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Abstract
Investigation of the brain connectome using functional magnetic resonance imaging (fMRI) and

measures derived from graph theory analysis has emerged as a new approach to study brain

development, cognitive function, and neurophysiological disorders. Here we use graph theory

analysis to examine the influence of age, sex, and neurocognitive measures on developmental

changes to the global and regional topology of functional brain networks derived from fMRI data

recorded in 189 healthy subjects from the age of 0–18 years during rest. We observed that

Global Efficiency and Rich-Club coefficient increased with age and Local Efficiency and Small-

Worldness decreased with age, while Modularity at the global level showed an inverted

U-shaped trajectory during development. Marginally significant differences were observed in Local

Efficiency, Small-Worldness, and Modularity at a global level between boys and girls throughout

development. We also examine the effects of neurocognitive measures in boys and girls globally

and locally. Our results provide new insight to understand brain maturation of functional brain

connectome and its relation to cognitive development from birth through adolescence.
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1 | INTRODUCTION

The architecture of human brain functional networks, now known as

the human connectome, has recently been studied explosively using

resting state functional MRI (r-fMRI). Spontaneous fluctuations in the

brain can be measured by blood oxygen level dependent (BOLD) sig-

nals using functional magnetic resonance imaging (fMRI) (Mateo,

Knutsen, Tsai, Shih, & Kleinfeld, 2017). Functional connectivity in this

data has been defined as inter-regional temporal correlations among

spontaneous BOLD fluctuations in different regions of the brain at

rest. Graph theory has emerged as a new approach to investigate the

complex functional network topology of the human brain connectome

(Robinov & Sporns, 2010). Application of graph theory to functional

brain networks has revealed important topological properties that

influence human behavior including: efficient network architecture,

Small-Worldness, which reflects an optimal balance between segrega-

tion and integration in information processing between regions

(Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; Salvador

et al., 2005), modular structure, central communication hubs, and

Rich-Club organization which is formed by the densely interconnected

hubs in healthy adults (Cao et al., 2014; Van den Heuvel, Kahn, Goñi, &

Sporns, 2012; Van den Heuvel & Sporns, 2011).

Previous studies using graph theory approaches to analyze fMRI

data have demonstrated age-related changes in the brain functional

connectome. Some of the earliest studies examining the efficiency of

functional networks in younger and older adults reported that older

adults showed decreased global and Local Efficiency (Achard &

Bullmore, 2007) while network Modularity is not significantly changed

from younger adults to older adults (Meunier, Achard, Morcom, &

Bullmore, 2009). More recently topological properties of the func-

tional connectome have been found to change significantly during

child development (Bullmore & Sporns, 2009, 2012; Di Martino et al.,

2014), raising the question of how they emerge and change from birth

to adolescence.

Some recent studies have shown that sex and cognitive functions

correlate with specific features of functional brain networks during

development. Examining sex effects on intelligence and functional

connectivity in language networks, boys with higher IQ exhibited

more modular functional architecture with age, while girls with higher

IQ exhibited a more connected functional architecture with age

(Schmithorst & Holland, 2006). Similarly, girls developed a greater
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interhemispheric connectivity for intelligence with age, while boys

developed a greater connectivity in the left inferior frontal gyrus

(Schmithorst & Holland, 2007). There is also evidence that significant

sex differences exist in the network properties of structural and func-

tional brain networks in adults (Schmithorst & Holland, 2007; Smith

et al., 2014). Based on these earlier studies on the interaction of sex

and developmental on trajectories of brain networks, we sought to

explore the influence of age, sex, and cognitive ability on more spe-

cific topological measures of developing brain networks from birth

through adolescence, using graph theory to analyze r-fMRI data from

189 healthy children aged from 0 to 18 years.

Following age appropriate normalization and parcellation of the

brain imaging data into 200 regions of interest, we estimated func-

tional connectivity from the temporal correlations between the fMRI

time series from pairs of the 200 regions. The resulting correlation

matrix from each individual was used to construct a binary network

reflecting the topological organization of a functional brain network.

Specifically, we hypothesized that sex and neurocognitive measures

would influence topological properties of the functional brain connec-

tome at both the global and regional levels. Using graph theory, we

tested whole brain functional network topology for differences in

global network properties between boys and girls and cognitive abil-

ity. Hypothesizing a significant relationship between specific brain

networks and developing cognitive and language skills, we further

explored the influence of IQ and language measures on specific brain

networks where significant relationships were detected in network

topology.

