
R E S E A R CH AR T I C L E

Tracking the dynamic functional connectivity structure of the
human brain across the adult lifespan

Yunman Xia1,2 | Qunlin Chen1,2 | Liang Shi1,2 | MengZe Li1,2 | Weikang Gong3,4 |

Hong Chen1,2 | Jiang Qiu1,2

1Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China

2School of Psychology, Southwest University, Chongqing, China

3Key Laboratory of Computational Biology, CASMPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of

Sciences, Shanghai, China

4University of Chinese Academy of Sciences, Beijing, China

Correspondence

J. Qiu, School of Psychology, Southwest

University, Beibei, Chongqing 400715, China.

Email: qiuj318@swu.edu.cn and

H. Chen, School of Psychology, Southwest

University, Beibei, Chongqing 400715, China.

Email: chenhg@swu.edu.cn

Funding information

Fok Ying Tong Education Foundation, Grant/

Award Number: 151023; National Natural

Science Foundation of China, Grant/Award

Numbers: 314709813150088531571137,

31470981; 31571137; 31500885; Ministry of

Education, Grant/Award Number:

14JJD880009; Chongqing Postdoctoral

Science Foundation, Grant/Award Number:

Xm2015037, Xm2016044; China Postdoctoral

Science Foundation, Grant/Award Number:

2015M572423, 2015M580767; Fok Ying

Tung Education Foundation, Grant/Award

Number: 151023; Natural Science Foundation

of Chongqing, Grant/Award Number:

cstc2015jcyjA10106; Fundamental Research

Funds for the Central Universities, Grant/

Award Number: SWU1509383,SWU1509451,

SWU1609177

Abstract
The transition from early adulthood to the elder is marked by functional and structural brain

transformations. Many previous studies examined the correlation between the functional con-

nectivity (FC) and aging using resting-state fMRI. Results showed that the changes in FC are

linked to aging as well as the cognitive ability changes. However, some researchers proposed

that the FC is not static but dynamic changes during the resting-state fMRI scan. In this study,

we examined the correlation between the resting-state dynamic functional network connectivity

and age using resting scan data of 434 subjects. The results suggested: (a) age is negatively asso-

ciated with variability of dynamic functional network connectivity state; (b) the dwell time of

each age range spends in each state is different; (c) the dynamic graph metrics curve of each age

ranges is different and 19–30 age range has the largest average global efficiency and average

local efficiency; (d) some dynamic functional network connectivity measures were correlated to

the certain cognitive ability. Overall, the results suggested the changes in dynamic functional

network connectivity measures may be a characteristic of the aging process and in further inves-

tigations may provide a deep understanding of the aging process.
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1 | INTRODUCTION

With the increasing of age, our brain undergoes structural and func-

tional changes (Betzel et al., 2014). For brain structures, previous

studies revealed that there was a tendency toward cortical “discon-

nection”, that is, a rapid decline of within-network covariance in aging

process (Betzel et al., 2014; DuPre & Spreng, 2017). This “disconnec-

tion” was also presented in resting-state functional connectivity dur-

ing the aging process. For example, the execute control network,

which is involved in attention, memory, and executive control

functions, has a decreased interaction of within-network during the

aging process. (Chan, Park, Savalia, Petersen, & Wig, 2014). Therefore,

it is important to investigate changes in functional brain network pat-

tern across the lifespan, which provided a whole brain level under-

standing of the aging process. (Zuo et al., 2017).

Functional connectivity (FC) describes how the neural activity of

two brain regions interact with each other over time, which is usually

measured by the Pearson correlation coefficient between their fMRI

time series (Biswal, Yetkin, Haughton, & Hyde, 1995). Many previous

studies examined the difference of FC in age using resting-state
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functional connectivity analysis. Results showed that the changes in FC

are linked to cognitive ability and behavioral changes, which are corre-

lated with aging (Fair et al., 2007; Power, Fair, Schlaggar, & Petersen,

2010; Thomason et al., 2008). However, these studies may not be

enough to finely describe the changes in functional brain network pat-

tern across the lifespan (Fair et al., 2007; Greicius, 2008; Power et al.,

2010; Thomason et al., 2008; Van den Heuvel and Hulshoff Pol, 2010).

This depiction of change neglects the dynamic characteristic of the

brain's FC, with the potential assumption that FC remains constant

throughout the resting period (Biswal et al., 1995; Fox et al., 2005). How-

ever, recent research showed that the brain functional network is not

static but dynamic reconfiguration during the resting-state fMRI scan.

