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Abstract
Previous positron emission tomography (PET) studies have quantified filamentous tau pathology

using regions-of-interest (ROIs) based on observations of the topographical distribution of neu-

rofibrillary tangles in post-mortem tissue. However, such approaches may not take full advan-

tage of information contained in neuroimaging data. The present study employs an unsupervised

data-driven method to identify spatial patterns of tau-PET distribution, and to compare these

patterns to previously published “pathology-driven” ROIs. Tau-PET patterns were identified

from a discovery sample comprised of 123 normal controls and patients with mild cognitive

impairment or Alzheimer’s disease (AD) dementia from the Swedish BioFINDER cohort, who

underwent [18F]AV1451 PET scanning. Associations with cognition were tested in a separate

sample of 90 individuals from ADNI. BioFINDER [18F]AV1451 images were entered into a

robust voxelwise stable clustering algorithm, which resulted in five clusters. Mean [18F]AV1451

uptake in the data-driven clusters, and in 35 previously published pathology-driven ROIs, was

extracted from ADNI [18F]AV1451 scans. We performed linear models comparing [18F]AV1451

signal across all 40 ROIs to tests of global cognition and episodic memory, adjusting for age, sex,

and education. Two data-driven ROIs consistently demonstrated the strongest or near-strongest

effect sizes across all cognitive tests. Inputting all regions plus demographics into a feature selec-

tion routine resulted in selection of two ROIs (one data-driven, one pathology-driven) and edu-

cation, which together explained 28% of the variance of a global cognitive composite score. Our
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findings suggest that [18F]AV1451-PET data naturally clusters into spatial patterns that are bio-

logically meaningful and that may offer advantages as clinical tools.
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1 | INTRODUCTION

Alzheimer’s disease (AD) is neuropathologically defined by the pres-

ence of widespread extracellular plaques containing amyloid-β and

intracellular neurofibrillary tangles consisting of aggregated tau pro-

teins (Braak & Braak, 1991; Masters et al., 1985). While amyloid-β

may be present decades prior to symptom onset (Jansen et al., 2015),

the presence of neocortical tau is temporally more closely related to

current cognitive status and degree of neurodegeneration, as convinc-

ingly demonstrated by studies utilizing post-mortem tissue, animal

models, cerebrospinal fluid and, more recently, the positron emission

tomography (PET) tracer [18F]AV1451 (Arriagada, Growdon, Hedle-

ywhyte, & Hyman, 1992; Bejanin et al., 2017; Cho et al., 2017; Nelson

et al., 2013; Ossenkoppele et al., 2016; Van Rossum et al., 2012). [18F]

AV1451 binds paired helical filaments of tau with high affinity and

selectivity (Chien et al., 2013; Lowe et al., 2016; Marquié et al., 2015,

2017; Xia et al., 2013), and can be used to investigate the distribution

of tau pathology in the living human brain. Several studies have shown

strong spatial resemblance between in vivo tau PET patterns and neu-

ropathological staging of neurofibrillary tangles as proposed by Braak

and Braak (Cho et al., 2016; Schöll, Lockhart et al., 2016; Schwarz

et al., 2016), reflecting prototypical progression from [trans]entorhinal

(stage I/II) to limbic (stage III/IV) to isocortical (stage V/VI) regions

(Braak & Braak, 1991). Furthermore, regional [18F]AV1451 retention

co-localizes with sites of brain atrophy or hypometabolism

(Ossenkoppele et al., 2016; Xia et al., 2017) and has been associated

with impairments in specific cognitive domains (Bejanin et al., 2017;

Cho et al., 2017; Ossenkoppele et al., 2016).

Given this strong regional specificity of tau pathology, it is impor-

tant to consider how regions-of-interest (ROIs) are defined, as they

could potentially impact study outcomes. To date, most studies

employing tau-PET tracers involved ROIs constructed based on neu-

ropathological studies. For example, some studies mimicked the Braak

stages in vivo (Cho et al., 2016; Schöll, Lockhart et al., 2016; Schwarz

et al., 2016), while others selected specific regions reflecting early

(e.g., entorhinal cortex) or more advanced (e.g., inferior temporal cor-

tex) disease stages (Johnson et al., 2016). These approaches have sev-

eral advantages as they are supported by fundamental research and

enhance generalizability across studies. However, compared with neu-

roimaging, neuropathological data typically include only a few slices in

a constrained number of brain regions, and brain tissue is affected by

death (Scheltens & Rockwood, 2011). Additionally, tau PET signal

does not equal presence of tau pathology. There are several sources

of [18F]AV1451 signal and noise, including target binding, off-target

binding (e.g., Monamine oxidase, neuromelanin, vascular lesions, iron),

non-specific binding and imaging related noise (e.g., partial volume

effects) (Choi et al., 2017; Harada et al., 2018; Ikonomovic, Abraham-

son, Price, Mathis, & Klunk, 2016; Lockhart et al., 2017; Lowe et al.,

2016; Marquié et al., 2015; Ng et al., 2017; Schöll et al., 2016). An

alternative approach could therefore be to select ROIs based on data-

driven approaches (Dickerson et al., 2011; Grothe, Barthel, Dyrba,

Sabri, & Teipel, 2017; Landau et al., 2011; Pankov et al., 2016),

thereby taking full advantage of the abundance of information con-

tained in neuroimaging data, but also accounting for the idiosyncrasies

of PET imaging data.

In light of ongoing efforts to define appropriate ROIs and deter-

mine tau PET-positivity, it is important to compare data-driven

approaches (agnostic, “where is the tau?”) with theory-derived ROIs

based on post-mortem studies (directed, “is the tau here?”). In the pre-

sent study, we applied an unsupervised algorithm to identify clusters

of [18F]AV1451 signal and compared the spatial patterns of these

clusters with neuropathologically derived ROIs described in previous

publications. As a secondary analysis, we tested which ROIs best cor-

related with global cognition in an independent cohort of cognitively

normal, mild cognitive impairment, and AD dementia subjects. We

hypothesized that our data-driven approach would corroborate neu-

ropathological findings, but would also present novel information

leading to enhanced associations with cognition.

