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Abstract

Brain age prediction using machine-learning techniques has recently attracted growing

attention, as it has the potential to serve as a biomarker for characterizing the typical

brain development and neuropsychiatric disorders. Yet one long-standing problem is that

the predicted brain age is overestimated in younger subjects and underestimated in

older. There is a plethora of claims as to the bias origins, both methodologically and in

data itself. With a large neuroanatomical dataset (N = 2,026; 6–89 years of age) from

multiple shared datasets, we show this bias is neither data-dependent nor specific to par-

ticular method including deep neural network. We present an alternative account that

offers a statistical explanation for the bias and describe a simple, yet efficient, method

using general linear model to adjust the bias. We demonstrate the effectiveness of bias

adjustment with a large multi-modal neuroimaging data (N = 804; 8–21 years of age) for

both healthy controls and post-traumatic stress disorders patients obtained from the

Philadelphia Neurodevelopmental Cohort.
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1 | INTRODUCTION

Age-related changes in cognitive ability have been the focus of a

growing field of cognitive neuroscience of aging (Cole & Franke,

2017; Dosenbach et al., 2010). The interest in brain age estimation is

largely motivated by the importance of biological age prediction of

brain, with the potential to identify individuals at risk of experiencing

advanced or delayed brain aging and thus could provide a biomarker

of age-associated health problems.

Brain age can be predicted in individuals based on high-dimensional

neuroimaging data using machine-learning techniques (Al Zoubi et al.,

2018; Chung et al., 2018; Cole et al., 2017; Franke, Luders, May, Wilke, &

Gaser, 2012; Liem et al., 2017). The predicted brain age can differ from

the individual chronological age; the difference between the predicted

age and the chronological age, termed the brain age gap (Franke, Ziegler,

Klöppel, & Gaser, 2010) or predicted age difference (Cole, Leech, &

Sharp, 2015), can be used to examine and capture any disease-related

deviations from natural aging. Brain age has been shown to relate to

cognitive aging and to predict the risk of neurodegenerative diseases

and mortality in older adults (Cole & Franke, 2017). The predicted

brain age based on biological phenotypes, such as anatomical and

functional measures of neuroimaging data, and its deviation from

the chronological age, are being actively developed as potential bio-

markers for characterizing the typical brain development and neuro-

psychiatric disorders (Bonifazi et al., 2018; Dosenbach et al., 2010;

Erus et al., 2015).

In predicting brain age, an age-related bias is usually observed

(Aycheh et al., 2018; Cole et al., 2017; Pardoe & Kuzniecky, 2018).

The key observation is that the predicted age is higher than the actual

chronological age for younger subjects and lower for older subjects.

Such an observation of overestimation in younger subjects and under-

estimation in older subjects is remarkably universal in almost every

study. Yet the origins underlying such prediction bias have been

largely unknown. The question of where the bias comes from has

prompted a number of speculations, largely from the data point of

view. One account, for example, has attributed the bias to the incon-

sistency of noise distribution across the lifespan (Cole et al., 2017).
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A different account is that the bias can be due to the sample size

imbalance across age groups (Aycheh et al., 2018). Still, others

explained that the bias is due to the characteristics of the sample data

used to train the models, for example, heterogeneous nature of the

data from multiple study sites (Pardoe & Kuzniecky, 2018). From the

methodological viewpoint, it is also possible that the bias could be

dependent on the particular methods used.

