [SPL]),

SC (subthalamus/hypothalamus), and CC (supplementary motor area).

Most of these sFNCs significantly decrease in SIVD, except for the

sFNC between PoCG and thalamus/hypothalamus, which significantly

increases instead. Patients with SIVD also have increased sFNC

between CB and VS, but decreased sFNC between CB and

CC. According to Figure 5, the negative sFNC between the cerebellum

and several visual regions, such as right middle occipital gyrus, lingual

gyrus, and fusiform gyrus, change to positive correlations in SIVD. In

contrast, Figure 6 shows that HCs have positive sFNC between cere-

bellum and CC, including middle frontal gyrus (MiFG), inferior frontal

gyrus (IFG), and insula, and these sFNCs significantly decrease to nega-

tive in SIVD.

AD patients also show similar alterations in sFNC between CB

and VS, and in sFNC between CB and CC, but changes are relatively

weaker than that in SIVD. Figure 7 demonstrates that compared with

HC, the sFNC between calcarine gyrus and cerebellum significantly

increases in AD. Atypical sFNC are also observed between DM and

CB, but these abnormalities are borderline significant (raw p ≤ .05),

which cannot survive in multiple comparisons. Significant group-

discriminating sFNC are also observed between SIVD and AD. As

shown in Figure 8, SIVD has smaller sFNC within SM (between PoCG

and PreCG) and within CC (between MiFG and inferior parietal lobule

[IPL]) than does AD.

3.3 | Group-discriminating dFNC features

The centroids and the count of subjects of dFNC states are

displayed in the bottom row of Figures 9 and 10. Different from

previous studies using larger window sizes (Allen et al., 2014;

F IGURE 4 Static functional network connectivity (sFNC) significantly related to healthy control (HC)—subcortical ischemic vascular disease
(SIVD) discrimination (regions involved in sensorimotor domain [SM], subcortical domain [SC], and cognitive-control domain [CC]). Boxplots of
sFNC with asterisks indicating significant group difference after false discovery rate (FDR) correction [Color figure can be viewed at
wileyonlinelibrary.com]
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Damaraju et al., 2014; Rashid et al., 2014), most of the subjects in

the present study enter all dynamic states (for each state, subjects

have at least one window assigned to. See the subject counts per

state shown in Figures 9 and 10). The connectivity patterns of State

3 resemble the sFNC, which accounts for >50% of all windows. In

contrast, the connectivity patterns of the other states represent

connectivity diverging substantially from the sFNC. These observa-

tions are consistent with our previous longer windowed dFNC

results from data with lower temporal resolutions. We highlight

three differences of connectivity patterns between dFNC states,

though many other distinctions can be observed. First of all, states

are differentiated by DM connectivity. The ICNs within DM are

highly connected in State 1, but not in the other states. States 1, 2,

and 4 reveal negative correlations between DM and SM, but their

connection patterns are different. Only State 2 shows positive FNC

between CC and DM. Second, States 2 and 3 reveal functional seg-

regation (even negative connectivity) between SM and VS. In con-

trast, SM and VS are highly connected in States 1 and 4. The third

discriminating pattern among states is that, in most the states, ICNs

within SM and VS show weak positive and negative correlations

F IGURE 5 Static functional network connectivity (sFNC) significantly related to healthy control (HC)—subcortical ischemic vascular disease
(SIVD) discrimination (regions involved in cerebellar domain [CB] and visual domain [VS]). Boxplots of sFNC with asterisks indicating significant
group difference after false discovery rate (FDR) correction [Color figure can be viewed at wileyonlinelibrary.com]
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with CB. However, in State 4, the SM and VS regions are strongly

negatively correlated with many functional domains, including SC,

CC, and CB.