2 | MATERIALS AND METHODS

2.1 | Participants

Two separate cohorts were included in this study. Participants from

the Swedish BioFINDER study were used to perform clustering analy-

sis on [18F]AV1451 data, whereas participants from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) were used to test associations

between the clustering-derived ROIs and cognition. This design

allowed us to not only probe the patterns of spatial covariance

of [18F]AV1451, but also to assess the utility of these patterns as a

general [18F]AV1451 biomarker without concern of overfitting or

“double-dipping” (c.f., Kriegeskorte, Simmons, Bellgowan, & Baker,

2009). Demographic, clinical and biomarker information for both

cohorts are presented in Table 1.

The BioFINDER cohort is a multi-site study designed for the pur-

pose of developing biomarkers for neurodegenerative diseases. More

information can be found at http://biofinder.se. Study participants

included 55 subjects with normal cognition, 21 with mild cognitive

impairment (MCI), and 47 with Alzheimer’s dementia, who had
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complete MRI and [18F]AV1451 PET data (Table 1). Patients with MCI

were referred to a memory clinic and demonstrated objective cogni-

tive impairment that could not be explained by another condition. AD

dementia patients met criteria for the DSM-V (American Psychiatric

Association, 2013) and NINCDS-ADRDA (McKhann et al., 2011) for

probable AD, established by clinicians blinded to PET data. To opti-

mize overlap with the ADNI cohort, dementia patients were only

included if they presented with an amnestic-predominant phenotype.

Both dementia and MCI patients were only included in this study if

they demonstrated abnormal Aβ1-42 levels in the CSF (INNOTEST,

cut-off: 650 ng/L; Palmqvist et al., 2015). The sample of controls

selected for [18F]AV1451 scanning was intentionally enriched for

β-amyloid positivity to include people in the preclinical stage of AD

(see Table 1). This enrichment was achieved by ensuring that 50% of

the cognitively normal participants invited for [18F]AV1451 imaging

had shown positive PET or CSF β-amyloid measurements at previous

visits. PET imaging for the study was approved by the Swedish Medi-

cines and Products Agency and the local Radiation Safety Committee

at Skåne University Hospital, Sweden. All participants provided writ-

ten informed consent according to the Declaration of Helsinki, and

ethical approval was given by the Ethics Committee of Lund Univer-

sity, Lund, Sweden.

ADNI is a multi-site open access dataset designed to accelerate

the discovery of biomarkers to identify and track AD pathology (adni.

loni.usc.edu/). The current study included all ADNI individuals with

complete [18F]AV1451 scans that were available in November, 2016.

This included 43 cognitively normal elderly controls, 37 patients with

MCI, and 10 patients with a recent diagnosis of Alzheimer’s dementia

(Table 1).

In addition to imaging data, age, sex, education, diagnosis,

amyloid-β status on [18F]florbetapir PET (Landau et al., 2013), and

scores from six tests measuring global cognition or activities of daily

living were downloaded from the ADNI-LONI website (adni.loni.usc.

edu). The cognitive tests were as follows: Mini-Mental State Examina-

tion (MMSE) (Folstein, Folstein, & McHugh, 1975); Clinical Dementia

Rating Sum of Boxes (CDRSB) (Hughes, Berg, Danziger, Coben, &

Martin, 1982); Alzheimer’s disease Assessment Scale 11 (ADAS11)

(Rosen, Mohs, & Davis, 1984) and 13 (ADAS13) (Mohs et al., 1997);

Everyday Cognition (ECog) (Farias et al., 2008); Functional Activities

Questionnaire (FAQ) (Pfeffer, Kurosaki, Harrah, Chance, & Filos,

1982). We also downloaded the ADNI-MEM score, an episodic mem-

ory composite score provided by ADNI (Crane et al., 2012).

2.2 | Imaging

[18F]AV1451 images were processed using separate but nearly identi-

cal pipelines across the two cohorts. Acquisition and processing pro-

cedures for [18F]AV1451 processing in the BioFINDER cohort has

been described elsewhere (Hansson, Grothe, Strandberg, & Ohlsson,

2017]. Scans were reconstructed into 5-min frames and motion cor-

rected using AFNI’s 3dvolreg https://afni.nimh.nih.gov/. Mean [18F]

AV1451 images were created over a time-window of 80–100 min

post-injection, and these images were coregistered to each subject’s

T1 image in native space. Mean images were then intensity normal-

ized using a complete cerebellar gray reference region to create stan-

dard uptake value ratio (SUVR) images. Coregistered MRI images were

normalized to the MNI-ICBM152 template using Advanced Normali-

zation Tools (https://stnava.github.io/ANTs/) and the transformation

parameters were applied to the SUVR images. Finally, SUVR images

were smoothed with an 8 mm FWHM Gaussian filter.

For the ADNI cohort, mean 80–100 min [18F]AV1451 images, as

well as MPRAGE images closest to [18F]AV1451 scans, were down-

loaded from the ADNI-LONI website. Details on acquisition proce-

dures for these [18F]AV1451 and MRI images can be found elsewhere

(http://adni.loni.usc.edu/methods/documents/). [18F]AV1451 images

were processed in accordance to procedures described in Schöll,

Lockhart et al. (2016). Briefly, T1 images were processed using Free-

surfer v5.3 and [18F]AV1451 images were coregistered to native T1s

using Statistical Parametric Mapping 12 (www.fil.ion.ucl.ac.uk/spm/).

SUVR images were created using a cerebellar gray reference region

and images were normalized to MNI space using the parameters from

the coregistered T1. Figure 1 shows mean [18F]AV1451 SUVR images

stratified by diagnosis and amyloid status for each cohort.

2.3 | Clustering of [18F]AV1451 data

Our primary analysis involved the derivation of data-driven ROIs by

using unsupervised machine learning to elucidate stable patterns of

[18F]AV1451 signal covariance across a cognitively diverse dataset.