In this work, we set out to investigate the possible reasons under-

lying the bias by directly examining these different accounts using a

large neuroanatomical data of 2,026 healthy subjects 6 to 89 years of

age from multiple public datasets (ABIDE, CoRR, DLBS, and NKI

Rockland), and we found all of these accounts untenable. To check if

the bias is specific to particular methods, we further tested four

widely-used machine-learning methods including ridge regression,

support vector regression (Smola & Schölkopf, 2004), Gaussian pro-

cesses regression (Rasmussen & Williams, 2005) and deep neural

network (LeCun, Bengio, & Hinton, 2015); they all displayed the sys-

tematic bias in brain age prediction. Given the independence of the

bias on both data and methods, we found out that the deeply

entrenched concept of “regression towards (or to) the mean (RTM)” in

statistics (Gardner & Heady, 1973; James, 1973; Davis, 1976; see

Stigler (1997) for an historical account of RTM) offers a plausible

explanation of the bias. We thereafter described a simple, yet effi-

cient, method based on general linear model to adjust the bias. We

demonstrated the effectiveness of bias adjustment with a large

multi-modal brain imaging data obtained from the Philadelphia

Neurodevelopmental Cohort (PNC, Satterthwaite et al., 2014), con-

sisting of T1 weighted MRI, diffusion tensor imaging (DTI) and

resting-state fMRI for brain age prediction. In the PNC application, a

regularized ridge regression model was built using the cross-

validation procedure in 734 health controls, then bias adjusted

before it was successfully applied to independent external dataset of

post-traumatic stress disorders patient group.

2 | MATERIALS AND METHODS

2.1 | Dataset used

Healthy control neuroanatomical data used in this article to investigate

the bias in brain age prediction were sourced from multiple shared brain

imaging datasets, including the consortium for reliability and reproducibil-

ity study (CoRR, Zuo et al., 2014), the Dallas as lifespan brain study

(DLBS, Rodrigue et al., 2012), the enhanced Nathan Kline Institute

rockland sample (Nooner et al., 2012) and the autism brain imaging data

exchanges studies (ABIDE, Di Martino et al., 2014). We selected total

2,026 healthy subjects aged 6 to 89 years pooled from ABIDE (566 sub-

jects), baseline CoRR (778 subjects), DLBS (315 subjects), and NKI

Rockland sample (367 subjects). The age distribution for each dataset is

shown in Figure 1. Details of these datasets and image acquisition

parameters can be found at http://fcon_1000.projects.nitrc.org.

For the image processing, we followed the processing steps

described in Pardoe and Kuzniecky (2018). Briefly, we used the

Freesurfer v5.3 default processing stream (Fischl & Dale, 2000) to

analyze structural MRI scans. By following a similar approach to that

presented in (Liem et al., 2017), cortical thickness surface maps were

co-registered to the “fsaverage4” template, which has 2,562 vertices

per hemisphere (down-sampled from 163,842 to 2,562 vertices to

reduce the dimensionality), yielding a total of 5,124 features that were

used to train the age prediction model. We used Freesurfer surfaces

as input to the penalized ridge regression models, and an estimate of

the age of the subject (in years) as output. The brain age gap was then

calculated as the difference between predicted age and chronological

age. We randomly selected 80% of data (1,621 subjects) for training,

and the remaining 20% data (405 subjects) for testing to evaluate

model performance.

The neuroimaging data used for demonstration of the bias adjust-

ment were sourced from the PNC (Satterthwaite et al., 2014). We

selected 804 subjects with multi-modal brain imaging data including T1

weighted MRI, diffusion tensor imaging (DTI) and resting-state fMRI

(rsfMRI), among which 70 were post-traumatic stress disorders patients

(PTSD group; age range, 9–21 years; 50 females), and 734 were healthy

control without PTSD (age range, 8–21 years; 392 females).

T1-weighted images were preprocessed with CAT12.5 toolbox in

SPM12. The steps include rough bias correction, coarse affine regis-

tration, global intensity correction, and segmentation. Then DARTEL

registration were run with MNI 152 template. The gray matter volume

(GMV) were averaged based on the neuromophormetrics atlas. DTI

images were preprocessed with a pipeline tool, PANDA (Cui, Zhong,

Xu, He, & Gong, 2013) (http://www.nitrc.org/projects/panda/) with

the following steps: skull removal by brain extraction tool (BET), cor-

rection of eddy-current distortion with Eddycorrect, and the diffusion

tensor models built by DTIFIT. The fractional anisotropy (FA) and

mean diffusivity (MD) values were then extracted based on the “JHU

white-matter tractography atlas” from FSL (http://www.fmrib.ox.ac.