2 | MATERIALS AND METHODS

2.1 | Participants

One hundred and eighty-nine (n = 189) participants were selected

from Cincinnati MR Imaging of Neurodevelopment (C-MIND) (http://

research.cchmc.org/c-mind) database of functional neuroimaging and

behavioral data from typically developing children. The C-MIND data-

base only contains data from normally developing children with strict

exclusion of chronic illness, gestation less than 37 or greater than

42 weeks, birth weight less than the 10th percentile, history of head

trauma with a loss of consciousness, special education, orthodontic

braces or other metallic implants and standard MRI compatibility

contraindications. The study was approved by the Institutional Review

Board at Cincinnati Children's Hospital Medical Center; informed con-

sent and assent (where appropriate) were obtained from a parent/

guardian and the participant. In participants of age 5 years and under,

additional preparation time was allowed at each session to acclimate

the child to the scanner environment. During this time, study person-

nel used a step-by-step approach to introduce the equipment, includ-

ing the headphones and microphone for in-scanner communication.

Details of methodology for scanning young children are available

(Vannest et al., 2014). Participants between the ages 0 and 2 years of

age were scanned while asleep. Participants between the ages 3 and

18 years of age were scanned while awake. All participants were

native English speakers with demographics reflecting the regional

racial and ethnic distribution (64% Caucasian, 23% African-American,

9% Multi-ethnic, 1% Asian, Pacific Islander, 2% unknown) and a

median household income of $62,500 (see Figure 1 for detailed

demographic information).

2.2 | MRI acquisition

One hundred and fifty-six (n = 156) subjects were imaged on a Philips

3 T Achieva system and a 32-channel head coil. About 33 subjects

were imaged on a Siemens Magnetom Trio-Tim scanner. EPI–fMRI

scan parameters between the scanners were homogenized to mini-

mize systematic variation in the data from the two machines. TR/TE =

2,000/35 ms, FOV = 24 cm × 24 cm, matrix = 80 × 80, and slice

thickness = 4 mm, yielding spatial resolution of 3 × 3 × 4 mm. Thirty-

six slices were acquired, covering the entire brain. One hundred and

fifty whole-brain volumes were acquired. Prior to acquisition of the

functional image data, the scanner was programmed to execute a

“dummy scan” interval consisting of 2 TR periods, for which the scans

were not recorded. In addition, the first acquired image was also dis-

carded during post-processing to insure image contrast at relaxation

equilibrium. Total scan time for resting state acquisition plus dummy

scans was 5 min 8 s.

Techniques detailed elsewhere (Byars et al., 2002, Vannest et al.,

2014) were used to acclimatize the participants to the MRI procedure

and render them comfortable inside the scanner. Soft head restraints

were used to minimize head motion. In addition to the fMRI scans,

whole-brain T1 weighted inversion recovery fast gradient echo scans

were acquired for anatomical co-registration. All imaging was per-

formed on 3 T MRI scanners. Comparison of resting state fMRI data

FIGURE 1 Graphs showing racial, ethnic, and income distribution of participants [Color figure can be viewed at wileyonlinelibrary.com]
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between scanners was performed to insure compatibility of the data

sets. Statistical comparison of results from connectivity network anal-

ysis with and without the Siemens data included did not change our

results significantly.

2.3 | Data analysis

2.3.1 | Preprocessing

For the resting state functional connectivity analysis, all images were

preprocessed in SPM8. The resting state functional image series was

corrected for head motion by realigning all images to the mean of all

functional volumes. The data of nine subjects were discarded from

further analysis due to head motion because they had a higher mean

frame-wise displacement (mFD) than group average (Yan et al., 2013).

Among the remaining 189 subjects, the head motion parameters

showed no significant correlation with age.

The head-motion-corrected functional data were processed as

follows. The mean functional image was co-registered to a correspond-

ing T1-weighted high-resolution image. To optimize segmentation and

normalization across the age span of all subjects, we created age spe-

cific templates for five age groups: 0–2, 3–5, 6–8, 9–12, and

13–18 years. After motion correction, structural images were brain-

extracted and tissue-type segmentation was implemented. The resulting

images were then aligned to MNI space using nonlinear registration and

then averaged to create an age-specific template in SPM8. T1-weighted

images were re-segmented into gray matter, white matter, and cerebro-

spinal fluid (CSF) using the age specific probability maps and then all

functional images were normalized to these templates and resampled to

voxel size 2 × 2 × 2 mm. Subsequently, normalized functional images

were smoothed with 8 mm FWHM kernel.