TABLE 1 Demographic information, MMSE scores, and amyloid-positivity rates

Controls MCI AD Total

BioF ADNI BioF ADNI BioF ADNI BioF ADNI

n 55 43 21 37 47 10 123 90

Age 75.0 70.3 70.8 72.0 70.1 73.3 72.4 71.3

(SD) (6.2) (5.9) (10.9) (6.8) (8.6) (4.3) (8.4) (6.1)

% male 50.9% 46.5% 57.1% 67.6% 55.3% 60.0% 53.7% 56.7%

Education 12.0 16.1 11.7 16.9 12.2 15.0 12.0 16.3

(SD) (3.7) (2.4) (3.7) (2.7) (3.2) (3.0) (3.5) (2.6)

% amyloid+ 43.6% 33.3% 100% 44% 100% 100% 73.3% 44.8%

MMSE 29.1 29.0 25.7 28.4 21.2 25.5 25.5 28.3

(SD) (1.1) (1.3) (2.8) (2.0) (5.1) (5.1) (4.9) (2.5)

*BOLD text indicates significant difference (p < .05) between cohorts, as measured by t-test, or Fisher’s exact tests.
ADNI, Alzheimer’s disease neuroimaging initiative; BioF, BioFINDER; MMSE, mini-mental state examination; SD, standard deviation.
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Cross-subject [18F]AV1451-PET covariance networks were derived

from all 123 BioFINDER [18F]AV1451 images using an open-source

unsupervised consensus-clustering algorithm called Bootstrap Analy-

sis of Stable Clusters (BASC; Figure 2) (Bellec, Rosa-Neto, Lyttelton,

Benali, & Evans, 2010). BASC is a two-step consensus-clustering algo-

rithm that enhances the stability of the clustering process by repeat-

edly clustering bootstrapped samples of the input data, and deriving

the final partition from this stability matrix, rather than the original

data (c.f., Fred & Jain, 2005). This approach offers two advantages in

the context of this study. First, the stochastic nature of many cluster-

ing algorithms tends to lead to different solutions depending on their

initialization state, whereas BASC performs clustering on a stability

matrix generated from many solutions (and thus many initializations).

This leads to greater reproducibility in the clustering solutions gener-

ated by BASC. Second, because the initial set of clustering analyses is

performed on bootstrap samples of the input data, the final solution is

less dependent on the clinical composition of the input data.

BASC was adapted to 3D [18F]AV1451 data by stacking all

123 BioFINDER [18F]AV1451 images along a fourth (subject) dimen-

sion, creating a single 4D image to be submitted as input. BASC first

reduces the dimensions of the data with a previously described

region-growing algorithm (Bellec et al., 2006), which was set to extract

spatially constrained atoms (small regions of redundant signal) with a

size threshold of 1,000 mm3. In order to reduce computational

demands, the Desikan–Killiany atlas (Desikan et al., 2006) was used as

a prior for region constraint, and the data was masked with a liberal

gray matter mask, which included the subcortex but had the cerebel-

lum manually removed (since this was used as the reference region for

[18F]AV1451 images). The region-growing algorithm resulted in a total

of 730 atoms, which were included in the BASC algorithm. BASC next

performs recursive k-means clustering on bootstrapped samples of

the input data. After each clustering iteration, information about clus-

ter membership is stored as a binarized adjacency matrix. The adja-

cency matrices are averaged resulting in a stability matrix representing

probabilities of each pair of atoms clustering together (Figure 2).

Finally, hierarchical agglomerative clustering with Ward criterion is

applied to the stability matrix, resulting in the final clustering solution.

The process is repeated over several clustering solutions (k = 1–50),

and the MSTEPs method (Bellec, 2013) was implemented to find the

most stable clustering solutions at different resolutions. In the interest

of multiple comparisons, and similarity to Braak neuropathological

staging (i.e., six ROIs), we chose the lowest resolution solution for sub-

sequent analysis (though the other two solutions are visualized). Note

that no size constraints were imposed on clustering solutions (except

at the level of atom-size in the region-growing—see above). Cluster-

cores were determined as voxels where cluster probability member-

ship exceeded 0.5 (BASC default setting), eliminating unstable voxels

from analysis (Bellec et al., 2010; Garcia-Garcia et al., 2018). After

determining cluster-cores in the BIOFINDER cohort, we extracted the

average [18F]AV1451 SUVR for each cluster core from all ADNI sub-

jects, and these values were used for subsequent analysis investigat-

ing associations with cognition.

The choice of the k-means algorithm for the initial clustering and

hierarchical clustering with ward criterion for partitioning the stability

matrix are somewhat arbitrary. The k-means is a particularly fast algo-

rithm and therefore lends itself well to bootstrapping. Meanwhile, the

hierarchical clustering routine used in BASC is an appropriate algo-

rithm for the stability matrix, which is a similarity matrix, and it pro-

vides solutions at multiple resolutions making it amenable to the

BASC framework (Bellec et al., 2010). Both algorithms are standard,

well validated, simple, and involve few free parameters. This latter

point is important, as BASC itself only has a few principle parameters:

namely the number of clusters to extract (in this case, determined by

MSTEPS), the number of bootstrap samples (in this case, 1000), and

the size of the bootstrap sample (in this case, the length of the input

data—123 cases) (Bellec et al., 2010; Orban et al., 2015). Other param-

eters are associated with some of the steps peripheral to the central

BASC algorithm, namely the region growing preprocessing step and

MSTEPS algorithm to determine the number of clusters, and these

parameters were left to their default settings. Briefly, the region grow-

ing includes a threshold parameter limiting the maximum size of

“atoms,” which is mostly related to computational demand.

FIGURE 1 Mean [18F]AV1451 uptake according to diagnosis, amyloid status and cohort. Mean [18F]AV1451 SUVR images stratified by amyloid

status and disease stage, across both the ADNI (top) and BioFINDER (bottom) cohorts [Color figure can be viewed at wileyonlinelibrary.com]
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Meanwhile, MSTEPS works on a sparse grid and includes a parameter

specifying the percentage of variance maintained (similar to PCA). In

addition, MSTEPS allows the definition of the size of the window

within which stable clusters are sought (Bellec, 2013).