Pair-wise group comparisons in the fraction rate of occurrences

and the mean dwell time are shown in the top row of Figures 9 and

10. The results of the fraction rate indicate that patients with SIVD, in

general, spend significantly more time in the relatively more sparsely

connected States 2 and 3, but less time in the more positively and

negatively connected States 1 and 4. Group differences can also be

observed between AD and SIVD in States 1 and 3, wherein AD and

F IGURE 6 Static functional network connectivity (sFNC) significantly related to healthy control (HC)—subcortical ischemic vascular disease
(SIVD) discrimination (regions involved in cerebellar domain [CB] and cognitive-control domain [CC]). Boxplots of sFNC with asterisks indicating

significant group difference after false discovery rate (FDR) correction [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Static functional network connectivity (sFNC) significantly related to healthy control (HC)—Alzheimer's disease (AD) discrimination
(regions involved in visual domain [VS] and cerebellar domain [CB]). Boxplots of sFNC with asterisks indicating significant group difference after
false discovery rate (FDR) correction [Color figure can be viewed at wileyonlinelibrary.com]
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SIVD show opposite alterations in the fraction rate compared with

HC. AD and SIVD have similar alteration trends in States 2 and 4, but

changes are much smaller in AD. The examination of the average

dwell time in each state shows similar patterns that SIVD patients

stay a longer time in sparsely connected State 3 and shorter time in

strongly connected State 1. Interestingly, in State 2, AD shows the

same alteration trend (increased mean dwell time compared with HC)

as SIVD, but to a greater degree. This pattern cannot be found in the

fraction rate.

3.4 | Associations between dFNC features and
cognitive scores

There is a no significant association between group discriminating

sFNC and cognitive scores that can pass multiple comparison correc-

tion. Figure 11 displays the results of significant associations between

dFNC features and cognitive scores. In the patient groups, the fraction

rate of dFNC State 2 is negatively associated with the language scores

(r = −.4322, p = .0076*, q[FDR] = 0.05). The mean dwell time of State

4 is positively associated with the attention scores (r = .4729,

p = .0031*, q[FDR] = 0.05) and the processing speed scores

(r = .4284, p = .0082*, q[FDR] = 0.05). In the whole sample of patient

plus HC groups, we found a significant association between the frac-

tion rate of dFNC State 2 and the language score (r = −.3660,

p = .0013*, q[FDR] = 0.05), which is consistent with the observations

in the patient group. Even when we regressed out the label effects,

most of the identified associations are still significant (FDR corrected,

q = 0.05). An exception is the association between the fraction rate

of dFNC State 2 and the language score in the whole sample, which

shows a similar trend with boundary significance (r = −.2861,

p = .0135, uncorrected).

4 | DISCUSSION

The present work employed both sFNC analysis and dFNC analysis to

clarify rs-FC changes in AD and SIVD, and we further explored the

potential association between rs-FC changes and cognitive impair-

ment. Our results highlight that: (a) AD patients and SIVD patients

have common and specific sFNC changes, (b) AD patients and SIVD

patients share similar and opposite alteration trends in dFNC, and

(c) dFNC is more sensitive to the cognitive performance as measured

with the neuropsychological scores. The overall findings suggest that

the dFNC analysis can provide additional relevant information on dis-

eases beyond the static parts. Investigating rs-FC from both static and

dynamic perspective can help to depict a full picture of rs-FC abnor-

malities related to brain disorders.

4.1 | Static FNC abnormalities in AD and SIVD

Relative to HCs, the PoCG in patients with SIVD shows significantly

decreased sFNC with five cortical ICNs, most of which located in the

SM domain (including ParaCL, PreCG, and SPL). Our results concur

with previous studies in VCID and WMHs that reported decreased rs-

FC involving the parietal cortex (Ding et al., 2017; Sang et al., 2018;