Spatial smoothing of fMRI data can increase the signal to noise

ratio (Friston et al.,1995; Maas & Renshaw, 1999; Worsley & Friston,

1995) and reduce resampling related artifacts after registration

(Maisog & Chmielowska, 1998). Previous studies suggest that the effec-

tive FWHM should be 2–3 times the voxel size (Pajula & Tohka, 2014;

Worsley & Friston, 1995). In our study, the data from all subjects were

smoothed with 8 mm FWHM kernel. To test the effect of spatial

smoothing on smaller, neonatal brains, we reprocessed data from all

neonates up to the age of 1 year using a smaller smoothing kernel of

6 mm. We found that the magnitude of spatial smoothing did not affect

the functional brain networks measures computed in this study. Conse-

quently, because the all data is acquired with the same resolution we

elected to use a consistent smoothing kernel of 8 mm for all subjects.

2.3.2 | Functional brain networks construction

A major consideration in graph theory approaches to functional brain

imaging data is how to define the nodes of the network. Many previous

studies have used anatomical atlases as nodes (Merhar et al., 2016; Wu

et al., 2013). However, anatomical atlases often have poor functional

homogeneity and do not present functional connectivity patterns accu-

rately (Craddock, James, Holtzheimer, Hu, & Mayberg, 2012). A whole

brain parcellation method was recently introduced based on a data-

driven approach to generate functionally homogeneous regions of inter-

est (ROIs) by spatially parcellating whole-brain resting state fMRI data

into regions of maximal coherence in the time course of voxels within

each ROI (Craddock et al., 2012). This method can be used to create a

parcellation atlas of any desired number of ROIs, though it has been

shown that 150–200 ROIs provides a good compromise between func-

tional homogeneity of the regions, interpretability of connectivity

results and computational data reduction. We implemented this method

for parcellation of normalized whole brain data. The pyClusterROI soft-

ware (http://ccraddock.github.io/cluster_roi/) was used to parcellate

whole brain functional data of each group into 200 regions.

2.3.3 | ROI-to-ROI functional connectivity

With 200 ROIs defined in the normalized and pre-processed resting

state brain imaging data from all subjects, we computed functional con-

nectivity using the Conn functional connectivity toolbox (Whitfield-

Gabrieli & Nieto-Castanon, 2012). The residual BOLD time-series was

extracted from gray matter voxels within the 200 defined ROIs in the

preprocessed resting state fMRI data. The resting state fMRI time series

was corrected on a voxel-by-voxel basis using the anatomical compo-

nent correction (aCompCor) method, which removes the principal com-

ponents attributed to white matter and cerebrospinal fluid signals

(Behzadi, Restom, Liau, & Liu, 2007) and eliminates the need for a global

signal regression (Chai, Castañón, Öngür, & Whitfield-Gabrieli, 2012;

Murphy, Birn, Handwerker, Jones, & Bandettini, 2009). Additional post-

processing of time series data was performed using the Artifact Detec-

tion Tool (ART) (Mazaika, Hoeft, Glover, & Reiss, 2009) to identify image

frames at the subject level with extreme motion (>1 mm relative to time

series average) as outliers. These frames as well as six subject-specific

motion parameters and their first derivatives, were also calculated as

potential confounds in subsequent analysis stages. The residual BOLD

time-series in each voxel was band-pass filtered at 0.008–0.08 Hz to

focus on low frequency fluctuations (Fox et al., 2005).

Following the temporal preprocessing of fMRI data, an ROI-to-ROI

functional connectivity analysis was performed by grouping voxels into

the 200 ROIs defined from the age specific atlases, and estimating the

200 × 200 correlation matrix for each subject by computing Pearson’s

correlation coefficients between each ROI time-series and the time-

series of all other ROIs. These correlation coefficients for each subject

were converted to z-values using Fisher's transform to improve the

normality. False discovery rate (FDR; p < .05) was used to correct for

multiple comparisons in calculating the significance of each ROI–ROI

connection (Benjamini & Hochberg, 1995).