2.4 | Definition of Braak stage ROIs described in
other studies

A number of studies have created ROIs mirroring the Braak stages

described from pathological studies. To test the utility of our data-driven

ROIs vis-à-vis those defined in correspondence to the pathological liter-

ature, we recreated the Braak ROIs described in three different studies

(Cho et al., 2016; Schöll, Lockhart et al., 2016; Schwarz et al., 2016).

Schöll, Lockhart et al. and Cho et al. were constructed using regions

from the Desikan–Killiany atlas, and we recreated these ROIs in direct

correspondence to what has been reported in these two studies.

Schwarz et al. instead generated small ROIs designed to mirror the slabs

of cerebral cortex extracted during autopsy for Braak staging. These

regions were constructed with a script generously provided by the

authors. For all analyses, Braak ROIs were included both individually

(“single”) and cumulatively (“stage”). For example, for Braak Stage III, one

ROI was created containing all regions from Braak I, II, and III included

(“stage”), as well as a ROI created including only regions in Braak III (“sin-

gle”). Finally, some studies have chosen to use only the bilateral inferior

temporal lobe from the Desikan–Killiany atlas to summarize global tau bur-

den (Johnson et al., 2016), so we included this region in subsequent analy-

sis as well. Studies also frequently used the bilateral entorhinal cortex

from this atlas, and it should be noted that this region is also included,

namely as Stage I from Cho et al. and Schöll et al. Average [18F]AV1451

SUVR was extracted for each ROI (35 in total) for each subject.

2.5 | Similarity between data-driven clusters,
anatomical ROIs, and Braak stage ROIs

We compiled descriptive information about the similarity between

our cluster-derived ROIs and the Braak ROIs from the literature. For

FIGURE 2 Bootstrap analysis of stable clusters on [18F]AV1451 data. [18F]AV1451 scans were entered into a voxelwise clustering algorithm. The

optimal solutions were determined using the MSTEPS approach. This resulted in five [18F]AV1451 covariance networks. These networks were
masked with a stability threshold of 0.5, and are displayed in the lower half of the figure [Color figure can be viewed at wileyonlinelibrary.com]
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comparisons to regions from Schöll et al. and Cho et al., we used nor-

malized mutual information. Due to the small size of the Schwarz

et al. regions, comparisons involved measuring the percentage of each

Schwarz ROI falling inside of each cluster-derived ROI.

2.6 | Reproducibility of [18F]AV1451 clustering
solution

After clustering [18F]AV1451 data using BASC (Section 2.3), we assessed

whether we could reproduce these clusters in a separate dataset. BASC

was therefore run on 90 [18F]AV1451 scans from ADNI with the exact

same parameters used for the BioFINDER dataset. MSTEPS was again

used to define the number of clusters. In order to compare the clustering

solution to the solution found in the BioFINDER sample, we matched

clusters from the ADNI sample to the most spatially similar clusters from

the BioFINDER sample, and harmonized the numeric labels between the

two solutions. As a qualitative analysis, we extracted voxels that were

part of the same cluster in both clustering solutions. The resulting voxels

can be thought to represent regions that demonstrated consistent clus-

tering behavior ([18F]AV1451 signal covariance) across the two samples.

For each cluster, we calculated the Dice coefficient representing within-

cluster agreement between the two clustering solutions. We also per-

formed the same analyses constrained within the cluster-cores from the

BioFINDER solution, assuming the agreement should be higher within

the cores. We also calculated both the adjusted Rand index and adjusted

mutual information score (passing the BioFINDER solution as the “true

labels”) as a measurement of overall consistency between the two clus-

tering solutions. To put these measurements into context, we performed

five 50% splits of the ADNI data and compared clustering solutions

between each split. The purpose of this analysis was to identify whether

clustering within the ADNI dataset showed greater or less stability com-

pared with the stability between the ADNI and BioFINDER datasets.

2.7 | Statistical analysis

Our secondary analyses were aimed at assessing the utility and gener-

alizability of our data-driven covariance networks. We performed lin-

ear models between these covariance networks and the scores from

six different available test scores assessing global cognition and func-

tion (see Supporting Information Table S1). In addition, the scores

were summarized using Principal components analysis (PCA) using sin-

gular value decomposition. The PCA was fit to data from the six cogni-

tive test scores, which were scaled to a 0 mean with unit variance.

The first component explained 72% of the total model variance, and

was used to transform the cognitive data into a single Global Cogni-

tion composite score. For each of the cognitive tests, as well as the

composite score, separate general linear models for each ROI (40 in

total; our five data-driven clusters and 35 ROIs from the literature)

were constructed with cognitive test score as the dependent variable

and age, sex and education as covariates. We repeated this analysis

for the ADNI-MEM score to test the relationship between [18F]

AV1451 and episodic memory in all 40 ROIs. Tests surviving Bonfer-

roni correction for multiple comparisons are reported.

In order to identify a sparse set of non-redundant covariates that

best describe the global cognitive data in ADNI, we submitted all

40 tau ROIs plus age, sex and education to a Least Absolute Shrinkage

and Selection Operator (Lasso) regression-based feature selection

routine. The Lasso uses L1 regularization (coordinate descent) to

penalize regression coefficients based on their maximum likelihood

estimates, and is therefore a useful approach to select a small number

of variables from a large number of collinear covariates. In the current

implementation, the degree of penalization is optimized using 10-fold

cross-validation. All tau ROIs and demographics were scaled to be

mean-centered with unit variance, and entered into the Lasso regres-

sion model with the Global Cognition composite score as the depen-

dent variable. Features selected by the Lasso (absolute beta >0.25)

were entered together into a general linear model (GLM) with MMSE

as the dependent variable. Additionally, to ensure our results were

representative of global cognition and not specific to the composite

score, the fitted values from this GLM were used to predict scores of

each of the six cognitive tests. Finally, the Lasso was repeated sepa-

rately for each of the individual tests as well.