uk/fsl/data/atlas-descriptions.html#wm). We chose the 25%-threshold

sub-template, which contains 20 major tracts and 50 major labels. For

the resting-state fMRI analysis, the data were processed with soft-

ware Data Processing Assistant for Resting-State fMRI (DPARSF)

(Yan & Zang, 2010). After obtaining the metrics the regional homoge-

neity (ReHo) and the amplitude of low-frequency fluctuation (ALFF),

atlas-based features were extracted based on the BN246 atlas (Fan

et al., 2016). Together, there are total 775 features extracted: the

GMV extracted from T1 image provides 143 features, the FA and MD

extracted from the DTI each contribute 140 features, and the ReHo

and ALFF extracted from the rsfMRI data each provide 246 features.

Details of subject recruitment and study procedures are described in

the previous study (Gur et al., 2010).

2.2 | Brain age prediction models

To check whether the bias could be method-dependent, we tested

four popular machine-learning methods including penalized ridge

regression, support vector regression (Smola & Schölkopf, 2004),

Gaussian processes regression (Rasmussen & Williams, 2005) and

deep neural network (LeCun et al., 2015). For each prediction model,

we used Freesurfer surfaces as input, and an estimate of the age of
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the subject (in years) as output. The brain age gap was then computed

as the difference between predicted age and chronological age. Eighty

percentage of data were randomly selected for training, and the

remaining 20% data for testing to evaluate model performance.

For individual age prediction model, the model specifics are provided

as follows. For penalized ridge regression, L2-norm regularization was

employed to improve the conditioning of the problem and reduce the

variance of the estimates, where model parameters were determined by

leave-one-out cross-validation. For support vector regression, we used a

linear kernel function, and the hyper-parameters (penalty parameter and

the margin of tolerance) were tuned using grid search (GridSearchCV in

Scikit-learn Python package; Pedregosa et al., 2011) for the best cross-

validation score. For Gaussian processes regression, we used a radial

basis kernel and included a WhiteKernel component to account for the

global noise level from the data, and the number of restarts was set to

10 for finding the kernel's parameters (the length scale and its bound)

which maximized the log-marginal likelihood. For deep neural network,

the network is fully connected and has four hidden layers with 50 neu-

rons each and hyperbolic tangent activation functions. A dropout rate

of 0.5 is used to prevent neural networks from overfitting. The first

layer corresponds to the inputs to the neural network, which have

5,124 features corresponding to the Freesurfer surfaces described

above. To build and train the neural networks, we use the Python

toolkit Keras (https://keras.io), which provides a high-level application

programming interface to access the TensorFlow (Abadi et al., 2016)

(https://www.tensorflow.org) deep-learning libraries. We train the net-

works using Keras, an Adam stochastic optimization method

(Diederik & Ba, 2014), and a mean squared error cost function. The

Python notebooks used in the article and for training and testing the

age prediction models including penalized ridge regression, support

vector regression, Gaussian processes regression and deep neural net-

work described in this article are provided at https://github.com/

hualouliang/BrainAgePrediction.

2.3 | How to deal with the bias?

It is evident in the Results that the bias is neither data-dependent nor

specific to particular methods used. Then, the question is what causes

the bias and how to deal with it. Addressing these questions is funda-

mental to brain age prediction. It turned out that the bias observed

can be explained by “regression towards [or to] the mean (RTM),” an

elementary concept that has long been known in statistics (Davis,

1976; Gardner & Heady, 1973; James, 1973). RTM is a statistical phe-

nomenon that can make natural variation in repeated data look like

real change. It happens when unusually large or small measurements

tend to be followed by measurements that are closer to the average

(Barnett, van der Pols, & Dobson, 2005). Despite its simplicity, it has

been consistently misunderstood and it has repeatedly been the

source of major errors in analysis. It occurs because values are

observed with random error. The practical problem of RTM is the

need to distinguish a real change from this expected change due to

the random error. The effect of RTM can be reduced at the design

and analysis stages of a study (Barnett et al., 2005; Yudkin & Stratton,

1996). These methods usually require multiple measurements, which

is not always available to the problem of brain age prediction.