2.3.4 | Functional network analysis

Using a threshold of p < .05 (FDR corrected), significant correlation

values in the covariance matrix between all 200 ROIs were assigned a

binary value of 1 when the connection between region i and region j

was present and 0 otherwise, to construct an unweighted connectivity

matrix from each of the 200 ROIs for each participant. Graph

theory analysis was computed using the Brain Connectivity Toolbox

(http://www.brain-connectivity-toolbox.net/) which operates on

the unweighted covariance matrix. To explore global topological

properties of the whole brain functional networks, we computed

Global Efficiency, Local Efficiency, Small-Worldness, Modularity, and

Rich-Club coefficient. Here, the global network parameters are briefly

defined as follows.

1436 GOZDAS ET AL.



Global efficiency is defined as the average inverse shortest charac-

teristic path length between all pairs of nodes (Latora & Marchiori,

2001). Global efficiency for a network G with N nodes is given as:

Eglob Gð Þ¼ 1
N N−1ð Þ

X
1≤ i, j≤N, i 6¼j

1
Lij

where, Lij is the characteristic path length between nodes i and j in the

network.

Local efficiency is computed as the average of the global efficiency

of each node's neighborhood sub-graph:

Eloc Gð Þ¼ 1
N

X
1≤ i≤N

Eglob Gið Þ

where, Gi is the sub-graph of the nearest neighbors of node i. In con-

trast to global efficiency, local efficiency represents the capacity to

transfer information within the neighbors of a given node, and a high

Local Efficiency reflects efficient information transfer in the immedi-

ate neighborhood of each node (Latora & Marchiori, 2001).

Betweenness centrality of a node is the fraction of shortest paths

between all other pairs of nodes in the network that actually pass

through the node of interest (Freeman, 1978). This measure has been

used to identify the most central nodes in a network, which reflects

the importance of the specific node in transferring information to

other nodes. A node with high betweenness centrality is crucial to

efficient communication.

Node degree (k) is computed as the number of links to other nodes

in the network.

Modularity (Q) quantifies the degree to which the network may be

partitioned into a subdivision that has higher connections with each

other than with the rest of the network (Newman, 2006).

Small-worldness is an important model that quantifies the balance

between network segregation and integration. To examine small-

world properties of a network the normalized clustering coefficient γ

= C/Crand and normalized characteristic path length λ = L/Lrand are

computed (Watts & Strogatz, 1998). C and L are the clustering coeffi-

cient and the characteristic path length of a network and Crand and

Lrand are the mean clustering coefficient and the characteristic path

length of the matched random networks. Clustering coefficient (C) is

described as the fraction of the node's neighbors that are also neigh-

bors of each other. Characteristic path length (L) is defined as the

average of the shortest path length between all pairs of nodes. Typi-

cally, a network is considered a small-world when it meets the follow-

ing conditions: γ > 1, σ>1, and λ ≈ 1; where, σ = (C/Crand)/(L/Lrand).

The Rich-Club coefficient of a network is calculated over a range

of degree k after removing all nodes with degree ≤k. The Rich-Club

coefficient ;(k) for any k is computed as the ratio of connections

between the remaining nodes Ek> with a degree of at least k and the

total number of possible connections between them. The Rich-Club

coefficient ;(k) is given formally by the following:

; kð Þ¼2Ek >
.
Nk > Nk > −1ð Þ

We computed the normalized Rich-Club coefficient ;norm(k) for
the unweighted connectivity matrices as follows:

;norm kð Þ¼ ; kð Þ. ;rand kð Þ

where, ;rand(k) is the average Rich-Club coefficient over 1,000 random

networks.

A normalized Rich-Club clustering coefficient ;norm(k) > 1 over a

range of k indicates Rich-Club organization in the network (Van den

Heuvel & Sporns, 2011).

2.4 | Correlation of network topology with age, sex,
and behavioral measures

To assess whether the observed changes in network properties relate

to age, sex, or neurocognitive abilities in the children, we evaluated the

effects of association of these measures with global and regional net-

work properties. For each child, the age in months at the time of the

resting state fMRI scan and the sex were extracted from the C-MIND

database. All children in the C-MIND study participated in an extensive

neurocognitive assessment battery within a few weeks of the functional

MR imaging session. Neurocognitive testing included tests of general

intellectual function [Wechsler Intelligence Scales: Wechsler Pre-school

and Primary Scale of Intelligence, Third Edition (WPPSI-III, ages 2:6–5);

Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV, ages

6–16) Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV, ages

17 and 18, Wechsler, 1981) and vocabulary (the Expressive Vocabulary

Test-2 (EVT-2) (Williams, 2007).