With the exception of BASC, all statistics were implemented

using the pandas, numpy, scipy, and scikit-learn (Pedregosa et al.,

2012) packages in Python 3.5.2 (https://www.python.org/).

3 | RESULTS

3.1 | Participant characteristics

Table 1 contains demographic information, MMSE scores and amyloid

positivity rates for both the ADNI and BioFINDER sample. The sample

used for clustering (BioFINDER) demonstrated important differences

compared with the sample used for testing (ADNI). BioFINDER sub-

jects were less highly educated across the whole sample, and BioFIN-

DER controls were on average older than ADNI controls. Additionally,

the BioFINDER sample demonstrated lower MMSE scores across the

whole sample compared with ADNI, including within MCI and demen-

tia groups. Finally, 45% of ADNI subjects were amyloid-positive ver-

sus 73% of BioFINDER subjects, which was primarily related to the

fact that only amyloid positive MCI patients were included in the Bio-

FINDER sample.

3.2 | Data-driven tau-PET covariance networks

123 BioFINDER [18F]AV1451 scans were entered into an advanced

clustering algorithm in order to identify networks of regional [18F]

AV1451 signal covariance across subjects. The MSTEPS algorithm

identified 5-, 9-, and 32-cluster solutions as optimal solutions. The

parcellations generated from the three stable clustering solutions are

visualized in Supporting Information Figure S1. For the purposes of

comparing with Braak stage ROIs, we chose the lowest-resolution

solution (k = 5) for subsequent analyses, visualized in Figure 2. The

clusters were interpreted and named as follows: “1: Subcortical,” “2:

Frontal,” “3: Medial/Anterior/Inferior Temporal,” “4: Temporo-

parietal,” and “5: Unimodal Sensory.” Cluster 3 bore resemblance to

regions often involved in early tau aggregation and atrophy (Braak &

Braak, 1991), while Cluster 4 also appeared similar to regions com-

monly associated with neurodegeneration in AD (Dickerson et al.,
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2011; Landau et al., 2011). Of note, the hippocampus was largely

unrepresented in any of the cluster-cores, though some voxels in the

head of the hippocampus were included in Cluster 3, and a few dis-

tributed voxels were included in Cluster 1 (Subcortex). However, using

a winner-takes-all clustering approach, the voxels in the hippocampus

were almost equally distributed between Cluster 1 and Cluster 3.

3.3 | Similarity to Braak ROIs

Descriptive metrics were used to quantify the spatial similarity between

the data-driven covariance networks and the Braak Stage ROIs intro-

duced in the literature (Figure 3). Cluster 5 (“Unimodal Sensory”) demon-

strated a high degree of overlap with Braak Stage VI across all region

sets. Spatial similarity was also evident between Cluster 3 (“Medial/

Anterior/Inferior Temporal”) and Stage I–IV from Cho et al., and this

cluster almost completely circumscribed Stages I–III from Schwarz

et al. Cluster 1 (“Subcortex”) was most similar to Schöll, Lockhart

et al. Stage II, due in part to its inclusion of the hippocampus. Little spatial

similarity was evident between Cluster 2 (“Frontal”) and any of the Braak

Stage ROIs, though some similarity was seen with the Stage V region from

Schöll, Lockhart et al. and Cho et al. due to their inclusion of many frontal

lobe structures. Similarly, Cluster 4 (“Temporo-parietal”) did not demon-

strate strong spatial similarity to any of the Braak ROIs, though it did par-

tially overlap with the Braak single IV and V regions from Schwarz et al.

3.4 | Associations with cognition in ADNI

General linear models were run in the ADNI dataset assessing associa-

tions separately between each of 40 tau ROIs (our five data-driven

clusters established in the BioFINDER study, and 35 ROIs from the lit-

erature) and a Global Cognitive composite score, controlling for age,

sex, and education (Figure 4). [18F]AV1451 signal in several ROIs dem-

onstrated strong associations with global cognition, though only the

data-driven Cluster 4 (“Temporo-parietal”; β = −3.24 [SE = 0.91],

t = −3.43, p < .001) survived multiple comparisons.

To ensure our results were not specific to the Global Cognition com-

posite score, we repeated this analysis using the six individual measures

of global cognition and function that composed the composite score

(Supporting Information Table S1). The data-driven Cluster 4 (“Temporo-

parietal”) described global cognition better than all other ROIs using four

of the six cognitive measures, and was in the top five for all of them.

Across all cognitive measures, Clusters 4 and 3 (“Medial/anterior/inferior

temporal”) ranked best and second best, respectively, at describing global

cognitive data (Figure 5). Notably, the Schwarz Stage I ROI also per-

formed well across cognitive measures, except for the MMSE.

Finally, since many ADNI subjects had either MCI or were at early

stages of dementia and may not show great variation in tests of global

cognition scores, we repeated the above analysis substituting global

cognition with a composite measure of episodic memory. (Supporting

Information Table S2) shows the top five ROIs with the strongest

associations with episodic memory. Although none of the associations

survived correction for multiple comparisons, the strongest associa-

tions were found with early stage pathological ROIs (resembling

(trans)enthorinal cortex), followed by the data-driven temporo-

parietal ROI.