Here we described a simple, practical approach based on general lin-

ear model to adjust the bias (Twisk, 2003). In this method, we can quan-

tify the bias as a function of chronological age for each cross-validation

iteration using a linear regression model, which is shown as follows:

Predictedage = Intercept + α× chronological age + β× sex + error

The fitted parameters are then applied to adjust for the bias in the

holdout sample. We note that we have added sex variable in the

regression model to account for its effect on the predicted age as

there is evidence that sex differences reflected in the co-occurrence

of PTSD symptoms (Cao et al., 2019). Other terms may also be added

F IGURE 1 The age distribution
for individual datasets of the
ABIDE of 566 subjects, CoRR of
778 subjects, DLBS of 315 subjects
and NKI Rockland of 367 subjects
[Color figure can be viewed at
wileyonlinelibrary.com]
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to the above equation to explain for confounders or other variables of

interest. A seemingly similar approach (Le et al., 2018) has recently been

proposed, but it regressed age on brain age gap estimation, whereas ours

is on the predicted age. We also note that the above equation is similar

to the analysis of covariance (ANCOVA) formula (Barnett et al., 2005)

yet without the distinction of treatment or placebo group. In fact,

ANCOVA is just a special case of a general linear model.

3 | RESULTS

3.1 | What is the bias in brain-age estimation?

The bias effect is generally observed in the brain age prediction. To

illustrate the bias effect of the overestimation in younger subjects and

underestimation in older subjects, we directly compare chronological

age with predicted age indexed from the least value of actual age to

the greatest value, as shown in Figure 2 (Left), whereby the predicted

age (red) is higher than the actual chronological age (black) for youn-

ger subjects and lower for older subjects. For example, at the lower

end of age, the index 1 of the chronological age is 8 years, whereas

the predicted age is 21 years. Similarly, at the upper end of age, the

index 200 of the chronological age is 73 years, whereas the predicted

age is 58 years. This age mismatch at two ends of the age range per-

haps can be best seen by plotting the brain age gap (the difference

between predicted age and chronological age) against the chronologi-

cal age, as shown in Figure 2 (Right). The observation of over-

estimation in younger subjects and underestimation in older subjects

is universal in brain-age estimation.

3.2 | Is the bias specific to the data?

In this section, we directly examined existing accounts using a large neu-

roanatomical data of 2,026 healthy subjects aged 6 to 89 years from

multiple public datasets (ABIDE, CoRR, DLBS, and NKI Rockland). We

used penalized regression with L2 norms (ridge regression), a regularized

linear approach, to avoid overfitting. The model parameters were deter-

mined by leave-one-out cross-validation. The regularization improves the

conditioning of the problem and reduces the variance of the estimates.

In what follows, we specifically tested whether the bias is due to

the data.

3.3 | Is the bias due to the inconsistency of noise
distribution across the lifespan?

As our first test, we checked whether the bias is due to inconsistent noise

distribution across the lifespan. If the distribution of noise were not con-

sistent across the lifespan, the bias would be specific to a certain age

range. As such, we divided the whole lifespan of 6 to 89 years into three

age ranges (6–30, 30–60, and 60 years—up) to see if the bias still exists.

The results are shown in Figure 3, where the brain age gaps for different

age ranges are plotted as a function of the chronological age. The correla-

tion between brain-predicted age and chronological age and the mean

absolute error (MAE) for different age periods are as follows: 6–30 years

(r = .85, MAE = 2.53 years), 30–60 years (r = .59, MAE = 6.82 years),

and 60 years and up (r = .66, MAE = 4.26 years), whereas the correlation

between the brain-age gap and chronological age is, respectively, −.49,

−.88, and − .76. It is evident that the bias in the upper and lower range is

observed for all three age periods. We also tested with a various range of

the age, and this bias seems to be rather universal.

