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Abstract
Decision-making in the somatosensory domain has been intensively studied using vibrotactile

frequency discrimination tasks. Results from human and monkey electrophysiological studies

from this line of research suggest that perceptual choices are encoded within a sensorimotor

network. These findings, however, rely on experimental settings in which perceptual choices are

inextricably linked to sensory and motor components of the task. Here, we devised a novel ver-

sion of the vibrotactile frequency discrimination task with saccade responses which has the cru-

cial advantage of decoupling perceptual choices from sensory and motor processes. We

recorded human fMRI data from 32 participants while they performed the task. Using a whole-

brain searchlight multivariate classification technique, we identify the left lateral prefrontal cor-

tex and the oculomotor system, including the bilateral frontal eye fields (FEF) and intraparietal

sulci, as representing vibrotactile choices. Moreover, we show that the decoding accuracy of

choice information in the right FEF correlates with behavioral performance. Not only are these

findings in remarkable agreement with previous work, they also provide novel fMRI evidence

for choice coding in human oculomotor regions, which is not limited to saccadic decisions, but

pertains to contexts where choices are made in a more abstract form.
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1 | INTRODUCTION

A perceptual decision comprises multiple stages converting sensory

inputs via a categorical judgment about the perceived information into

an appropriate behavior. One of the main aims of perceptual decision-

making research has been to identify, characterize, and dissociate

brain activities directly linked to the decision from other signals that

accompany this chain of processes.

In the somatosensory domain, neural mechanisms underlying per-

ceptual choices have been extensively studied with electrophysiology

in monkeys using vibrotactile frequency discrimination tasks (Romo &

de Lafuente, 2013). In these studies, monkeys compare two sequen-

tially presented vibrotactile stimuli and indicate whether the fre-

quency of the second stimulus (f2) is higher or lower than the first

(f1) with a manual response. The findings suggest that the comparison

process and the resulting perceptual choice are encoded within a sen-

sorimotor network, including prefrontal, premotor, motor, and sensory

cortices (Haegens et al., 2011; Hernández, Zainos, & Romo, 2002;

Hernández et al., 2010; Romo, Hernández, & Zainos, 2004).

In humans, the initial attempt to identify neural correlates of

vibrotactile decision-making was conducted with fMRI (Pleger et al.,

2006; Preuschhof, Heekeren, Taskin, Schubert, & Villringer, 2006).

These authors revealed that multiple regions, particularly the dorsolat-

eral prefrontal cortex and the insula are involved in decision-making

(see also Kelly & O'Connell, 2015 for a review of fMRI studies in the

broader field of visual decision making). However, due to the sluggish

nature of the BOLD response, the question of how the observed

changes in BOLD amplitude are related to different components dur-

ing a decision process, for example, sensory-, decision-, and motor-

driven signals, remains a matter of debate (see Mulder, van Maanen, &
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Forstmann, 2014), rendering it difficult to ground these studies within

a greater context. Further evidence from human data has been

recently reported in EEG studies. In line with research focusing on

oscillatory activity in monkeys (Haegens et al., 2011), Herding and

colleagues found that choices are encoded by differential power of

upper beta band oscillations in premotor structures. Notably, the most

likely source of the beta band modulation moved according to the

response effector: the medial premotor cortex for manual responses

(Herding, Spitzer, & Blankenburg, 2016) and the frontal eye field for

saccades (Herding, Ludwig, & Blankenburg, 2017). Taken together, the

electrophysiological findings across species suggest a pivotal role of

sensorimotor regions, in particular the premotor regions, in computing

and representing vibrotactile choice. Moreover, these findings align

well with a large body of literature on monkey studies in the visual

domain which suggests that perceptual decisions are mainly formed in

brain regions involved in preparing and selecting actions (Cisek &

Kalaska, 2010; Gold & Shadlen, 2007).