We found no significant correlation between age and neurocogni-

tive measures (p > .5) and no significant difference between boys and

girls (p > .6). Scores from these tests are included in statistical analysis

models with brain network measures to pin point brain regions and

connections that facilitate greater cognitive ability during develop-

ment. Younger participants were excluded from the analysis because

neurocognitive data were not available.

2.5 | Statistical analysis

To determine the changes in the functional networks across develop-

ment, a general linear model (GLM) was applied to analyze the effects

of age, sex and neurocognitive measures and their interactions on the

network parameters. We performed multiple linear regressions which

included age and age2 as predictors with sex and mean frame-wise

displacement (mFD) derived from the head motion parameters

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) as other covari-

ates to detect the linear and quadratic developmental trajectories. The

GLM models were determined as follows:

Y1 ¼ β0 + β1xage+ β2xsex + β3xmFD

Y2 ¼ β0 + β1xage + β2xage
2 + β3xsex + β4xmFD

To examine the sex-related differences and their development we

used another GLM model including age, sex, and sex-by-age interac-

tions to examine both positive (boys > girls) and negative (girls > boys)

contrasts as well as positive and negative age-by-sex interactions.

Y3 ¼ β0 + β1xage + β2xsex + β3xsexxage + β4xmFD

For the analysis of the IQ-related differences, we first applied a

multiple linear regression Y3 on both IQ and each network parameter

to model the effects of age, sex, and their interactions.

GOZDAS ET AL. 1437



All statistical analysis was performed in RStudio (https://www.

rstudio.com).

3 | RESULTS

3.1 | Age and sex effects on global network
properties

Brain functional network topology correlated significantly (p < .05,

FDR-corrected) with age during development. Figure 2 demonstrates

the developmental trajectories of key global network parameters from

0 to 18 years of age. Children who slept during the r-fMRI scan are indi-

cated by open circles as the data point in Figure 2 to emphasize sleep as

a potential confound for parameter estimates in this part of the curves.

Positive age-related changes (p < .0001) were found in Global Effi-

ciency (Figure 2a), but negative age-related changes were found in Local

Efficiency and Small-Worldness (Figure 2b,c). Modularity exhibited neg-

ative quadratic age effect (inverted U-shaped) (p = .001) (Figure 2d).

We found significant sex differences (p < .05, uncorrected) in Local

Efficiency, Small-Worldness, and Modularity in which the boys showed

significantly higher values when compared with the girls (Figure 3b–d).

Age-by-sex interaction in global network measures as reflected in Global

Efficiency and Small-Worldness did not reach significance (Figure 3a,c).

When we adjust the sex comparison analysis for multiple testing using

FDR correction, the comparison between boys and girls shows a trend

for boys to have higher values of the Local Efficiency (p = .0531, FDR-

corrected), Small-Worldness (p = .0531, FDR-corrected) and Modularity

(p = .0531, FDR-corrected). These trends are important and indicate that

with more subjects, the sex differences in connectivity may become sig-

nificant. Using Degree, as a measure of which nodes are most highly con-

nected within a functional brain network we identified the hub regions

across all subjects (Van den Heuvel & Sporns, 2013). We found that the

hubs differed slightly in the youngest group, but the brain hubs were

FIGURE 2 Global network measures as a function of age. (a) Global efficiency. (b) Local efficiency. (c) Small-Worldness. (d) Modularity. p < .05,

FDR correction was applied to correct for multiple comparisons [Color figure can be viewed at wileyonlinelibrary.com]
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predominantly located in the default mode network, attention related

regions and visual cortex (Figure 4a, dark dots). The hubs in default mode,

attention, and visual networks are listed in Table 1. The Rich-Club archi-

tecture was also observed in the topology as the hub regions were more

densely connected among themselves than with other brain regions. We

observed that the Rich-Club architecture increased during childhood

(p = .04149, FDR-corrected) with high variability from 5 to 12 years

(Figure 4b). No significant sex differences were found in Rich-Club coeffi-

cient of the functional brain networks across the age span.

3.2 | Neurocognitive measures and sex effects

Examining all participants together we found no significant IQ effect

on global network measures. However, when boys and girls were

analyzed separately, significant IQ-related differences were observed

in relationship with Global Efficiency, Local Efficiency, Small-World-

ness, and Modularity. For the developmental trajectories, the boys

had higher Local Efficiency, Small-Worldness, and Modularity but

lower Global Efficiency.