Clearly, the bias is not due to the specifics of age itself; it is possi-

ble that the bias is merely the properties of any range of values with

measurement related noise. To test this possibility, we checked

whether the extent of the age range influences the level of bias. We

tested three age ranges of different length: 6–30, 6–60, and 6 years—

up. The results are shown in Figure 4, where the bias is also evident

across all three age ranges: 6–30 years (r = .85, MAE = 2.53 years),

6–60 years (r = .83, MAE = 5.34 years), and 6 years and up (r = .91,

MAE = 6.77 years). The correlation between the brain-age gap and

F IGURE 2 Schematic of the bias in the brain age prediction to show overestimation in younger subjects and underestimation in older
subjects. Left: The chronological age (black) compared with the predicted age (red) obtained by penalized ridge regression. Right: Brain age gap
(the difference between predicted age and chronological age) plotted as a function of the chronological age, with the best fit of line shown in red.
The shaded area along the regression line indicates the 95% prediction interval [Color figure can be viewed at wileyonlinelibrary.com]
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chronological age for each age range is, respectively, −0.49, −0.60,

and − 0.52. Intriguingly, we did not observe any range-specific influ-

ence on the level of bias. Taken together, we conclude that the bias is

not due to particular age, nor is it specific to a certain age range, thus

cannot be accounted by the inconsistency of noise distribution.

3.4 | Is the bias due to the sample size imbalance
across age groups?

In this test, we checked if the bias is due to the sample size imbalance

across age groups. The original full data sample of 2,026 subjects

showed a skewed distribution, with substantial more samples distrib-

uted below 40 years of age (especially 10–30 years) and relatively less

samples above 40 years of age (blue curve in Figure 5, Left). Hence,

the imbalance in sample size is evident across age groups. To obtain

the balanced sample size, we randomly resampled the full dataset in

5-year age intervals in groups with age ranges that were overrepre-

sented in the complete pooled dataset (i.e., subject aged < 75 years).

The resampled data of 782 subjects is of balanced sample size across

age range, as shown in orange curve in Figure 5 (Left). We can see the

balanced dataset shows approximately uniform distribution across the

entire age range compared to the full data sample. Both the imbal-

anced full data sample and the balanced data sample were each used

to train and test the age prediction models. Their brain age gaps are

shown in Figure 5 (Right). We can see from Figure 5 that the bias still

persists in both the imbalanced full data sample (r = .91, MAE = 6.77

years) and the balanced data sample (r = .91, MAE = 8.02 years),

whereas the correlation between the brain-age gap and chronological

age for the imbalanced full data and the balanced data sample is both

−0.52. These results indicate that the bias is not due to the sample

size imbalance across age groups.

3.5 | Is the bias due to heterogeneity of data from
multiple sites?

As our final test, we checked if the bias is due to heterogeneous

data from multiple study sites. In our study, the full MRI dataset

consisted of 2,026 healthy controls pooled from multiple study sites

of the ABIDE (566 subjects), CoRR (778 subjects), DLBS (315 sub-

jects), and NKI Rockland (367 subjects) datasets. The heterogeneity

of the multiple sources of data may have contributed to the

observed bias. Hence, we are in a unique opportunity to test het-

erogeneous nature of data by fitting the age prediction models sep-

arately for individual data sites. The results are shown Figure 6,

where we showed the changes of brain-age gap as a function of the

chronological age. The correlation between brain-predicted age and

chronological age and the MAE for different sites are ABIDE

(r = .80, MAE = 3.51 years), CoRR (r = .89, MAE = 6.96 years),

DLBS (r = .91, MAE = 6.81 years) and NKI Rockland (r = .89, MAE =

7.64 years). The correlation between the brain-age gap and

(a) (b) (c)

F IGURE 3 Brain age gap (the difference between predicted age and chronological age) as a function of the chronological age for different age
ranges in 6–30 years (1,258 subjects, a), 30–60 years (457 subjects, b) and 60 years and up (311 subjects, c). The best fit of line of regression
(black) is shown in each plot together with the 95% prediction interval (the shaded area)