3.5 | Identifying a combinatorial tau-PET biomarker
for cognition

Next, all tau ROIs were entered into a Lasso regression model in order

to identify a sparse set of covariates that best describe global

FIGURE 3 Comparison between data-driven and hypothesis-driven ROIs. Data-driven [18F]AV1451 covariance networks were compared with

previously existing Braak stage ROIs from the literature using descriptive statistics. The clusters were compared with ROIs from Schöll et al. and
Cho et al. using normalized mutual information (top left), and were compared with regions from Schwarz et al. using the percentage of Schwarz
ROI voxels within each data-driven cluster [Color figure can be viewed at wileyonlinelibrary.com]
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cognitive data (Figure 6). The optimal penalization value was defined

through cross-validation as 0.019. The Lasso reduced all coefficients

except Cluster 4 (“Temporo-parietal”), Braak Stage VI from Schwarz

et al., and education. These three variables were entered together into

a general linear model, and together explained a much greater propor-

tion of variance in global cognitive data (r2[4:81] = 0.28, p < .0001;

FIGURE 4 Associations between [18F]AV1451 ROIs and global cognition. General linear models comparing [18F]AV1451 signal to global

cognition composite scores were fitted, adjusting for age, sex, and education. For each model, a different [18F]AV1451 ROI was used. ROIs
included the five clusters identified in our analysis, as well as Braak stage regions taken from three different articles: Schöll, Lockhart et al., 2016;
Cho et al., 2016; Schwarz et al., 2016. Two versions of each Braak ROI were created, one using regions from that stage only (e.g., Stage 3), and
one combining all regions from that stage with all regions from previous stages (e.g., Stage 1 + 2 + 3). The effect size (t-value) of each tau ROI is
shown. [18F]AV1451 binding in several ROIs demonstrated strong relationships with global cognition, though only the data-driven temporo-
parietal region survived multiple comparisons [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Cumulative ranking of ROI performance across all measures of global cognition and function. For each measure of global cognition,

[18F]AV1451 ROIs were ranked from worst to best (such that the worst region would have rank of 1) with respect to the effect size of the
association between [18F]AV1451 in that region and the cognitive score. The ranks were then summed across all cognitive measurements and are
displayed here. The data-driven cluster 4 (“Temporo-parietal”) ranked the best cumulatively across cognitive tests, with the data-driven cluster
3 (“medial/inferior/anterior temporal”) ranking second best [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 6) compared with the individual effect sizes of each covariate

(highest r2 = 0.12). The earlier negative association between Cluster

4 and Global Cognition was strengthened (t = −4.98, p < .001),

although positive associations were seen for the other two covariates

(Schwarz Single 6: t = 3.61, p = .001; Education: t = 2.53, p = .013).

In addition, the fitted values of this GLM explained 18.7–26.2% of the

variance in the six individual cognitive tests composing the composite

score (all p < .001), indicating the model generalizes well to individual

cognitive tests (Supporting Information Table S3). Finally, the Lasso

feature selection analysis was repeated for the six individual tests of

global cognition. The data-driven Cluster 4 was selected across all six

analyses, and was the only ROI selected for two analyses (Supporting

Information Table S4).

3.6 | Reproducibility of tau-PET clusters across
datasets

BASC analysis was run a second time on the 90 ADNI [18F]AV1451

scans to establish whether patterns of tau-PET covariance are repro-

ducible across different datasets. MSTEPS identified a six-cluster solu-

tion as the lowest resolution solution in the ADNI dataset. Five of

these clusters demonstrated similar spatial patterns to the five clus-

ters identified in the BioFINDER sample, while a sixth cluster emerged

which uniformly encircled the entire cerebral cortex (Supporting Infor-

mation Figure S2). This sixth cluster labeled 18% of brain voxels, and

the average within-cluster [18F]AV1451 SUVR was 0.88 (SD = 0.16).

The cluster most likely represents a partial volume or non tau-related

atrophy effect, possibly driven by the high proportion of amyloid-

negative MCI subjects or the low number of subjects with extensive

isocortical tau in the ADNI cohort.

Despite the existence of this sixth cluster and the distinct clinical

composition of the two datasets, some agreement between the two

clustering solutions could be observed (Figure 7). Overall, 35% of

brain voxels showed similar clustering patterns between the two data-

sets (adjusted Rand index = 0.112; adjusted mutual information

score = 0.189). Figure 7a shows a cortical projection of voxels demon-

strating similar clustering behavior across both datasets. Across data-

sets, [18F]AV1451 spatial covariance was consistent in the medial and

inferior temporal lobes, the primary visual cortex, the temporo-parietal

cortex, the medial frontal lobe, and most acutely in the subcortex. The

subcortex formed its own cluster in both datasets, both including the

hippocampus, and overall showed excellent agreement (Dice coeffi-

cient = 0.87). The Dice coefficients in the other clusters ranged from

0.33 to 0.46 (Figure 4b), indicating that around one third to one half

of voxels within clusters showed agreement between the two data-

sets. Notable regions of disagreement included the precuneus and

posterior cingulate (clustered with the temporal lobes in ADNI), the

insula (clustered with the medial frontal lobe in ADNI), the sensorimo-

tor cortex, and the lateral frontal lobes (distributed across multiple

clusters in ADNI). When restricting the analysis only to voxels con-

tained within the BioFINDER cluster-cores, the agreement between

the two datasets improved (Figure 7b). This observation was consis-

tent across all clusters except the temporo-parietal cluster, and pro-

vides evidence supporting the notion that voxels that covary stably

within datasets may also show more stable covariance across

datasets.

For the purposes of comparison, BASC was performed on five

random 50% splits of the ADNI sample, and the resulting partitions

were compared with one another. The average adjusted Rand index

across these five within-ADNI train/test splits was 0.166 (SD = 0.031)

and the average adjusted mutual information score was 0.225 (SD =

0.021). These within-dataset scores were equivalent to the between-

dataset scores when restricted to cluster-cores (adjusted Rand index =

0.164; adjusted mutual information score = 0.233).

4 | DISCUSSION

In the present study, we applied an advanced unsupervised algorithm

to identify clusters of [18F]AV1451 signal in 123 subjects ranging from

cognitively normal to AD dementia in the Swedish BioFINDER study.