Recently, a growing body of research examined the dynamic FC

in healthy subjects and patients with neuropsychiatric diseases

(Calhoun, Miller, Pearlson, & Adali, 2014). For example, Allen et al.,

(2014) examined resting-state FC dynamics in healthy young adults,

revealed unanticipated FC states and challenged the conventional

assumption that resting-state FC remains stationary. In a follow-up

study, the authors found resting-state dynamic FC have a difference

between schizophrenia and healthy groups, that is, patients show sig-

nificant differences in dwell times in multiple states (Damaraju et al.,

2014). Besides resting-state dynamic FC, researchers also examined

task dynamic FC and found that there was a direct link between cog-

nitive performance and the dynamic reorganization of the network

structure of the brain (Tsvetanov, et al., 2016). Furthermore,

researchers found that there was a link between resting-state dynamic

FC and concurrently collected electroencephalography (EEG) data,

which suggested that the resting-state dynamic FC has a physiological

basis (Allen et al., 2018). Another study evaluated replicability of

dynamic FC states using resting-state fMRI data of 7,500 subjects,

and the results showed that dynamic FC states are similar across

groups (Abrol, Chaze, Damaraju, & Calhoun, 2016). These collective

findings imply that dynamic FC is a promising avenue for clinical neu-

roimaging and can enrich our knowledge of the functional organiza-

tion of the human brain.

In this study, we investigated the relationship between dynamic FC

and aging. Based on the previous studies on dynamic connectivity

(Allen et al., 2014; Damaraju et al., 2014; Hutchison & Morton, 2015),

we compared the dynamic functional network connectivity (FNC) mea-

sures in different age cohorts. Firstly, group independent component

analysis (ICA) was used to extract resting-state networks (RSNs), and

then dynamic FNC matrices were created using sliding time windows

and Pearson correlation approaches. Subsequently, the K-means algo-

rithm was employed to cluster these matrices into different dynamic

states which are the average patterns that FC matrix tends to return to

during the resting state scan. Then we calculated the dynamic FNC

measures based on the clustering results, such as the dwell time of each

individual subject spends in each state, and compare these measures in

different age cohorts. Lastly, we described the states by calculating

their network graph metrics including local efficiency, global efficiency,

as well as hub areas. Besides, we examined the associated between

dynamic FNC and intelligence. Overall, we suggested the study of

dynamic FC can unveil flexibility in the functional coordination between

different sub-networks and in further investigations may provide a

deep understanding of brain changes and aging.

2 | MATERIALS AND METHODS

2.1 | Subjects

The large sample was drawn from an ongoing project exploring the

associations among individual development in brain structure and

function, cognitive ability, and mental health (Wei, et al., 2018). A total

of 494 healthy volunteers were recruited from Southwest University

(SWU) by means of the campus network, advertisements on bulletin

boards and through face-to-face communications, but 60 participants

were excluded due to large head motion (FD > 0.2 mm) (Laumann

et al., 2016). Thus, the final sample was composed of 434 subjects

(165 males; mean age = 44.44, SD = 17.28; age range = 19–80). All

participants were required to be healthy and none had a history of

psychiatric disorder or substance abuse (including illicit drugs and

alcohol), and MRI contraindications. The project was approved by the

SWU Brain Imaging Center Institutional Review Board, and written

informed consent was obtained from each subject prior to the study.

Participants received payment depending on time and tasks

completed.

2.2 | Image acquisition

All functional images were obtained from a 3-T Siemens Magnetom

Trio scanner (Siemens Medical, Erlangen, Germany) at the Brain Imag-

ing Research Central in Southwest University, Chongqing, China. The

whole-brain resting-state functional images were acquired using

T2-weighted gradient echo planar imaging (EPI) sequence: slices = 32,

repetition time (TR)/echo time (TE) = 2000/30 ms, flip angle = 90�,

field of view (FOV) = 220 mm × 220 mm, thickness = 3 mm, slice

gap = 1 mm, matrix = 64 × 64, resulting in a voxel with

3.4 × 3.4 × 4 mm3. During the functional images acquisition, partici-

pants were asked to close eyes, keep still, and not to fall asleep (con-

firmed by all participants immediately after the experiment). The scan

lasted for 484 s and acquired 242 volumes in total for each subject.

Additionally, high-resolution T1-weighted anatomical images were

acquired for each participant (TR = 1900 ms; TE = 2.52 ms; inversion

time = 900 ms; flip angle = 9�; resolution matrix = 256 × 256;

slices = 176; thickness = 1.0 mm; voxel size = 1 × 1 × 1 mm3).

2.3 | Data preprocessing

The sMRI (1 × 1 × 1 mm3) data was processed by using SPM8

(Welcome Department of Cognitive Neurology, London, UK; www.fil.

ion.ucl.ac.uk/spm) implemented in MATLAB 2012a (MathWorks Inc.,

Natick, MA). Each sMRI was first displayed in SPM8 to check quality.

Firstly, the reorientation of the images was manually set to the ante-

rior commissure. Then, the images were segmented into gray matter,

white matter, and cerebrospinal fluid by using the segmentation tool

in SPM8.