(a) (b) (c)

F IGURE 4 Brain age gap (the difference between predicted age and chronological age) as a function of the chronological age for the age
ranges of different length in 6–30 years (1,258 subjects, a), 6–60 years (1,715 subjects, b) and 6 years and up (2,026 subjects, c). The best fit of
line of regression (black) is shown in each plot together with the 95% prediction interval (the shaded area)
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chronological age for ABIDE, CoRR, DLBS and NKI Rockland is, respec-

tively, −.62, −.50, −.57, and −.59. From the results of Figure 6, we can

conclude that the bias is not due to heterogeneity of the multiple

sources of data.

Taken together, this set of tests provides critical examination of

various accounts about the bias in brain age prediction, we showed

that the bias is not specific to the data, and the existing accounts are

no longer tenable.

F IGURE 5 The effect of age distribution on the bias. Left: The age distribution with the full sample 2,026 subjects (in blue) and with the
sample size of 782 subjects that approximately follows uniform distribution (in red). Right: The corresponding brain age gap as a function of the
chronological age for different age distributions. The shaded area along the regression line indicates the 95% prediction interval [Color figure can

be viewed at wileyonlinelibrary.com]

(a) (b)

(c) (d)

F IGURE 6 The brain age gap as a function of the chronological age for different study sites of the ABIDE of 566 subjects (a), CoRR of
778 subjects (b), DLBS of 315 subjects (c) and NKI Rockland of 367 subjects (d) datasets. The shaded area along the regression line indicates the
95% prediction interval
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3.6 | Is the bias specific to the methods?

Given that the bias is not specific to the data, it is natural to ask

whether the bias could be dependent on the method used. As such,

we tested four popular machine-learning methods including penalized

ridge regression (Ridge), support vector regression (SVR), Gaussian

processes regression (GPR) and deep neural network (DNN). For each

prediction model, we used Freesurfer surfaces as input, and an esti-

mate of the age of the subject (in years) as output. The brain age gap

was then computed as the difference between predicted age and

chronological age. Eighty percentage of data (1,621 subjects) were

randomly selected for training, and the remaining 20% data (405 sub-

jects) for testing to evaluate model performance.

The results are shown in Figure 7, where the brain age gap for

each prediction model is plotted against the chronological age. The

correlation between brain-predicted age and chronological age and

the MAE for different methods are Ridge (r = .91, MAE = 6.77 years),

GPR (r = .93, MAE = 5.96 years), SVR (r = .89, MAE = 7.43 years) and

DNN (r = .93, MAE = 5.38 years). The correlation between the brain-

age gap and chronological age for Ridge, GPR, SVR and DNN

Rockland is, respectively, −.52, −.46, −.39, and −.25. It can be seen

from Figure 7 that all the models showed the systematic bias in brain

age prediction, though the deep neural network performed best

among all the models, which is consistent with our recent observation

(Niu, Liang, & Zhang, 2018). These results further indicate that the

bias is rather universal and is not specific to particular methods used.

3.7 | Example analyses

To demonstrate the usage of our method for bias adjustment, we ana-

lyzed multi-modal brain imaging data obtained from the PNC

(Satterthwaite et al., 2014), consisting of T1 weighted MRI, DTI, and

resting state fMRI (rsFMRI) for brain age prediction. There are 804 sub-

jects analyzed, which include 70 post-traumatic stress disorders patients

(PTSD group, age range, 9–21 years; 50 females), and 734 healthy con-

trol without PTSD (age range, 8–21 years; 392 females). We trained the

age prediction models (regularized ridge regression) with healthy con-

trols data, with model parameters determined by cross-validation, and

then tested with PTSD group.