The vibrotactile frequency discrimination task has been a power-

ful tool for exploring the neural underpinnings of somatosensory

decision-making. However, in the standard versions of this task, per-

ceptual choices are inextricably linked to the sensory and motor com-

ponents of the task. That is, f1 is typically set as the reference

frequency against which f2 is compared. Thus, observers will typically

decide “higher” if frequencies are presented in an increasing order

(f1 < f2), and “lower” if they are in a decreasing order (f1 > f2), result-

ing in a correlation between stimulus order and perceptual choice that

precludes a clear dissociation between sensory- and choice-related

signals. Furthermore, each perceptual choice is most often directly

mapped to a movement toward a specific spatial target so that brain

signals reflecting perceptual choice cannot be separated from brain

signals related to action selection. This raises the question of whether

the previously reported premotor regions would still encode percep-

tual choices when choices are independent of action selection (cf.,

Huk, Katz, & Yates, 2017). This is particularly relevant in light of a

growing body of evidence suggesting that abstract, motor-

independent choices are represented by brain regions that are not pri-

marily associated with action selection (Filimon, Philiastides, Nelson,

Kloosterman, & Heekeren, 2013; Hebart, Donner, & Haynes, 2012).

With the present fMRI study, we aimed to identify human brain

regions that represent vibrotactile choice independent of the sensory

and motor components of the task. We modified the vibrotactile fre-

quency discrimination task so that the choice is disentangled from the

preceding stimulus order and the succeeding saccade movement

direction. Importantly, we employed a searchlight multivariate pattern

analysis (Kriegeskorte, Goebel, & Bandettini, 2006), which allowed the

isolation of choice-related activity patterns from those associated

with other task components across the whole brain without a priori

assumptions about where to expect such a representational code.

2 | MATERIALS AND METHODS

2.1 | Participants

Thirty-two healthy, right-handed volunteers with normal or corrected-

to-normal vision participated in the experiment. All participants gave

written informed consent prior to the experiment. The experimental

protocols were approved by the local ethics committee of the Freie

Universität Berlin. Data from two participants were discarded due to

excessive head motion (>8 mm), leaving 30 participants for further

analyses (21 female, mean age = 27 years, age range = 22–39).

2.2 | Experimental procedure and stimuli

Participants compared frequencies of two vibrotactile stimuli sequen-

tially administered to the distal phalanx of the left index finger and

decided whether the comparison frequency was higher or lower than

the reference frequency by making a saccade toward a color-coded

target (Figure 1). To decouple perceptual choice (higher vs. lower)

FIGURE 1 Experimental paradigm. A rule cue informed which of the two rules applied (pseudo-randomized across trials and counterbalanced

across participants). Rule 1 indicated that participants had to compare f1 against f2, while rule 2 indicated a comparison in the reversed direction.
This was followed by f1 and f2 presented to the participants' left index finger. After the decision phase, participants compared their perceptual
choice with a visual matching cue (an upward-pointing triangle indicated “higher,” while a downward-pointing triangle indicated “lower”) and
reported a match or mismatch with a saccade to either the blue or the yellow dots on the target screen. The spatial locations of the colored dots
switched across target screens and the color code were counterbalanced across participants. The matching cues and target screens were
orthogonal to each other and pseudo-randomly interleaved across trials so that participants were not able to anticipate the appropriate saccade
directions during the decision phase [Color figure can be viewed at wileyonlinelibrary.com]
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from stimulus order (f1 < f2 vs. f1 > f2), f1 and f2 alternately served

as the comparison frequency based on the rule presented at the

beginning of each trial. In half of the trials, participants indicated

whether f1 was higher or lower than f2 (rule 1) and in the other half,

they indicated whether f2 was higher or lower than f1 (rule 2). Fur-

thermore, instead of pre-assigning a choice to a specific spatial target

or target color, participants reported a match or mismatch between

their perceptual choice and the proposition indicated by a matching

cue. Importantly, the matching cue and the following target screen

were presented after the decision phase so that participants could

neither anticipate the target color nor prepare a saccade response

toward the spatial target.