Sun et al., 2011; Zhang et al., 2013). Parietal cortex includes a set of

important brain areas that are responsible for integrating sensory

information, especially for language processing. Considering that a

decline of language processing is a common symptom in SIVD, a

F IGURE 8 Static functional network connectivity (sFNC) significantly related to subcortical ischemic vascular disease (SIVD)—Alzheimer's
disease (AD) discrimination (regions involved in sensorimotor domain [SM] and cognitive-control domain [CC]). Boxplots of sFNC with asterisks
indicating significant group difference after false discovery rate (FDR) correction [Color figure can be viewed at wileyonlinelibrary.com]
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growing literature has suggested relating the disrupted connectivity in

the parietal cortex to such cognitive impairment in SIVD. Previous

studies further identified decreased nodal efficiency and clustering

coefficient in the parietal areas, implying that the decreased FC in

parietal cortex might result in their lower capacity for information

exchange, which can influence the response to noncognitive conse-

quences and motor dysfunction in patients with cognitive impairment

caused by SIVD (Gupta et al., 2014; Lyketsos et al., 2002). SIVD

patients also show increased sFNC between thalamus/hypothalamus

and PoCG and such thalamocortical connectivity changes have been

widely reported in many other brain disorders (Cerliani et al., 2015;

Damaraju et al., 2014; Fu et al., 2018). The observation of SC–cortical

hyperconnectivity targeting the sensory cortices might help to con-

ceptualize the presence of sensory abnormalities in SIVD. In most of

the clinical literature, the sensory deficit and pure sensory loss are key

criteria for the diagnosis of SIVD (Alves et al., 2009; Chui, 2007;

Román et al., 2002b). Our results suggest that the presence of atypical

sensory processing in SIVD might result in a compensation mechanism

of the information flow from thalamic nuclei to the cortex, reflected

indirectly by our findings of thalamo-sensory hyperconnectivity.

In our study, atypical CB sFNC is identified in both dementia patient

groups, where such abnormalities are relatively weaker in the AD

patients. Although the cerebellum is traditionally supposed to be related

to motor behavior, recent evidence has argued that the cerebellum acts

as a center that subserves multiple cognitive functions by connecting

to distributed networks and facilitating their modulation (O'reilly,

Beckmann, Tomassini, Ramnani, & Johansen-Berg 2009; Schmahmann,

2018; Schmahmann, Weilburg, & Sherman, 2007). For example, the cere-

bellum has been shown to be associated with the memory function

(Jantzen, Oullier, Marshall, Steinberg, & Kelso, 2007; Ng et al., 2016). Lit-

erature has identified numerous CB abnormalities in different types of

dementia, such as the atypical CB connectivity in both AD (Castellazzi

et al., 2014; Zheng et al., 2017) and SIVD (Cheng et al., 2017; Diciotti

et al., 2017; Ding et al., 2017). However, the results of atypical CB

F IGURE 9 Upper: Group comparisons in fraction rate of occurrences of four dynamic functional network connectivity (dFNC) states.
Boxplots of fraction rate of occurrences with asterisks indicating significant group difference after false discovery rate (FDR) correction. Lower:
The cluster centroids of four dFNC states, along with the count of subjects that have at least one window clustered into each state [Color figure
can be viewed at wileyonlinelibrary.com]
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connectivity are not so consistent, since both hypoconnectivity and hyp-

erconnectivity are observed across different studies. With the help of a

high model order group ICA, we parcellated the whole brain into more

functional regions and successfully identified both increased and

decreased CB connectivity in the same discovery data set. Our results

show that the connectivity between the cerebellum and primary sensory

cortex generally increases, while the connectivity between the cerebel-

lum and frontal cortex generally decreases in patients with dementia.

This suggests the definition of the regions of interest to be a possible

source of previous disparities. The identified hypoconnectivity involved

in the frontal cortex is also in line with previous studies (Sang et al.,

2018; Zhou et al., 2016). Our results show that SIVD has larger alter-

ations in frontal connectivity than AD. Volume atrophy and cortical thin-

ning in the frontal cortex have been widely observed in SIVD patients

(Jin Thong et al., 2014; Seo et al., 2010). Widespread WM lesions in

SIVD are also suggested to have effects on frontal function due to the

disruption of long-range association fibers (Aralasmak et al., 2006; Chui,

2007). Considering the potential associations between structural and

functional abnormalities (Sui et al., 2011; Sui et al., 2015), we argue that

the lesions of brain structure, especially in WM, would be the cause of

more severe frontal connectivity abnormalities in SIVD. Interestingly, we

found that although either AD or SIVD does not have significantly differ-

ent FNC between MiFG and IPL compared with HCs, this FNC shows a

significant difference between AD and SIVD, indicating opposite alter-

ations (increased in AD but decreased in SIVD) across patient groups.