The prediction bias of brain age for healthy controls is evident

when plotting the brain age gap as a function of the individual chrono-

logical age, as shown in Figure 8 (Left), where the overestimations in

younger subjects and underestimations in older subjects are clearly

observed (r = .91, MAE = 1.15 years), with the brain-age gap by chro-

nological age correlation of −.59. To adjust the bias, we fitted the lin-

ear regression model of the predicted age in relation to the

chronological age and sex. The fitted parameters and their 95% confi-

dence intervals, as listed in Table 1, were used to adjust bias in the

holdout sample. We can see that the chronological age is highly

F IGURE 7 The brain age gap as a function of the chronological
age using four different machine-learning methods: Penalized ridge
regression (ridge), support vector regression (SVR), Gaussian
processes regression (GPR) and deep neural network (DNN). All the
models showed overestimation in younger subjects and
underestimation in older subjects. The shaded area along the
regression line indicates the 95% prediction interval [Color figure can
be viewed at wileyonlinelibrary.com]

F IGURE 8 The brain age gap as a function of the chronological age before (black) and after (blue) the bias adjustment for healthy control (left)
and post-traumatic stress disorders (PTSD) (right). For healthy control, the bias after adjustment is uniform and centered around zero as shown in
the brain age gap by chronological age plot (blue, left), whereas the discrepancy between chronological age and predicted brain age is still seen for
the PTSD patient's data (right). The shaded area along the regression line indicates the 95% prediction interval [Color figure can be viewed at
wileyonlinelibrary.com]
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significant (p < .001) and sex variable is also significant at p = .023.

With the bias adjustment of the regression, the perceived bias is

greatly reduced (r = .91, MAE = 0.93 years; see the regression line in

blue of Figure 8 [Left]) and the brain-age gap by chronological age cor-

relation is −.41. These results are based on internal validation as the

models built using the cross-validation procedure with healthy con-

trols, indicating the effectiveness of our method for bias adjustment.

As an external validation, the model after bias adjustment was

applied to independent external PTSD data. The results are shown in

Figure 8 (Right), where the discrepancy between chronological age and

predicted brain age is still observed. We found that the age prediction

models trained with healthy controls can explain 56% of the chronologi-

cal age variance (p < .001) with a mean absolute error (MAE) of

1.57 years and the brain-age gap by chronological age correlation of

−.68. With the bias correction, the MAE became 1.32 years and the

brain-age gap by chronological age correlation of −.28. Importantly,

before the bias adjustment there were no significant differences of brain

age gap between healthy controls and PTSD (t = 0.97; p = .33), whereas

after the bias adjustment the brain age gap differed significantly across

groups (t = 3.66; p = .0002). Therefore, our example demonstrates the

impact of bias correction on brain-age prediction.

4 | DISCUSSION

Brain age prediction based on neuroimaging data can help character-

ize both the typical brain development and neuropsychiatric disorders.

The deviation of the predicted age from the chronological age pro-

vides important information about brain health, it thus could serve as

a biomarker of age-associated health problems.

The age-related bias is usually observed such that the predicted age

is higher than the actual chronological age for younger subjects and

lower for older subjects. It is largely unknown about what cause the

overestimations in younger subjects and underestimations in older sub-

jects. Existing accounts have mainly attributed the bias to inconsistency

of noise distribution across the lifespan, sample size imbalance across

age groups, or heterogeneity of data from multiple study sites. To under-

stand the nature of this bias phenomenon, we have systematically exam-

ined these accounts using a large neuroanatomical data of 2,026 healthy

subjects 6 to 89 years of age from multiple shared datasets (ABIDE,

CoRR, DLBS, and NKI Rockland), and found none of these accounts justi-

fiable. To further check if the bias might be specific to particular

methods, we tested four popular machine-learning techniques including

ridge regression, support vector regression (Smola & Schölkopf, 2004),

Gaussian processes regression (Rasmussen & Williams, 2005) and deep

neural network (LeCun et al., 2015); they all showed the systematic bias

in brain age prediction. Our results indicate that the bias is rather univer-

sal, regardless of the data and particular method used.

Given the independence of the bias on the data and the methods,

we presented an alternative account that offers a statistical explanation

for the bias using RTM, a simple yet subtle concept that has long been

known in statistics (Davis, 1976; Gardner & Heady, 1973; James, 1973).