The resting-state fMRI data were preprocessed using data pro-

cessing assistant for resting-state fMRI (DPARSF, http://resting-

fmri.sourceforge.net/) implemented in the MATLAB 2012a (Math

Works, Natick, MA) platform. Resting-state fMRI preprocessing

steps included the following: eliminate first 10 time points of each
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subject, slice timing correction, realignment, registration functional

images (MNI pace), normalization (3 × 3 × 4 mm3), smoothing

(FWHM = 6 mm), band pass filtering (0.023–0.18 Hz) (Gonzalez-

Castillo et al., 2015; Leonardi & Van De Ville, 2015), nuisance

regressors included white matter and cerebrospinal fluid signals in

addition to 24 movement regressors derived by expansion, frames

with frame wise displacement (FD) > 0.2 mm were censored. The

residual effects of motion was regressed out in group statistical

analysis by including mean FD derived with Jenkinson's relative root

mean square (RMS) algorithm as a regressor of no interest. These

preprocessing steps were followed by the standard protocol pub-

lished (Yan, Wang, Zuo, & Zang, 2016).

2.4 | Head motion correction

Recent studies have demonstrated that head motion has a substan-

tial impact on dynamic FC (Laumann et al., 2016;Siegel et al., 2016).

So we used the following steps to further minimize the effects of

head motion. Artifacts were reduced using excluding subjects with

high head-motion, nuisance regression (excluding censored frames),

interpolation (Power et al., 2014), and band pass-filtering

(0.023 < f < 0.18 Hz) (Gonzalez-Castillo et al., 2015; Leonardi &

Van De Ville, 2015). Nuisance regressors included the cerebrospinal

fluid signals, white matter, and their derivatives, in addition to

24 movement regressors derived by expansion (Friston, Williams,

Howard, Frackowiak, & Turner, 1996; Yan et al., 2013). Subjects

with max head motion >2 mm and 2.0� were censored (Laumann

et al., 2016),

2.5 | Group independent component analysis

Group ICA was performed using the GIFT toolbox (http://mialab.

mrn.org/software/gift). Following the Allen et al. (2014), we used a

relatively high model order (number of components, C = 100) to

achieve a “functional parcellation” of refined cortical and subcortical

components corresponding to known anatomical and functional

segmentations. In group ICA, principal component analysis (PCA)

was used to reduce the dimension of fMRI data at two levels. First,

fMRI data of each subject were decomposed into 150 principal com-

ponents (PCs). Then the reduced data of all participants were

concatenated and further decomposed into 100 PCs using the

expectation–maximization algorithm (Roweis, 1998). The Infomax

algorithm was then used to find independent components. This

algorithm was repeated 20 times in ICASSO (http://www.cis.hut.

fi/projects/ica/icasso) and spatial maps (SMs) were estimated as the

modes of the component clusters. Based on visual recognition and

calculating spatial Pearson correlation, 41 components were dis-

carded and a total of 59 components were identified as intrinsic

connectivity networks (ICNs) for future analysis. Finally, following a

previous study, we performed additional post processing steps on

time courses of the 59 ICNs, including (a) removing linear, quadratic,

and cubic trends, (b) regressing out six realignment parameters and

their temporal derivatives, (c) low-pass filtering (0.15 Hz), and

(d) removing spikes to ensure that artifactual spikes do not nega-

tively impact the signal analysis (Allen et al., 2014).

2.6 | Dynamic FNC computation

Before dynamic FNC computation, the time courses of RSNs were

temporally bandpass filtered (0.023–0.18 Hz) (Gonzalez-Castillo et al.,

2015; Leonardi & Van De Ville, 2015) to reduce the effects of low-

frequency drift and high-frequency physiological noise. The dynamic

FNC was computed using a sliding-window correlation approach.

Since there was currently no formal consensus regarding the window

length, we selected the length (22TR) according to a former study

with a Gaussian of σ = 3 TR (Allen et al., 2014). The window was

shifted with a step of 1 TR, resulting in 210 windows. In each window,

the time courses of each pair of the 59 RSNs were used to calculate

FNC (Pearson's correlation coefficient) and a 59 × 59 correlation

matrix was obtained. A Fisher's r-to-z transformation was then applied

to all FNC matrices to improve the normality of the correlation distri-

bution as r is the Pearson correlation coefficient and z is approxi-

mately normally distributed.

2.7 | K-means clustering

For the dFNC patterns reoccur within subjects across time and across

subjects, we applied the k-means algorithm to divide the dFNC win-

dows into separate clusters. The clustering algorithm was applied to a

subset of all windows that showed greater variance in FNC, and was

repeated 150 times to increase the likelihood of escaping local min-

ima, with random initial cluster centroid positions (Allen et al., 2014;

Liu et al., 2016). Subsampling was chosen both to reduce redundancy

between windows (the chosen time step of 1 TR induces high auto-

correlation in FC time series) and to reduce computational costs. The

optimal number of clusters was estimated as five using the elbow cri-

terion (Ketchen & Shook, 1996), which is calculated as the maximum

ratio of within-cluster distance and between-cluster distance across a

set of candidate cluster numbers (2 to 10 in our study). Finally, the

resulting centroids of subsample were used as starting points to clus-

ter all data into five clusters. A k of 4 and 6 was used respectively to

validate the robustness of our results (see SI.B).