Our approach yielded clusters in the temporoparietal, medial/inferior/

anterior temporal, unimodal sensory, and frontal cortex, as well as the

subcortex. In an independent sample of 90 subjects (ADNI), we per-

formed general linear models between tests of global cognition and

each [18F]AV1451 cluster, adjusting for age, sex, and education. In

addition, we ran similar models using 35 neuropathologically derived

ROIs from previous publications (Cho et al., 2016; Johnson et al.,

FIGURE 6 Lasso regression selects most important features related

to cognition. All [18F]AV1451 ROIs plus age, sex and education were
entered into a L1-penalized Lasso regression feature selection routine
with the global cognitive composite score as the dependent variable.
The Lasso selected education and two ROIs: The data-driven
Temporo-parietal region, and the Schwarz single VI region. Together
in a general linear model, these features explained 28% of the
variance in the global cognition score [Color figure can be viewed at
wileyonlinelibrary.com]
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2016; Schöll, Lockhart et al., 2016; Schwarz et al., 2016). Several ROIs

exhibited strong relationships with cognition, though certain data-

driven clusters (temporoparietal and medial/inferior/anterior temporal

cortex) appeared to perform slightly but consistently better than other

ROIs in ADNI. Supporting this notion, the temporoparietal data-driven

cluster was among the three most important features (identified by a

Lasso regression model) for describing global cognition scores. Unsu-

pervised clustering of [18F]AV1451 PET data thus revealed the data

to self-assemble into stable ROIs resembling well described vulnerable

regions in AD, some of which actually enhanced description of cogni-

tive data in an independent dataset. This suggests that data-driven

approaches to delineate ROIs may improve clinical utility of [18F]

AV1451 PET data.

The tau-PET covariance networks derived from our clustering

approach exhibited a fair degree of overlap with Braak ROIs derived

from autopsy studies, thereby demonstrating biological relevance.

Particularly, Cluster 3 (“Medial/Anterior/Inferior Temporal”) was remi-

niscent of regions involved in early tau accumulation, whereas Cluster

5 (“Unimodal Sensory”) demonstrated a high degree of similarity to

regions involved only in the latest stages of AD. In contrast, Cluster

4 (“Temporo-parietal”) did not strongly resemble any of the Braak

regions, while its pattern, together with the pattern of Cluster 3, spa-

tially overlapped with cortical regions most vulnerable to neurodegen-

eration in AD (Dickerson et al., 2011; Landau et al., 2011).

Furthermore, signal in the hippocampus was heterogeneous, adding

additional evidence that [18F]AV1451 signal in this structure should

be interpreted with caution (Cho et al., 2016, Choi et al., 2017; Ikono-

movic et al., 2016). Similarly, our data-driven approach suggested that

most (but not all) frontal lobe structures exhibited [18F]AV1451 signal

patterns unique to the rest of the cortex. This is notable considering

the original Braak Stage V aggregates frontal lobe structures with

many of the temporo-parietal structures captured in our Cluster 4. Part

of the successful description of cognitive data by the data-driven ROI

may be due to its isolation from many of these frontal lobe structures,

which may be contributing signal less informative to AD progression,

particularly in early disease stages. Finally, our data-driven ROIs pro-

vide information that may reconcile some differences between exist-

ing Braak ROIs. For example, in our study, [18F]AV1451 signal in the

putamen and insula covaried with other regions involved in early tau

accumulation, which was similar to the ROIs described by Schöll,

Lockhart et al., but not Cho et al. (see Supporting Information

Table S5 for a summary). However, this pattern was not fully repro-

duced within the ADNI sample, and so the staging of different ROIs

may require further study with larger samples.

Despite the clusters being derived from a sample with several

important and disease-relevant differences compared with the testing

sample, these data-driven ROIs described global cognitive data slightly

better than regions derived from autopsy studies. While the improve-

ment over the other regions was subtle, the increasing movement

toward the development of biomarkers demands optimization of ROIs

to summarize [18F]AV1451 signal (Frisoni et al., 2017; Maass et al.,

2017; Mishra et al., 2017). As such, even small improvements are

important for studies assessing more subtle effects of cortical tau

accumulation and studies seeking optimal biomarkers for multimodal

classification or disease progression (Ota, Oishi, Ito, & Fukuyama,

2015). The improvement observed is likely due to the data-driven

nature of the method used for derivation of the clusters. [18F]AV1451

may be binding to several off-target agents, such as (neuro)melanin,

iron, vascular pathology, and MAO-A/B (Choi et al., 2017; Lowe et al.,

2016; Marquié et al., 2015; Ng et al., 2017), and as such, [18F]AV1451

signal is likely a mix of true tau pathology and other off-target and

non-specific signals. Deriving the clusters from a sample representing

a wide breadth of disease stages and additionally including subjects

unlikely to have significant cortical tau pathology enhances the likeli-

hood of isolating true tau signal, which covaries strongly and in a

regionally specific pattern across disease stages. Additionally, deriving

the clusters voxelwise allows freedom from anatomical borders, which

may impose unnecessary constraints irrelevant to the spread of tau.

Finally, despite its many limitations, multi-subject automatic whole-

brain sampling is a distinct advantage of [18F]AV1451-PET over path-

ological studies. This advantage may further enhance the efficacy of

data-driven approaches to ROI generation, which evaluate regions

equally that may otherwise be overlooked.

Still, ROIs based on pathology remain important in understanding

relationships between tau burden and cognition. In our study, ROIs

representing the earliest stages of tau pathology, especially the

FIGURE 7 Assessing reproducibility of clusters across cohorts. BASC clustering was performed on ADNI [18F]AV1451 data and was compared

with the original clustering solution from BioFINDER data. Panel a. represents the surface rendering of voxels that shared the same cluster in
both BioFINDER and ADNI solutions. Each cluster is represented as a different color. Panel b. shows the dice coefficients representing the
correspondence between similar clusters in the BioFINDER and ADNI samples. The left graph represents correspondence across the whole brain,
while the right graph represents correspondence between clusters within BioFINDER cluster-core masks. RI, adjusted Rand index; AMI, adjusted
mutual information score [Color figure can be viewed at wileyonlinelibrary.com]
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entorhinal cortex, showed the strongest association with episodic

memory in a cohort of individuals with normal cognition, mild cogni-

tive impairment, and early AD dementia. This finding supports previ-

ous literature highlighting relationships between medial temporal lobe

tau pathology and decline in episodic memory (Maass et al., 2018).