Each trial began with a fixation period of variable duration (3, 4,

5, or 6 s). A rule cue (square or diamond) was shown at the center of

the presentation screen for 500 ms and instructed participants which

of the subsequently presented vibrotactile stimuli served as the com-

parison stimulus. The specific association between cue symbols and

rules was counterbalanced across participants. The rule cue was fol-

lowed by two vibrotactile stimuli with different frequencies (each

500 ms), which were separated by a 1 s retention period. After a deci-

sion phase of 2 s, an equilateral triangle, serving as a visual matching

cue, was centrally presented for 500 ms. An upward-pointing triangle

indicated a comparison stimulus of higher frequency, whereas a

downward-pointing triangle indicated a comparison stimulus of lower

frequency. The matching cues were pseudo-randomly interleaved

across trials. Participants compared their perceptual choice with the

matching cue and reported a match or mismatch by making a saccade

to one of the two color-coded targets (blue vs. yellow dot) presented

in the periphery along the horizontal meridian after the matching cue

offset. The color code was counterbalanced across participants and

the location of the blue and yellow dots on the target screen alter-

nated pseudo-randomly across trials. Participants were instructed to

respond as fast as possible. A response later than 1.5 s after the target

screen onset was considered a missed trial.

Vibrotactile stimuli were delivered to the distal phalanx of the left

index fingers by a piezoelectric Braille display with 16 pins (4 × 4 qua-

dratic matrix, 2.5 mm spacing), controlled by a programmable stimula-

tor (QuaeroSys Medical Devices, Schotten, Germany). The frequency

of the first stimulus (f1) varied between 16, 20, 24, and 28 Hz. Each

f1 was paired with an f2 that was either 4 Hz higher or lower, result-

ing in a total of eight stimulus pairs (16 vs. 12 Hz, 16 vs. 20 Hz, 20 vs.

16 Hz, 20 vs. 24 Hz, 24 vs. 20 Hz, 24 vs. 28 Hz, 28 vs. 24 Hz, and

28 vs. 32 Hz). All stimuli lay well within the flutter range (~5–50 Hz;

Romo & Salinas, 2003).

A functional run consisted of 64 trials. Each of the stimulus pairs

was presented eight times, each time with a different combination of

rule cues (square vs. diamond), matching cues (upward-pointing

vs. downward-pointing), and target screens (blue-left, yellow-right

vs. blue-right, yellow-left, Figure 1). The variable durations of the fixa-

tion period were balanced across rules and stimulus pairs. Trials lasted

11.5 s on average and were presented in a randomized order. The

duration of a functional run was approximately 12.5 min and partici-

pants were asked to complete six runs. During each run, they were

instructed to fixate throughout the entire duration of the experiment

except for when they made saccadic responses.

Prior to the fMRI session, participants completed a training ses-

sion to become familiar with the experimental procedure. The training

session consisted of 64–128 trials and lasted a maximum of 45 min.

Importantly, the use of such a balanced design enabled the

decoupling of choice-related signals from those related to stimulus

order and preparation for a specific saccade response direction with-

out requiring the temporal jittering of event onsets. This is because,

due to the balanced design, each specific choice was expected to have

approximately the same number of trials associated with each stimu-

lus order and each saccade direction respectively (Hebart et al., 2012).

This further ensured an equal estimability of all conditions of interest

and minimized the possibility of classifying choices using the differ-

ence in the variability of the beta weight estimates (Hebart &

Baker, 2017).

2.3 | Data acquisition

Saccadic eye movements were recorded using an MRI-compatible

eye-tracker with a sampling rate of 500 Hz (Eyelink 1,000, SR

Research Ltd, Mississauga, Ontario, Canada). MRI data were recorded

with a 3 T Tim Trio scanner (Siemens, Erlangen) equipped with a

12-channel head coil at the Center for Cognitive Neuroscience Berlin.