When boys and girls are examined together we find regional posi-

tive correlations between IQ and the local graph measures in specific

regions in interest. Regions with significant correlations in this analysis

are defined by functional parcellation as described above but labeled

using anatomical brain atlases for reference purposes. Linear

decreases between Global Efficiency and IQ, and Degree and IQ, but

linear increase between average path length and IQ were found in the

left middle temporal gyrus (MTG[L]). Linear increases were also found

between Local Efficiency and IQ, and Clustering Coefficient and IQ in

FIGURE 3 Sex difference in brain network topology with age. (a) Global efficiency. (b) Local efficiency. (c) Small-Worldness. (d) Modularity [Color

figure can be viewed at wileyonlinelibrary.com]

GOZDAS ET AL. 1439

http://wileyonlinelibrary.com


the right superior frontal gyrus (SFG[R]) (Figure 5a,e). Significant posi-

tive quadratic changes were found in the right posterior parietal cor-

tex (PPC[R]), lateral prefrontal cortex (LPFC[R]), and inferior frontal

gyrus (IFG[R]) between Local Efficiency and IQ, and Clustering Coeffi-

cient and IQ (Figure 5f,k).

Treating boys and girls as a single group, we also identified that

there were correlations between specific brain regions and language

ability as reflected in the EVT-2 vocabulary measure. There was a neg-

ative linear correlation between nodal Global Efficiency and EVT-2 in

the left inferior frontal gyrus (IFG[L]). In contrast, positive linear corre-

lations were found between the Average Path Length in IFG(L) and

IFG(R)) and EVT-2, and Small-Worldness, Clustering Coefficient

and IQ in IFG(L). Similarly, correlations between Average Path Length

and IQ, and Clustering Coefficient and IQ exhibited positive linear

changes, but negative quadratic change between Small-Worldness

and EVT-2 in the left posterior superior temporal gyrus (pSTG(L))

(Figure 6). There was no significant sex effect between nodal network

parameters in language regions and EVT-2. In this analysis 113

subjects aged between 3 and 11 years were included.

4 | DISCUSSION

In this study, we investigated the topological organization of func-

tional brain networks derived from r-fMRI in healthy children in an

age range from 0 to 18 years and analyzed the effects of age, sex and

neurocognitive measures on the network properties both globally and

locally. The main findings included the following: (i) functional brain

networks from birth through adolescence showed linear increases in

Global Efficiency and Rich-Club coefficient, but linear decreases in

Local Efficiency and Small-Worldness, while Modularity showed nega-

tive quadratic change (Figure 2); (ii) boys exhibit a higher Local Effi-

ciency, Small-Worldness, and Modularity when compared with girls

(Figure 3); (iii) functional brain hubs were located in default mode,

fronto-parietal, and visual networks across development (Figure 4);

(iv) regional network parameters positively correlated with IQ and lan-

guage measures (Figures 5 and 6).

Collectively, we detected significant topological modifications of

the human brain connectome from birth through adolescence which

appear to be influenced by sex and cognitive abilities.

Earlier studies have reported age-associated changes in the global

network properties showing that Local Efficiency and Small-

Worldness were reduced while Global Efficiency was not affected by

age (Cao et al., 2014; Geerligs, Renken, Saliasi, Maurits, & Lorist,

2014). In this study, we find that Global Efficiency of brain functional

networks increased but Local Efficiency decreased with age. A high

Global Efficiency indicates the capacity of rapid information exchange

among the distributed elements (Bullmore & Sporns, 2012). In con-

trast to Global Efficiency, a high Local Efficiency reflects efficient

FIGURE 4 Rich-Club trends in the developing connectome. (a) Hub regions and connections. The black dots represent the hub regions. (b) Age-

related change in normalized Rich-Club coefficient. p < .05, FDR correction was applied for multiple comparisons [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Hub regions in default mode, attention, and visual

networks and MNI coordinates of the center of each region

Network Region MNI(x, y, x)

Default mode Left lateral parietal (−39, −77, 33)

Right lateral parietal (47, −67, 29)

Posterior cingulate cortex (1, −61, 38)

Attention Left intraparietal sulcus (−39, −43, 52)

Right intraparietal sulcus (39, −42, 54)

Left posterior parietal cortex (−46, −58, 49)

Right posterior parietal cortex (52, −52, 45)

Left lateral prefrontal cortex (−43,33,28)

Right lateral prefrontal cortex (41,38,30)

Visual Primary visual (2, −79, 12)

Visual ventral (0, −93, −4)