However, it is noteworthy that the data-driven temporo-parietal ROI

was again among the top performing ROIs in describing episodic

memory, despite the absence of medial temporal lobe structures

within this ROI.

The results of this study thus suggest a possible advantage of

data-driven approaches in evaluating [18F]AV1451 PET data as a bio-

marker for AD. This study adds to a rapidly growing body of data-

driven [18F]AV1451-PET studies that have helped to characterize fea-

tures of this tracer in the context of AD. Sepulcre and colleagues

employed a similar unsupervised clustering approach on a set of cog-

nitively intact elderly individuals, which, similar to our study, revealed

[18F]AV1451-PET covariance between regions of early- and later-

stage tau accumulation (Sepulcre et al., 2017). This suggests these pat-

terns of signal covariance are stable even in the earliest disease

stages, lending credence to the use of data-driven biomarkers in multi-

ple contexts. Meanwhile, Jones et al. used a data-driven Independent

Components Analysis approach to summarize [18F]AV1451 data

(Jones et al., 2017). While the authors concluded the resulting ROIs

represented functional brain networks, three of the ROIs bore a strik-

ing similarity to those generated by our clustering approach. Our

approach builds on these previous studies by assessing relationships

between data-driven ROIs and cognition, and by comparing them with

other existing ROIs. Maass et al. employed a series of a priori and

supervised data-driven methods to generate [18F]AV1451 ROIs and

found a relative equivalence between these ROIs in their association

with cognition and a number of other disease markers (Maass et al.,

2017). However, consistent with our study, Maass et al. found [18F]

AV1451 signal to covary most strongly within a specific set of AD

vulnerable-regions, and conclude that these regional measures may

perform better than whole-brain ROIs, particularly regarding associa-

tions with cognition.

The consistencies across these studies are also underscored by

the consistent patterns of cross-subject [18F]AV1451 spatial covari-

ance found across the two datasets in the current study. Despite the

fact that the ADNI cohort had many fewer subjects with extensive

tau burden, and despite differences in the demographic and clinical

characteristics between the ADNI and BioFINDER cohorts, unsuper-

vised clustering of [18F]AV1451 data revealed a level of consistency

between these two datasets that rivaled the consistency of clustering

within the ADNI dataset alone. Certain patterns of tau-PET accumula-

tion emerged in key regions across both cohorts. However, the pat-

terns of tau-PET covariance were not entirely consistent between the

two datasets, which could reflect true heterogeneity across samples,

or could be a matter of instability due to the relatively small sample

sizes (particularly in ADNI). However, better consistency between

datasets was found within the cluster-cores—regions of greatest clus-

tering stability within the BioFINDER dataset. This finding, alongside

the performance of these cluster-cores as biomarkers in ADNI, sug-

gests some degree of cluster stability may be achieved with the BASC

approach, even with smaller sample sizes.

We employed a widely used feature selection routine to identify

those regions most informative in describing association between

[18F]AV1451 signal and cognitive data. The feature most strongly

associated with global cognition was the data-driven temporo-parietal

cluster, which harbored a strong negative relationship when included

with the other selected features (p < .001). The feature selection also

resulted in the selection of Schwarz et al. Stage VI and education, both

of which associated positively with MMSE in a general linear model.

The finding of an association between education and MMSE control-

ling for tau pathology is consistent with the concept of cognitive

reserve (Stern, 2012), and suggests that more highly educated sub-

jects may experience preserved cognition in the face of tau pathology

(Hoenig et al., 2017). While the selection of Schwarz Stage VI is less

obvious, possible explanations include partial volume effects and age-

related off-target or non-specific signal. Because very few ADNI sub-

jects demonstrate strong [18F]AV1451 signal in this ROI, higher [18F]

AV1451 signal may be related to the presence of more cortex (and

thus more off-target or non-specific binding) rather than increased tau

pathology. Similarly, off-target [18F]AV1451 signal in the cortex and

subcortex has been shown to increase with age (Choi et al., 2017;

Schöll et al., 2016; Smith et al., 2016), possibly representing binding to

reactive astrocytes (Harada et al., 2018) or iron deposits (Choi et al.,

2017). Since age was not selected by the Lasso and therefore was not

included in the multivariate model, this may explain the positive asso-

ciation between these regions and global cognition when accounting

for [18F]AV1451 signal in the temporoparietal region. However, the

fact that these ROIs were selected instead of age suggests they may

carry additional cognition-relevant information, which may demand

further exploration. Regardless, the negative relationship between

Cluster 4 (“Temporo-parietal”) and global cognition was substantially

increased after regressing out these other variables. This suggests that

[18F]AV1451-cognition relationships may be enhanced by regressing

out off-target or non-specific signal sources.

Our study comes with a number of limitations. First, there were

several differences in characteristics between the two samples. We

decided to use the BioFINDER cohort for clustering given the broad

range of both [18F]AV1451 uptake (Figure 1) and cognitive scores

(Table 1). As a consequence, our secondary (cognitive) analysis was

performed in subjects from the ADNI cohort with more restricted

[18F]AV1451 uptake and cognitive scores. On a related note, our clus-

ter and results could be influenced by the composition of our samples.

However, voxels are only included in the clusters derived for our anal-

ysis if the clustering occurs across greater than 50% of bootstrap sam-

ples, so it is unlikely that the clustering solution would be strongly

driven by, for example, the high proportion of late-stage (i.e., AD) sub-

jects in the BioFINDER sample. Third, contrary to other studies, we

did not make an attempt to classify individuals according to stages of

tau pathology. Finally, we chose not to apply partial volume correction

on our data. Investigating the impact of such corrections is certainly

important, but we were interested in the natural behavior of tau-PET

signal before any corrections.

In order to aid future studies, we have made the [18F]AV1451

clusters from this study available on FigShare (doi = 10.6084/m9.

figshare.5758374).
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