2.8 | State analysis

In addition, we performed an exploratory experiment in which we cal-

culated and compared temporal metrics derived from each subject's

state vector (Allen et al., 2014). Specifically, we computed four mea-

sures in each subject, including: (a) frequency of each state, measured

as the number of windows in each state; (b) dwell time of each state,

measured as the number of consecutive windows in each state. While

the current window and the next window have the same certain state,

the dwell time of the certain state plus one; (c) total number of transi-

tions, measured as the total number of situation that window state

from one state switched to another state; and (d) frequency of each

state transition, measured as the number of situation that the window

state switched from the certain state to another state, for example,

the frequency of State 1–3 means that the number of situation that

the window state from State 1 switched to State 3.

A similarity to previous research (Hutchison and Morton (2015),

parametric tests (Pearson correlation) were utilized to evaluate the
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correlation between age and these measures, and head motion is

regressed out as nuisance covariates.

2.9 | Dynamic graph metrics curve of different age
ranges

Before the analysis, each connection matrix of cluster centroids was

converted to a z-value connection matrix that is normally distrib-

uted by using Fisher's r-to-z transform. Thresholding the dynamic

functional network connectivity matrices is critical to obtain a

sparse adjacency matrix. Using absolute thresholding method may

ultimately change the properties of the original global and local FC,

which may bias the comparisons of graph-theoretic metrics

between different groups of subjects (Song et al., 2014). Therefore,

we applied a proportional network threshold of 15% (Whitfield-

Gabrieli & Nieto-Castanon, 2012). We globally thresholded all

dynamic functional network connectivity matrixes at a fixed thresh-

old (K = 0.15), and then measured local and global efficiency based

on weighted adjacency matrix by using Brain Connectivity Toolbox

(https://sites.google.com/site/bctnet/) (Whitfield-Gabrieli & Nieto-

Castanon, 2012). Global efficiency is the average inverse shortest

path length and usually as an index of global integration. (Latora &

Marchiori, 2001). Local efficiency is the efficiency of the local sub-

graph of a node i that contains only the direct neighbors of node i,

and it usually as a measure of local connectedness (Latora & March-

iori, 2001).

By the dFNC computation, each subject can get 210 FC matrixes

and their global efficiency. Then we averaged the global efficiency of

210 connectivity matrixes of a subject as the global efficiency of this

subject. Next, we divided the subjects into six groups according to

their ages, each age span of 10 years (19–30; 31–40; 41–50; 51–60;

61–70; 71–80). Thus, we can calculated average global efficiency of

each age group and compared the differences in average global effi-

ciency between different age groups.

As for local efficiency, we summed the local efficiency of nodes

that within a sub-network as the local efficiency of this sub-network.

Similarly, we averaged local efficiency of a sub-network of 210 con-

nectivity matrixes of a subject as the local efficiency of this sub-

network of this subject. Previous literatures indicted that DMN

(Damoiseaux et al., 2008; Biswal et al., 2010; Evers, Klaassen, Romb-

outs, Backes, & Jolles, 2012), CCN (Elizabeth DuPre & R. Nathan

Spreng, 2017), and SN (Tsvetanov et al., 2016) are more susceptible

to the effects of aging. Therefore, we averaged local efficiency of

three sub-networks (DMN, CCN, and SN) of each age group and com-

pared the differences in average local efficiency of three sub-

networks between different age groups.

Besides, the sample was not equally distributed among the age

groups. Each age groups have 149, 32, 63, 103, 59, and 28 samples,

respectively. Considering the distribution may impact the differences

in graph metrics among age groups, we randomly sampled 28 subjects

from each age group and made them a new sample. To ensure the sta-

bility of results, we repeated extract new sample and compare the

graph metrics among different age groups in new samples 100 times.

Lastly, we plotted the dynamic graph metrics curve of different

age ranges to visually observe the difference in the time-varying of

graph metrics in different age groups. Firstly, we averaged the

global efficiency of a certain time window (connectivity matrixes)

of all subjects who belongs to an age group as the global efficiency

of this time window of this age group. Thus, the average global

efficiency of each age group changes dynamically over the time

window. Similarly, we averaged the local efficiency of three sub-

networks (DMN, CCN, and SN) of a certain time window (connec-

tivity matrixes) of all subjects who belongs to an age group as the

local efficiency of three sub-networks of this time window of this

age group. Thus, the average local efficiency of three sub-

networks of each age group changes dynamically over the time

window.

2.10 | Topological properties of discrete functional
connectivity states

To characterize the state topological properties, we globally thre-

sholded the state matrix at a fixed threshold (K = 0.15), calculated

global efficiency, sub-network local efficiency, and the degree of

every node of every matrices, and then listed the hub nodes of matri-

ces according to their degree (The Brain Connectivity Toolbox, http://

www.brain-connectivity-toolbox.net/). With global efficiency, local

efficiency, and hub regions of each state, we can depict the topologi-

cal characteristic of each state.