Visual dorsal (−37, −79, 10)
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information transfer in the immediate neighborhood of each node

(Latora & Marchiori, 2001). Previous functional brain network studies

have reported no significant change in Global Efficiency during

development and adulthood and increases in Local Efficiency during

development and its reduction with aging which are partly in accor-

dance with our findings (Cao et al., 2014). Differences between those

FIGURE 5 Local network measures as a function of IQ [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Local network measures as a function of expressive vocabulary test scores in inferior frontal gyrus (IFG) and posterior superior

temporal gyrus (pSTG) [Color figure can be viewed at wileyonlinelibrary.com]
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results and our findings may be related to the regional parcellation of

the brain that was used in the previous study for graph construction

(90 vs. 200 nodes in the present study), which has a limited ability to

represent functional networks due to coarse nodes which encom-

passes disparate functional areas (Power et al., 2011). In addition, we

detected a negative age effect on Small-Worldness during childhood

which is consistent with previous results that have shown a reduction

in Small-Worldness with age. Recent studies showed that Small-

Worldness is established in functional brain networks early during

development (Fransson, Åden, Blennow, & Lagercrantz, 2010;

Scheinost et al., 2016), remaining stable in children and young adults

(Wu et al., 2013). Therefore, our study provides further support for

the previous results that functional brain networks display consistent

small-world properties from birth through adolescence.

Along with these changes, functional brain networks were found

to be highly modular, reflecting higher intra-network connectivity than

inter-network connections in younger adults. In this study, we have

found that Modularity changed throughout brain development

(Figure 2d) which aligns with previous findings (Cao et al., 2014; Fair

et al., 2009). Similarly, we detected Modularity with an inverted

U-shaped developmental trajectory, indicating that the brain's func-

tional Modularity increased until approximately 8 years of age and

decreased at older age. This indicates that functional brain networks

may become less differentiated with age which is also in accordance

with previous studies (Geerligs et al., 2014).

Highly connected hub regions in the “Rich-Club” play a crucial

role in global information integration among parallel and distributed

brain networks. Previous studies observed that hubs of functional

brain networks were mainly located in the default mode, fronto-parie-

tal, and visual networks (Cole, Pathak, & Schneider, 2010; Liang, Zou,

He, & Yang, 2013; Zuo et al., 2011). A recent study also suggested

that functional brain hubs are stable over development (Hwang,

Hallquist, & Luna, 2012). Our results in Figure 4 are consistent with

these findings. Recent work elucidated the Rich-Club configuration of

human brain structural and functional networks in healthy adults (Cao

et al., 2014; Collin, Sporns, Mandl, & van den Heuvel, 2013; Van den

Heuvel et al., 2012). We also observed the existence of Rich-Club

organization in the functional connectome during childhood with a

significant, positive age effect, in accordance with previous studies

(Cao et al., 2014). Rich-Club organization provides an important con-

tribution to information transfer between different brain regions.

Previous fMRI studies indicated that functional interactions

between multiple brain regions during a task or at rest are strongly

related to neurocognitive measures (Gray, Chabris, & Braver, 2003;

Song et al., 2008). Previous research has shown a positive correlation

between IQ and fMRI brain activation in the middle temporal gyrus

during a verb generation task (Schmithorst & Holland, 2006). There-

fore, in addition to age and sex effects we investigated the correlation

between cognitive measures and functional brain network topology.

No significant correlation was observed between full-scale IQ and

global network measures. However, when we examined girls and boys

separately, we found significant IQ related differences with age

between boys and girls. This is not consistent with the recent study in

adults (Van den Heuvel, Stam, Kahn, & Pol, 2009), which found that

intelligence is highly correlated with both local and global efficiencies

of functional brain networks. IQ-related changes in the regional, nodal

parameters were found in frontal, parietal and temporal brain regions

(LPPC, PPC, MTG, STG, and IFG). Consistent with our results, Wu

et al. also reported IQ-related changes in local nodal parameters in

frontal and temporal regions during development (Wu et al., 2013). At

least one previous study on functional connectivity has also shown

that brain network connectivity is related to intelligence (Song et al.,

2008). Furthermore, several brain regions mainly involved in attention

showed a positive correlation with IQ. Though we did not find local

network correlations with IQ, we did discover significant correlations

between language ability (EVT-2 standard scores) and network topol-

ogy in several language-related brain regions (IFG-L, STG-L). Overall,

our findings suggest that topology of brain networks related to atten-

tion, memory and language, underlie differences in intelligence and

language ability in children throughout development.