For each participant, we collected 378 functional volumes per run

(T2*-weighted gradient-echo echo-planar images, TE: 30 ms, TR:

2,000 ms, flip angle: 90�, FOV: 192 mm, matrix size: 64 × 64, 3 × 3 ×

3mm3, 0.6 mm gap, 37 slices, ascending sequence). In addition, ana-

tomical images (T1 weighted MPRAGE, TE: 2.52 ms, TR: 1,900 ms, flip

angle: 9�, FOV: 256 mm, matrix size: 256 × 256, 176 slices, 1 × 1 ×

1 mm3) were collected for co-registration and spatial normalization

purposes. Of the 30 participants whose data was analyzed, 28 com-

pleted six functional runs, while the remaining two completed five

functional runs.

2.4 | Data analyses

2.4.1 | Preprocessing

fMRI data preprocessing and analyses based on general linear models

(GLM) were performed using SPM12 (Wellcome Trust Centre for

Neuroimaging, www.fil.ion.ucl.ac.uk/spm). Possible artifacts in individ-

ual slices of the functional volumes were corrected via an interpola-

tion approach as implemented in the SPM ArtRepair toolbox

(Mazaika, Hoeft, Glover, & Reiss, 2009). Preprocessing steps prior to

multivariate pattern analysis (MVPA) included slice-time correction

and spatial realignment to the mean functional image. MVPA was per-

formed using The Decoding Toolbox (Hebart, Goergen, & Haynes,

2015). We used the SPM Anatomy toolbox (Eickhoff et al., 2005) for

cytoarchitectonic reference. In addition, we used probabilistic maps of

visual topography in human cortex as reference to identify brain

regions that can be classified as the frontal eye fields (FEF; Wang,

Mruczek, Arcaro, & Kastner, 2015; www.princeton.edu/~napl/

vtpm.htm).

2.4.2 | Decoding perceptual choices

We used a searchlight decoding method that allowed us to identify

brain regions that carry information about the perceptual choice
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during decision phases in a spatially unbiased fashion. Prior to the

decoding analysis, we fit a GLM (192 s high pass filtered) to each par-

ticipant's preprocessed data to obtain run-wise beta weights for each

voxel. Each perceptual choice (higher vs. lower) was modeled as a

stick regressor at the onsets of decision phases in correct trials and

convolved with the canonical hemodynamic response function. Incor-

rect and missed trials were modeled with a separate regressor of no-

interest. Additionally, 10 principal components accounting for the var-

iance in the white matter (WM) and cerebrospinal fluid (CSF) signal

time courses (Behzadi, Restom, Liau, & Liu, 2007) were included in the

GLM alongside six head motion parameters as nuisance regressors.

Finally, constant terms were included to account for run-specific

effects, resulting in 20 regressors per run. Note that we only included

data from correct trials in the subsequent decoding analysis based on

the reasoning that incorrect trials were likely accompanied by indeci-

sions during the time window of interest and would diminish the

decodability of choice information.

For each participant, we employed a searchlight decoding analy-

sis with linear support vector machine classifiers (SVM) in the imple-

mentation of LIBSVM (c = 1; Chang & Lin, 2011) and a leave-one-

run-out cross-validation scheme. Beta weights for the choice regres-

sors from each functional run were used as samples, yielding a total

of 12 samples for participants who completed six runs and 10 sam-

ples for participants who completed five runs. Beta weights were

normalized by subtracting the mean and dividing by the standard

deviation across samples for each voxel before they were forwarded

to the classification.

In each searchlight step, we extracted beta weights from all vox-

els within a 4-voxel radius sphere (maximal 251 voxels) at a given

location of the brain to create pattern vectors. An SVM classifier was

trained to distinguish between the pattern vectors of different choices

with the data from all but one run and tested for its generalizability on

the data from the remaining run. The performance of the classifier

was indicated by the decoding accuracy on the test run, that is, the

percentage of correctly classified samples. This training–testing proce-

dure was iterated so that every run had been used as the test data

once. We averaged decoding accuracies across all iterations and

assigned the mean decoding accuracy to the center voxel of the

searchlight. The described searchlight procedure was repeated for

every voxel in the brain, yielding a continuous brain map of mean

decoding accuracies which was considered to reflect the amount of

information about a participant's choice across the whole brain.