Such differences suggest that dysfunction in AD and SIVD could stem

from distinct changes on the information processing in the brain underly-

ing disparate gray matter damages. The increased FNC in AD might sup-

port the hypothesis that AD patients recruit more resources in the

prefrontal cortex to compensate for cognitive function loss (Grady et al.,

2003). In contrast, the decreased FNC in SIVD might be attributed to the

disruption of frontal circuits (relevant to executive function, initiation,

and social behavior) and the softening of the WM in the frontal lobe

(Cummings, 1993; Dozono, Ishii, Nishihara, & Horie, 1991).

F IGURE 10 Upper: Group comparisons in mean dwell time of four dynamic functional network connectivity (dFNC) states. Boxplots of mean
dwell time with asterisks indicating significant group difference after false discovery rate (FDR) correction. Lower: The cluster centroids of four
dFNC states, along with the count of subjects that have at least one window clustered into each state [Color figure can be viewed at
wileyonlinelibrary.com]
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4.2 | Dynamic FNC abnormalities and its associations
with cognitive impairment

In this work, a sliding window approach with relatively shorter win-

dow size (around 10 s) was applied on a high temporal resolution data

set for the exploration of atypical dFNC in different types of demen-

tia. Although the selected window size is much smaller than that used

in prior literature (Allen et al., 2014; Marusak et al., 2017), we could

still identify highly reproducible dFNC states in AD and SIVD, which

are similar to previous findings in other brain disorders (Damaraju

et al., 2014; Kim et al., 2017; Rashid et al., 2014; Rashid et al., 2016).

The highly variable dFNC patterns among different states depart sig-

nificantly from the sFNC patterns, which imply the flexibility in func-

tional coordination between brain subsystems (Allen et al., 2014;

Marusak et al., 2017). For example, the auditory, SM, and VSs

exhibited strongly synchronous activity and antagonism with SC

simultaneously only in State 4. Literature has shown these connectiv-

ity patterns to be associated with the electroencephalography (EEG)

oscillations in simultaneous EEG–fMRI recordings (Allen et al., 2018).

The most frequently reoccurring State 3 has the weak connectivity

patterns that resembled the sFNC patterns. In previous dFNC studies,

a dynamic state that resembles the stationary FNC patterns typically

accounts for the largest percentage of windows. It is speculated that

such a weak and diffused dynamic state represents the average of a

large number of additional states with less variability to be separated

(Allen et al., 2014). Recent studies further show that this state might

be associated with self-referential processing and drowsiness based

on a greater frequency of occurrence over time and temporal similar-

ity across groups (Allen et al., 2018; Marusak et al., 2017). Taken

together, this dynamic state could be considered as a more steady

state with reduced vigilance. It signifies the average of less variable

FNC, sharing similar stationary assumption and connectivity patterns

with the sFNC. Some other states (States 1 and 2) show similar

within-domain connectivity patterns with State 3, but with different

negative between-domains connectivity patterns.