2.11 | The correlation between Wechsler adult
intelligence scale and state

The Wechsler Adult Intelligence Scale (WAIS) is an IQ test designed

to measure intelligence and cognitive ability in adults and older

adolescents (Kaufman & Lichtenberger, 2005). The WAIS-R, a

revised form of the WAIS, and consisted of six verbal and five per-

formance subtests (Wechsler, 1981). Firstly, we investigated the

relationship between age, state indexes (frequency of each state;

dwell time of state; numbers of transitions), and total score of

WAIS. Secondly, we chose one of verbal subsets, called similarity,

which measures abstract verbal reasoning as well as semantic

knowledge. In this section, participants are given two words or con-

cepts and required to describe how they are similar. The reasons

we chose the similarity subscales is as follows. Firstly, the similarity

subset (measuring abstract verbal reasoning and semantic knowl-

edge) is considered relatively stable across the aging (Ardila, 2007).

If similarity subset changes with aging, then others will theoretically

change. Secondly, some elder didn't complete all the WAIS items,

and the completion rate of similarity subset is highest. We exam-

ined the relationship between similarity (the subtest of the Wechs-

ler Adult Intelligence Scale-Revised Chinese revision [WAIS-RC;

Gong, 1992]), state indexes, and age. Lastly, we tested the relation-

ship between block design test (the subtest of the Wechsler Adult

Intelligence Scale-Revised Chinese revision (WAIS-RC; Gong,

1992), state indexes, and age. The block design test, which is

thought to evaluate fine motor skills, processing speed, and visuo-

spatial ability, is most affected by age (Hoogendam, Hofman, van

der Geest, van der Lugt, & Ikram, 2014).
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3 | RESULTS

3.1 | Static functional network connectivity

Figure 1 displays the ICNs identified by the group ICA approach. Net-

work components are shown in Figure 1.Based on their anatomical

and presumed functional properties, ICs are grouped into sub-cortical

(SC), auditory (AUD), somatomotor (SM), visual (VIS), cognitive control

(CC), default-mode (DM), and salience (SN) networks by spatial corre-

lation and visual recognition. The manually identified ICNs are very

similar to a previous study (Allen et al., 2014). These ICNs are also

similar to those observed in previous studies using a higher model

order (Smith et al., 2009; Allen et al., 2011) and cover the majority of

subcortical and cortical gray matter regions. Figure 2 displayed the

static FC between ICNs, computed over the entire scan length and

averaged across subjects.

3.2 | The duration and transition of connectivity
states as a function of age

In addition to the static FNC, we can also examine the frequency of

states as a function of time and the transitions between them.

Figure 3 shows the state assignments as a function of time in four

example subjects. As we would see, functional networks tend to sus-

tain single state during a long period, while transition times are rarely

less. We can characterize transition behavior by calculating the fre-

quency changing from one state to another.

The total dwell time (the sum of dwell time of all states) of states

was positively correlated with age (r = 0.20, p = .000, n = 434), while

the total transition of states was negatively correlated with age

(r = −0.20, p = .000, n = 434). The states indexes at rest were corre-

lated with age (See Table 1), the distribution of each state in each age

ranges is shown in Figure 4. The gender ratio in the sample is not bal-

anced, so we used the Independent Sample t test to examine the gen-

der impact in the measures of the dynamic states. Results suggested

that the significant gender difference in State 1–2 (t = 8.29, p = .004),

State 1–3 (t = 8.29, p = .004), State 2–1 (t = 6.49, p = .011), State 2–3

(t = 14.50, p = .000), and State 3–1 (t = 4.61, p = .032). The only

dynamic state (State 2–3) was both correlated with age and gender.

Besides, recent studies have demonstrated that head motion has

a substantial impact on dynamic FC (Laumann et al., 2016;Siegel et al.,

2016). Therefore, we examined the correlation between head motion

(mean frame wise displacement) and state indexes. The results

FIGURE 1 Composite maps of the 59 identified intrinsic connectivity networks (ICNs), sorted into seven sub-networks. Each color in the

composite maps corresponds to a different ICN [Color figure can be viewed at wileyonlinelibrary.com]

XIA ET AL. 721

http://wileyonlinelibrary.com


indicated head motion is negatively correlated with the frequency of

State 3 (r = −0.15, p = .002) and the times of transition of State 3–5

(r = −0.10, p = .034).

3.3 | Dynamic graph metrics curve of different age
ranges

To characterize the age effects on the global network topological prop-

erties, two key graph metrics were employed, global efficiency, and local

efficiency, which were all calculated based on weighted networks.

Firstly, we found significant differences between different age

groups in the global and local efficiency (see Table 2). The difference

is observed in the global efficiency (global efficiency: r = −0.24,

p = .000), 19–30 years old age range has significant greater global

efficiency than 51–60, 61–70, and 71–80 years old age range. The

correlation between sub-network local efficiency and age (DMN Elo-

cal: p = .055, r = −0.092; CC_Elocal: p = .019, r = −0.11; SN_Elocal:

p = .000, r = −0.19) behaved differently. Intriguingly, no matter which

network, its local efficiency of 19–30 age range is the highest.