For the group inference, the decoding accuracy map of each par-

ticipant was normalized to MNI space, resliced to 2 mm3 voxel size,

and smoothed with a full width at half maximum Gaussian kernel of

5 mm. We computed a one-tailed one-sample t-test to assess whether

the observed decoding accuracies were significantly higher than

chance level (50%) across the whole brain. Voxels showing significant

decoding accuracies indicated that the local activity patterns carried

information about perceptual choices. To assess whether decoding

accuracies in the identified regions and behavioral performances were

statistically dependent across participants, we computed a t-contrast

with decoding accuracy as the dependent variable and behavioral per-

formance as the covariate.

2.4.3 | Decoding task rule

We were also interested in whether any brain regions represent informa-

tion about the task rule during the decision phases. To test this, we used

a GLM with regressors modeling the task rules at the onsets of decision

phases. Again, we modeled correct and incorrect/missed trials in sepa-

rate regressors and included the WM/CSF signal and motion parameters

as nuisance regressors. Furthermore, the analogous procedure for the

searchlight decoding analysis and the group inference was applied to the

resulting beta weights, with the difference that the pattern vectors cor-

responded to activity patterns evoked by the different task rules.

2.5 | Control analyses

To ensure the thoroughness of the present study, we conducted further

analyses to verify that the informative brain regions detected in the

choice decoding analysis were indeed driven by choice representation

and not confounded by stimulus order or saccade direction. To this end,

we performed two sets of decoding analyses. For the first set, we

employed a GLM with regressors modeling participants' perceptual

choices (higher vs. lower) for trials of each stimulus order (f1 < f2

vs. f1 > f2) separately. Beta weights corresponding to the resulting four

regressors were subjected to two searchlight decoding analyses, one for

each stimulus order, using the identical parameters as in the main analy-

sis. This way, local activity patterns associated with “higher” and “lower”

choices were ensured to be independent of stimulus order. The resulting

decoding accuracy maps from the two analyses were then averaged,

resulting in an averaged decoding accuracy map for choices controlling

for stimulus order. Using the analogous procedure, we further obtained

an averaged decoding accuracy map in which choice-related activity pat-

terns were classified separately for each of the saccade directions.

Finally, participants' averaged decoding accuracy maps from these two

sets of decoding analyses were forwarded to group inferences in order

to identify regions carrying choice information. These analyses fully con-

trolled for confounds related to the stimulus order or the saccade direc-

tion at the cost of a significantly reduced number of trials (50%) for the

decoding analyses and accordingly, reduced power. Nonetheless, if the

informative activity patterns identified by the main choice decoding anal-

ysis were indeed driven by perceptual choice, we would expect to

observe similar results in the control analyses.

We further tested whether the observed choice-selective regions

could be accounted for by overall changes in the BOLD activation in

single voxels. For this purpose, we ran an analogous searchlight

decoding analysis, but reduced the number of voxels within the local

searchlight to one. If the observed choice information was mainly

represented in a multivariate code, this analysis based on a single

voxel should not be able to detect choice-related information.

3 | RESULTS

3.1 | Behavioral results

The average proportion of correct responses across 30 participants

was 0.877 (SD: �0.057, range: 0.726–0.966). To assess effects of dif-

ferent task components on behavioral performance, we computed a
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three-way ANOVA with task rule (rule 1 vs. rule 2), stimulus order

(f1 > f2 vs. f1 < f2), and magnitude of f1 (16, 20, 24, and 28 Hz) as

within-subject factors. This analysis did not reveal main effects of task

rule (F[1,29] = 0.256, p = 0.617) or stimulus order (F[1,29] = 0.585,

p = 0.451), indicating that the cognitive demands were approximately

equal across these factors. Furthermore, the analysis revealed a signif-

icant interaction between the stimulus order and the magnitude of f1

(F[3,87] = 17.046, p < 0.001, ηG
2 = 0.083). For trials with f1 in the

lower range, participants performed better when f2 was compara-

tively low (f1 > f2) than when f2 was comparatively high (f1 < f2).