HCs and dementia patients showed different fraction rates of

occurrences in different dFNC states. More specifically, relative to

HCs, SIVD patients spend less time in strongly connected states with

antagonism connectivity patterns (States 1 and 4). AD patients show a

similar decreasing trend in State 4. We speculate that the decrease in

the occurrence of these states will result in disrupting functional seg-

regation, which is further linked to the cognitive decline in dementia

(Sang et al., 2018; Yu et al., 2015). SIVD patients also have more

occurrences in the weak connected states, especially in the state that

resembles the sFNC (State 3). Similar observations can be found in

many other brain disorders, such as bipolar disorder (Rashid et al.,

2014), schizophrenia (Damaraju et al., 2014), autism (Fu et al., 2018),

and Parkinson (Kim et al., 2017). However, it is interesting to note

F IGURE 11 The scatterplots illustrate the associations between cognitive scores and each dynamic functional network connectivity (dFNC)
feature in the whole samples and in the patient groups. Green circles represent the patients with subcortical ischemic vascular disease (SIVD), red
circles represent the patients with Alzheimer's disease (AD), and blue circles represent the healthy controls (HCs). Significant correlations are
indicated by asterisks (false discovery rate [FDR] corrected, q = 0.05) [Color figure can be viewed at wileyonlinelibrary.com]
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that, different from SIVD, AD patients do not exhibit such atypical

patterns in the occurrence of State 3. Our results suggest that such

abnormalities in dFNC might underlie similar dysfunctions across dif-

ferent brain disorders, except for AD, which might have different

pathology compared with the others. AD and SIVD have similar

changes in dynamic features of State 2, but their alteration levels are

different. AD has more increase in mean dwell time of State 2, but less

increase in the occurrence of State 2 than SIVD. We speculate that

AD and SIVD might have different dynamic behaviors. Specifically,

AD would spend significantly longer duration in State 2, while SIVD

would enter into State 2 more frequently. The investigation of

dynamic brain connectivity might help to capture AD- and SIVD-

related impairments in transient brain organization that cannot be

observed from the static analysis.

Significant associations are identified between dFNC features

(fraction rate of occurrences and mean dwell time) and cognitive per-

formance indexed by neuropsychological scores. Importantly, these

associations cannot be observed between sFNC features and the

same cognitive scores. These findings, together with previous

research on other psychiatric disorders (Du et al., 2018; Fu et al.,

2018), highlight the importance of evaluating dynamic connectivity

for tracking the cognitive declines and disease traits. Our results

unveil a relationship between language performance and the fraction

rate of dFNC State 2, where the few occurrences indicate better lan-

guage performance. The language dysfunction, including both com-

prehension and production, is a hallmark symptom in different types

of dementia (Brotons & Koger, 2000; Potkins et al., 2003) and might

also reflect the overall severity of dementia (Morris, 1997). A system

of regions are involved in language function, including the frontal cor-

tex, temporal cortex, and parietal cortex, most of which are mainly

located in sensory networks and CC network (Friederici et al., 2013;

Gow Jr, 2012; Hickok & Poeppel, 2007). In most of the dFNC states

identified in our current study, the sensory domains (auditory, SM,

and VSs) work homogeneously with the CC domain, as represented

by similar negative relationships between sensory domains and CC

domain. However, in State 2, those sensory domains show different

functional relationships with the CC domain, where the CC domain is

positively correlated with the auditory and SM domains and nega-

tively correlated with the VS. This “heterogeneous state” might imply

a loss of cooperation in those language-related regions, and we argue

that greater occurrences into this state would result in a drop of lan-

guage performance. We also found positive associations between the

mean dwell time of State 4 and scores of attention, as well as

processing speed, in the patient groups. Attention and information-

processing deficits are two common syndromes in AD and SIVD

(Loring, Meador, Mahurin, & Largen, 1986; Mazzucchi et al., 1987).

Literature has shown that poorer attention and information-

processing performance might reflect a greater pathology in the fron-

tal cortex and more corticocortical disconnection in dementia (Perry &

Hodges, 1999). Our results are in line with this previous finding to

some extent by showing that the patients spending a longer time in a

dFNC state with strongly connected patterns would have better per-

formance in attention and processing speed. The positive correlation

between the mean dwell time of State 4 and attention scores also

implies potential relationships between DM impairments and atten-

tion deficits. DM regions play a critical role in regulating the focus of

attention (Raichle et al., 2001) and are suggested to be associated

with attention deficits (Bonnelle et al., 2011). Precuneus is a major

DM region, whose impairments have been widely reported in

different types of dementia, including reduced precuneus connectivity

(Zang, Jiang, Lu, He, & Tian, 2004; Zhang et al., 2009) and precuneus

atrophy (Karas et al., 2007). Our clustering results show that State

4 has relatively stronger connectivity between precuneus and sensory

regions than the other states. We speculate that less time spent in this

state would influence the information exchange between precuneus

and sensory regions and such disruption in the precuneus–sensory

interactions might ultimately result in attention deficits in dementia

(Kim, Kim, & Lee, 2013).