Secondly, we compared the global efficiency and local efficiency

among different age groups in new sample. We ran the above-

mentioned analysis 100 times and reported the ratio of significant

result (p < .05) in Table 2. The results indicated that the difference

between different age groups in global efficiency is reliable and stable

and that in the local efficiency of different sub-networks is unstable.

Besides, we have plotted the dynamic graph metrics curve of dif-

ferent age ranges (see Figure 5).

3.4 | Characteristic of dynamic functional
connectivity states

We used sliding window approach to estimate dFNC network for each

subject. For the dFNC patterns reoccur within subjects across time

and across subjects, we then applied the K-means algorithm to divide

the dFNC windows into separate clusters. Figure 6 shows the cen-

troids of the five dFNC states. In State 1, the whole network displayed

slight and moderate negative connectivity. State 2 showed the high

positive correlation among AUD, SMN, and VIS, while the negative

correlation between SCN and other networks. In State 3, there are

negative connections between DMN and other networks as well as

SCN and others. In State 4, the whole network displayed slight and

moderate positive connectivity, and the high positive coupling among

FIGURE 2 Static functional network connectivity matrix of ICNs during rest computed over the entire scan length and averaged over subjects

[Color figure can be viewed at wileyonlinelibrary.com]
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AUD, SMN, and VIS appeared again. In State 5, AUD, SMN, and SN

were negatively correlated with DMN and it displayed a whole nega-

tive pattern.

To characterize the state topological properties, we applied a pro-

portional network threshold of 15% and calculated global efficiency,

sub-network local efficiency and degree based on thresholded

weighted networks (See Table 3). It's worth noting that State 4 has

the largest global efficiency, DMN local efficiency, CC local efficiency

and SN local efficiency. The hub nodes (the node of the top three

degree) are located in visual and auditory cortex, DMN (posterior cin-

gulate cortex) and CCN (supplementary motor area).

3.5 | The correlation between WAIS and age

Firstly, the total score of WAIS and similarity were both negatively

correlated with age (total score: r = −0.51, p = .000, n = 82; similarity:

r = −0.49, p = .000, n = 93), and similarity was negatively correlated

with transition of State 3–1 (r = −0.22, p = .031, n = 93). However,

the box block design is inversely correlated to age (r = −0.53,

p = .000, n = 82) and frequency of State 5 (r = −0.26, p = .019,

n = 82), while the correlation between age and the frequency is not

significant (r = 0.15, p = .18, n = 82). However, we think age is posi-

tively correlated with the frequency of State 5, as the total samples

(n = 434) suggested the two factors are positively correlated

(r = 0.11, p = .022). The size and age range of the subsample (n = 82,

age range: 23–65) may be the cause of that statistical significance

failed to reach borderline in subsample.

3.6 | Robustness analysis

Some literature (Gonzalez-Castillo et al., 2015; Leonardi & Van De

Ville, 2015) recommend removing frequency components below 1/w

FIGURE 3 The state assignments as a function of time for the four example subjects. Examples of FC dynamics for Subject 34, Subject

85, Subject 185, Subject 318 [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 The state index expressed at rest was correlated with age

State index r p

Total dwell time 0.20 0.000

Total transition time −0.20 0.000

Frequency of state 1 0.32 0.000

Frequency of state 3 −0.238 0.000

Frequency of state 4 −0.19 0.000

Frequency of state 5 0.11 0.022

Transition times of 1–5 0.19 0.000

Transition times of 2–3 −0.15 0.002

Transition times of 3–2 −0.12 0.015

Transition times of 3–4 −0.20 0.000

Transition times of 3–5 −0.17 0.000

Transition times of 4–3 −0.21 0.000

Transition times of 5–1 0.16 0.001

Transition times of 5–3 −0.14 0.003

Head motion 0.41 0.000

FIGURE 4 The distribution of each state in each age range [Color

figure can be viewed at wileyonlinelibrary.com]
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(where w is the length of the window), so we used a band pass filter-

ing of 0.023–0.18 Hz. However, others (Abrol et al., 2016; Damaraju

et al., 2014) low-pass filtered time series with a high frequency cutoff

of 0.15 Hz by Gift software (http://mialab.mrn.org/software/). To

examine our main results, we use the second filtering parameter to

reanalysis the correlation between aging and dynamic FC.

We examined the frequency of states as a function of time and

the transitions between them. As our previous results, FC tends to

sustain single state during a long period, while transition times are

rarely less. The total dwell time (the sum of dwell time of all states) of

states were positively correlated with age (r = 0.14, p = .003), while

the total transition of states were negatively correlated with age

(r = −0.14, p = .003). The results verified the previous finding. As

aging process occurring, the pattern of functional connectivity tended

to keep stable in resting period. Some states indexes were correlated

with age (See SI.D), and the distribution of each state in each age

range was shown in SI.E.

Then we compared the states of two analyzes (states identified in

first analysis and robust analysis). Firstly, we calculated the Pearson cor-

relation coefficient among states. Considering the correlation coefficient

and visual pattern, we think State 5_second is similarity with State

4_first (See SI.F). Secondly, we applied a proportional network threshold

of 15% and calculated the global efficiency, sub-network local efficiency,

and degree of each state. The State 5_second, just like State 4_first, had

greatest global efficiency and sub-network local efficiency (See SI.G).