We gave a simple, practical method based on general linear model to cor-

rect the bias and demonstrated the effectiveness of bias correction with

a large multi-modal brain imaging data obtained from the Philadelphia

Neurodevelopmental Cohort (Satterthwaite et al., 2014).

Among the four machine-learning methods we examined, the

deep neural network (DNN) we developed is fully connected with the

first layer corresponding to the 5,124 inputs to the neural network,

which are the number of vertices in the Freesurfer surfaces. Our DNN

has four hidden layers with 50 neurons each and hyperbolic tangent

activation functions. The hyper-parameters are optimized using cross-

validation. Though the network structure (the number of hidden

layers and the number of neurons in each layer) was set heuristically,

we found that the DNN was very robust to these parameter variations

and performed remarkably well among the methods tested. In order

to directly compare the DNN with other machine-learning methods,

we have used the same reduced set of 5,124 features as inputs.

Considering the DNN is an emerging deep learning technique and is

able to learn from the raw data (Cole et al., 2017) with minimal

preprocessing, we expect the performance of DNN could be further

boosted using raw data (i.e., 163,842 vertices before down-sampling).

Regression toward the mean (RTM) is an elementary concept in

statistics. Despite its simplicity, it has been consistently misunder-

stood and it has repeatedly been the source of major errors in analy-

sis. RTM is not restricted to biological variables such as brain age; it

occurs in any variable that is subject to random error. Therefore, the

practical problem of RTM is to distinguish a real change from this

expected change due to the random error. There are several methods

available to reduce the effect of RTM at either the design or the anal-

ysis stages of a study (Barnett et al., 2005; Yudkin & Stratton, 1996).

These methods include randomization and matching or stratification

of the confounder that can be used to address the confounding effect.

For example, consider a variable Z that represents two groups (ill

vs. healthy) and select these two groups of individuals with similar

chronological age, so Z is not associated with chronological age

(Franke et al., 2010). As such, we have provided a simple linear regres-

sion model approach to adjust the bias induced by RTM.

We note that it is important to rule out RTM as the genuine cause

of an observed brain age change before any other explanation is

sought. RTM is a ubiquitous phenomenon in the regression analysis

that occurs whenever two measures that are imperfectly correlated.

The brain-age estimation is, in essence, a regression problem, which is

inevitably subject to the RTM effect. As such, we believe that RTM

naturally provides a more parsimonious explanation than other

accounts for the bias in brain-age estimation. Indeed, we found that

none of existing accounts (inconsistent noise distribution across the

TABLE 1 The estimated model coefficients, their 95% confidence
intervals and the corresponding p-values for health control subjects

Estimated
coefficients

95% confidence
interval p-value

Intercept 3.131 [2.508 3.754] <.001

Chronological

age

0.763 [0.718 0.808] <.001

Sex 0.967 [0.135 1.799] .023
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lifespan, imbalanced sample size across age groups, or heterogeneous

data from multiple sites) provides plausible explanation for the bias.

However, there are cases where the use of RTM for bias correction is

limited. When the individuals being examined are in a restricted age

range or different age ranges between the training and testing data,

there is not likely to be correct for using the bias correction method.

Therefore, when using the RTM for bias correction of cross-sectional

data, it is important to keep in mind that the age distribution of train-

ing data (or control group) used for deriving the regression model is as

close as that of testing data (or patient group).

As we demonstrated in the PNC application, with the bias adjust-

ment, the model performance statistics are significantly improved and

the bias is uniform and centered around zero as shown in the brain

age gap by chronological age plot (Figure 6). We confirmed that the

bias adjustment model generalizes to the independent samples of

PTSD group.

All in all, we have clarified that the systematic bias observed in

brain age prediction is not specific to both the data and the method.

We have highlighted that the RTM can be used to explain the bias

seen in brain age prediction. We further provided a simple solution to

adjust the bias caused by RTM and demonstrated its applicability of

the brain age prediction on a large neuroimaging data.
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