4.3 | Limitations and future directions

The present study has explored atypical brain connectivity using the

data set scanned with two different head coils. The resulting data set

thus has different temporal resolutions (TR = 0.46 s and TR = 2 s),

which might introduce potential confounding effects on the connec-

tivity features. Therefore, we applied a GLM method for removing the

head coil effect from the sFNC and dFNC estimates, respectively,

before the statistical analysis. For the dFNC analysis, we also did

interpolation on the estimates with the lower temporal resolution to

reduce the head coil difference. However, it is still not clear whether

this head coil difference influences the connectivity, especially the

dFNC, which are estimated using the localized data set (with fewer

observations) and thus are more sensitive to the temporal resolution.

In future studies with more scans having the same temporal resolution

(our ongoing VCID study is now only collecting data set using the

32-channel RF coil), we can validate our current findings using only

subjects with the same TR. Also due to the limited number of subjects,

we did not have enough power to investigate associations between

FNC features and cognitive scores for each group separately. We

investigated associations between dFNC features and cognitive

scores for each patient group using the same GLM analysis and the

results show similar associations between dFNC features and

cognitive scores but with relatively weaker significance (p ≤ .05,

uncorrected or near significance. Results are provided in Appendix

S1). With more scans collected in the future, we can investigate such

associations for each group, respectively, and determine whether such

associations change across patient groups.

Another potential issue is the window size selection in the estima-

tion of dFNC. Although we found highly consistent cluster centroids

(from 16 to 24 TRs) that are similar to or even better than (because

unlike previous studies, most of the subjects in our study can have at

least one window assigned to every centroid) those identified in previ-

ous work (Allen et al., 2014; Du et al., 2018; Rashid et al., 2014), it is

still challenging using such a short window size for the dFNC estima-

tion. Previous dynamic connectivity studies generally employed a win-

dow size within the range of 30–60 s (around 15–30 TRs) for the
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sliding window estimation, which is considered as a reasonable

choice for capturing the real variations in the brain connectivity (Allen

et al., 2014; Hutchison, Womelsdorf, Allen, et al., 2013a; Hutchison,

Womelsdorf, Gati, et al., 2013b; Zalesky, Fornito, Cocchi, Gollo, &

Breakspear, 2014). We argue that such a window size selection is just

due to the limitation of the low temporal resolution of the fMRI data.

Traditional fMRI data sets typically have the TR around 2 s. In that

case, the window size could not be too short (e.g., <10 s), in that there

might not be enough observations to guarantee the estimation

accuracy of dynamic connectivity. Research using high-temporal-

resolution imaging techniques (such as EEG) has identified reoccurring

microstates related to spontaneous thoughts and mental processes in

a much shorter temporal scale (Lehmann, Strik, Henggeler, König, &

Koukkou, 1998). This suggests that the resting-state brain connectiv-

ity could have high-frequency fluctuations that might be overly

smoothed out by using a long window size. The results of this study

show that employing sliding window approaches with short window

size (around 10 s) on high temporal resolution fMRI data can capture

more transient dynamics in functional connectivity and thus identify

more robust connectivity states. Additional experiments are still

needed, such as a comprehensive simulation study and the simulta-

neous EEG-high temporal resolution fMRI studies, for unveiling the

relationship between the dFNC and the real dynamics in the mental

activities. This will help us determine the optimal window size for cap-

turing brain connectivity dynamics.
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