Lastly, SI.H showed the centroids of the intrinsic states.

TABLE 2 Global efficiency and local efficiency of each age group

Age range N Global efficiency DMN local efficiency CC local efficiency SN local efficiency

19–30 149 0.351 0.601 0.603 0.616

31–40 32 0.347 0.598 0.580 0.599

41–50 63 0.341 0.588 0.577 0.607

51–60 103 0.334 0.576 0.575 0.571

61–70 59 0.328 0.566 0.552 0.553

71–80 28 0.325 0.578 0.562 0.534

Numbers of significant results (in 100 times) 94 11 16 79

FIGURE 5 The varying curve of different age ranges in the time course. The global efficiency of young age range was always higher than it of the

older age range in whole time course. The DMN local efficiency of elderly reached its peak at the beginning, while it of young reached its peak in
the intermediate process. The CCN local efficiency of elderly reached its peak at the beginning, while it of young reached its peak in the second
half. The SN local efficiency of elderly maintained a relative low level, while it of young had been growing up [Color figure can be viewed at
wileyonlinelibrary.com]
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4 | DISCUSSION

4.1 | Brain's dynamics functional network
connectivity over aging

The present study examined the effect of age on dynamic whole-brain

FC. The analysis revealed five recurring FC states departed with

substantial internetwork correlation variability. During the resting-

state period, the non-random distribution of states in different age

ranges suggested that dynamic changes of large-scale brain network

may be a fundamental feature of aging process.

Firstly, the number of transitions occurring between multi-

connectivity states and the rate of transition between states were all

higher among younger than older participants. It may be suggested

FIGURE 6 The centroids of the 5 dFNC states. In State 1, the whole network displayed slight and moderate negative connectivity. State

2 showed the high positive correlation among AUD, SMN, and VIS, while the negative correlation between SCN and other networks. In State
3, there are negative connections between DMN and other networks as well as SCN and others. In State 4, the whole network displayed slight
and moderate positive connectivity, and the high positive coupling among AUD, SMN, and VIS appeared again. In State 5, AUD, SMN, and SN
were negatively correlated with DMN and it displayed a whole negative pattern [Color figure can be viewed at wileyonlinelibrary.com]
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that the thinking is more active for young people than older people, or

the speed of mind change is faster during the resting period.

Secondly, the frequency of occurrence State 1 and 5 increased

over aging, while the same parameter for State 3 and 4 decreased

over aging. This suggests that the patterns of State 1 and 5 occur

more in the older life span, while the patterns of State 3 and 4 occur

more in the young life span. The State1 and state 5 displayed a whole

negative connectivity network, while State 3 and 4 had more positive

connectivity among sub-networks. This may indicated the functional

brain network of young may be inclined to presented integrate pat-

tern, while it of the elder may be inclined to presented segregate pat-

tern during the rest period.

Thirdly, a number of studies have proposed that head motion can

substantially affect functional connectivity (Power et al., 2012; Yan

et al., 2013; Laumann et al., 2016;Siegel et al., 2016), however, the

correlation between head motion and state dwell time is not signifi-

cant in this work, which verified the dynamic FC over time is not arti-

facts. In this work, head motion was negatively correlated with the

frequency of State 3, while positively correlated with age, and the fre-

quency of State 3 was negatively correlated with age. Maybe the

State 3 reflects the psychological characteristics associated with head

movement, such as control ability, which decreases in the aging pro-

cess. That is to say, head motion changes systematically with age,

which may reflect true neurobiological effects of aging. (Geerligs,

Tsvetanov, & Henson, 2017).

Lastly, our results suggested that dwell time is positively corre-

lated with age, while previous literature (Hutchison & Morton, 2015)

reported the dwell time is negatively correlated with age. One possi-

ble reason is that previous sample mainly focused 9–32 age range;

however, the age range of our subjects included 19–80. After 32 years

old, dwell time is still increasing, and 40 years old is a turning point,

twists, and turns down. The different results may be caused by that

we have adopted a larger age span sample. Another reason is that the

two results are not necessarily comparable as we use a different num-

ber of states.

4.2 | The difference among age groups in graph
metrics

In this study, we examined the difference among age groups in global

efficiency and local efficiency. The 19–30 age group has significant

greater global efficiency and local efficiency of sub-networks than

older age group. Young have greater global efficiency than elder

maybe because they have more amounts of State 4, which has largest

global efficiency in all states. In State 4, the whole brain functional

network displayed slight and moderate positive connectivity, and the

high positive coupling among AUD, SMN, and VIS. The state distribu-

tion again verified that the functional brain network of young pre-

sented more integrate patterns than it of elder during the rest period.

It is the first time to examine age impact in the graph metrics using

the dynamic functional network connectivity, which provides a new

perspective to observe the brain response of different people in the

resting-fMRI scan. For example, the peak and valley values of local

efficiency of DMN for young and elder occurs at different points in

the scanning process, which maybe means that young and elder has

different cognitive processing methods.