In prior studies of developmental changes in structural and func-

tional brain networks, the effect of age has been demonstrated in dif-

ferent age groups (Cao et al., 2014; Fransson et al., 2010; Meunier,

Lambiotte, Fornito, Ersche, & Bullmore, 2009; Wu et al., 2013). How-

ever, the interaction of brain network topology with sex and cognitive

abilities during development have not been studied thoroughly. Our

study adds to the understanding of functional brain network develop-

ment from birth through adolescence in healthy children by examining

the growth trajectories of global network topology as a function of

age and sex during childhood. An important observation is that key

graph measures characterizing global and regional brain network

topology do not appear to follow linear or monotonic trajectories as

networks organize for improved efficiency during childhood.

4.1 | Limitations

The developmental trajectories in brain network topology outlined in

this report are subject to several limitations in the study design. First,

while the sample size is substantial and larger than any study of nor-

mal brain connectivity development to-date, the variance in network

topology estimates is large as illustrated in the scatter plots in the fig-

ures. Consequently, the parameters describing the quadratic regres-

sion fits to the trajectories have substantial uncertainty. While the

figures clearly illustrate the dynamic trends of brain network topology

through development, they are not sufficiently precise to allow indi-

vidual predictions about brain age, IQ, or other cognitive outcomes.

WPPSI-III and EVT-2 IQ and language measures were only admin-

istered to children age 30 months and older. This further limits the

sample size for testing IQ and language effects on global and regional

brain network topology. While we found differences in developmental

trajectories for global network measures when we treated boys and

girls separately, the smaller sample size for the IQ and language

measures may be responsible for not detecting these differences as

a function of cognitive ability in the sample tested. Several large-scale

developmental neuroimaging studies are currently underway such

as the ABCD Study (https://abcdstudy.org) and the ECHO Study

(https://www.nih.gov/echo) that will include thousands of children

and should provide more exact estimates of average trajectories as

well as a potential for training algorithms to make individual predic-

tions of outcomes. Longitudinal studies within individuals through
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development rather than a cross-sectional study as described here

should reduce variance in growth trajectories (Szaflarski et al., 2006,

2012) of human brain connectomes during development and both of

the studies mentioned above include longitudinal components.

Many of the children under the age of 3 years included in our

study population were asleep during the fMRI scan. Sleep has been

shown to influence the BOLD signal and brain connectivity

(DiFrancesco, Robertson, Karunanayaka, & Holland, 2013; Manning,

Courchesne, & Fox, 2013; Redcay, Kennedy, & Courchesne, 2007;

Wilke, Holland, & Ball, 2003). The circle data points in Figures 1–3

indicates the age range of birth to 2 years when children were

encouraged to sleep during the fMRI scan. The high variance in this

age range may partly be due to the variation in consciousness levels in

this group of participants and sleep may also introduce a bias in the

estimates of the network parameters we have examined.

Finally, we attempted to explore the age-related changes of

functional brain networks over a continuous age range starting from

birth through adolescence. Neonatal and toddler brains differ in size

and cortical thickness compared with adolescent brains. To minimize

age bias in our parcellation, we created age specific probability maps

during preprocessing to use as templates for segmentation and nor-

malization of structural images. Functional images were then nor-

malized and resampled to voxel size 2 × 2 × 2 mm using the

structural normalization transformations for each age group. Subse-

quently, normalized functional images were smoothed with 8 mm

FWHM kernel. This process produces the most accurate normaliza-

tion and segmentation we can achieve prior to parcellation. To the

best our knowledge, this is the first study that has applied graph the-

oretical analysis to investigate the development of functional brain

networks using functional parcellation from birth through adoles-

cence. Further research will be necessary to determine how to most

accurately scale neonatal brain parcellation to the adolescent and

adult equivalents.

5 | CONCLUSIONS

We detected significant age- and sex-related changes in the develop-

mental trajectories of the functional brain connectome which show

different rates of maturation of functional brain networks in boys and

girls. We also explored the correlation of neurocognitive measures

and the regional network properties by combining neuroimaging data

and behavioral measures. This approach may provide novel insight

into the neural underpinnings of behavioral and cognitive variability in

individuals during development. Overall, the current study reveals the

dynamics of the functional brain connectome globally and locally and

provides a background for evaluation of network anomalies associated

with neurological disorders in children.
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