Previous researches finding of the correlation between age and

graph metrics based static functional brain network connectivity are

controversial. Some found that the global efficiency of brain func-

tional network showed no significant relationship with age (Cao et al.,

2014), some indicated that increasing global efficiency is accompanied

by aging (Chan et al., 2014; Sala-Llonch et al., 2014), and others

thought young have greater global efficiency than elder (Achard &

Bullmore, 2007). It is necessary to make abundant of researches to

find the respective meaning of static and dynamic results.

4.3 | The correlation of cognitive ability and state

Firstly, the total score of WAIS and similarity were both negatively

correlated with age, and similarity was negatively correlated with tran-

sition of State 3–1. The negative correlation between age and the

total score of WAIS may be resulted from that the numbers of elder

are few in the behavior sample and their scores are relatively low. The

similarity is used to evaluate the abstract verbal reasoning as well as

semantic knowledge (Wechsler, 1981). Although the ability is rela-

tively stable in the aging process, the response speed may be influ-

enced. In the State 3, AUD, SM, and VIS displayed the high positive

correlation between networks, and the SN displayed high positive cor-

relation within the network. This pattern maybe means that the indi-

vidual is alert and receive the information from the surrounding

(Kucyi, Hove, Esterman, Hutchison, & Valera, 2017). In State 1, the

whole network displayed slight and moderate negative connectivity,

though the AUD, SM, and VIS displayed a slight positive correlation

between networks. This pattern maybe suggests that the individual

experiences the resting state and decreases the attention to the out-

sides (Kucyi et al., 2017). Therefore, the higher this transition fre-

quency, the more the individual's attention is to the inner world. Thus,

TABLE 3 Graphic indexes of each state

State indexes State 1 State 2 State 3 State 4 State 5

Global efficiency 0.1938 0.2069 0.2388 0.3049 0.2005

DMN local efficiency 0.3442 0.3025 0.3830 0.5334 0.4610

CCN local efficiency 0.2932 0.2316 0.3929 0.4190 0.3625

SN local efficiency 0.3847 0.4412 0.5327 0.6566 0.4454

Hub node VIS(71,28), DMN(52) VIS(71,55,28,54) VIS(71,28), AUD(51,63) VIS(28,71,55) AUD(63), VIS(28), CCN(47)

N 25,879 10,111 28,300 10,641 16,209

IC labels: 28, 47, 51, 52, 54, 55, 63, 71.
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the less attention to the outside world may be resulted the lower the

similarity score.

Secondly, the box block design is inversely correlated to age and

frequency of State 5, while the correlation between age and the fre-

quency is not significant. However, we think age is positively corre-

lated with the frequency of State 5, as the total samples (n = 434, age

range: 19–80) suggested the two factors are positively correlated. The

size and age range of the subsample (n = 82, age range: 23–65) may

be the cause of that statistical significance failed to reach borderline

in subsample. The block design test evaluates fine motor skills, proces-

sing speed, and visuospatial ability, which are decreasing accompanied

by age increasing (Hoogendam et al., 2014). In State 5, AUD, SMN,

and SN were negatively correlated with DMN and it displayed a whole

negative pattern. The pattern of State 5 in elder may reflect a true

decreasing in certain cognitive abilities.

5 | CONCLUSION

The findings motivate a reconceptualization of the link between aging

and FC. The previous model assumed that FC remains static through-

out the resting period, neglecting the dynamic feature of the brain's

functional connectivity. Our results instead suggest that these net-

works are, like aging process themselves, transient, and dynamic.

There are also some limitations to note in our study. One potential

problem is that although we provided robust analysis, the direct rela-

tionship between aging and brain state requires utilizing the indepen-

dent sample (Zuo et al., 2014; Shafto et al., 2014) to verify the

reliability of the results, and this work is in prepared. Secondly, using

fMRI data alone, it is not possible to determine whether network

changed as aging increased structure connectivity between brain

regions, or whether the topological changes were merely a necessary

temporary state. Besides, using functional imaging across develop-

ment are age-associated motion artifacts and physiological signals

(Power et al., 2012; Lehmann, White, Henson, & Geerligs, 2017; Geer-

ligs et al., 2017), however, the impact of these factors on dynamic FC

can be minimized by larger sampling (Zuo & Xing, 2014; Zuo et al.,

2014), rigorous head motion control (Laumann et al., 2016; Siegel

et al., 2016) or simultaneous psychological recordings. Furthermore,

Van Den Heuvel et al. (2017) found lower levels of overall FC in either

the patient or control group will often lead to differences in network

efficiency and clustering, therefore, examine the overall FC strength

across age ranges seems essential. Finally, we plan to investigate the

underlying significance of states in more detail using methods such as

time-varying analysis. Future work would focus on depicting the cog-

nitive symbolize of connectivity state. There is a lot of useful informa-

tion that we can learn from characterizing the network properties of

each state individually; however, we are left with properties across

multiple states.
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