Conversely, the performance for trials with f1 in the higher range was

better when f2 was higher than f1 compared with those with lower f2

(Figure 2). Such a behavioral pattern is a frequently observed phenom-

enon in studies using comparison tasks and is referred to as the time-

order effect or contraction bias (Ashourian & Loewenstein, 2011; Fas-

sihi, Akrami, Esmaeili, & Diamond, 2014; Herding et al., 2016; Pre-

uschhof, Schubert, Villringer, & Heekeren, 2009). This effect suggests

a biased perception or memory trace of f1 toward the mean of the

stimulus set. Importantly, this effect remains stable across the differ-

ent task rules, as indicated by a nonsignificant three-way interaction

(F[3,87] = 1.049, p = 0.375).

To address the concern that the exclusion of incorrect and missed

trials from fMRI analyses may result in a biased distribution of stimulus

orders (f1 > f2 vs. f1 < f2) and saccade directions (right vs. left) across

choices and thereby confound the fMRI choice decoding results, we

computed two Pearson chi-square tests for each participant, respec-

tively. No systematic association between the choice behavior and

either of these two variables was revealed in any participant (stimulus

order: all p > 0.1; saccade direction: all p > 0.1). We further explored

whether participants' eye position during decision phases varied sys-

tematically across choices. Due to technical problems during data col-

lection, we were only able to acquire eye movements along the x- and

y-axis for 20 participants', while the data of the remaining 10 partici-

pants consisted of only eye movements along the x-axis. For each par-

ticipant, we extracted the average eye position along the x- and, when

possible, y-axis across the 2 s decision phase of each trial. Next, we

computed a two-tailed two-sample t-test to scrutinize systematic devi-

ations between eye positions corresponding to different choices for the

x- and y-axis respectively. No systematic relationship with choice was

revealed in any of the participants (all p > 0.05, Holm–Bonferroni cor-

rected across axes for each participant).

Collectively, the behavioral results suggest that participants'

choice behavior was neither modulated by the stimulus order, nor by

the eye movements during and after the decision phase. Thus, it is

unlikely that these factors influenced the choice decoding results

reported below.

3.2 | Neuroimaging results

3.2.1 | Choice-selective brain regions

To identify brain regions that carry choice information independent of

stimulus order and saccade selection during the decision phase, we

applied a searchlight MVPA across the whole brain. The results are

shown in Figure 3a and Table 1 (p < 0.05, false discovery rate [FDR]

corrected for multiple comparisons at the cluster level with a cluster-

defining voxel-wise threshold of p < 0.001). As indicated by the signif-

icant above-chance decoding accuracies, this analysis revealed multi-

ple clusters with distinguishable activity patterns for different choices.

These clusters were located within the bilateral posterior parietal cor-

tices (PPC) including the intraparietal sulci (IPS) and the inferior parie-

tal lobules (IPL), the left lateral prefrontal cortex (lPFC), including the

inferior and middle frontal gyrus (IFG, MFG), as well as the bilateral

precentral gyri (PreCG) encroaching into the caudal-most part of the

superior frontal sulci (SFS) which are known as the FEF (identified

with probabilistic maps by Wang et al., 2015; cf. also Amiez, Kosto-

poulos, Champod, & Petrides, 2006; Kastner et al., 2007).

Furthermore, an additional t-contrast with the percentage of cor-

rect responses included as a covariate, revealed that, amid the identi-

fied regions, the behavioral performance was significantly correlated

with the decoding accuracy in the right FEF (Figure 3b: x = 34, y = 0,

z = 52, Pearson correlation coefficient r = 0.736, t[28] = 5.73,

p < 0.05, peak-level family wise error (FWE) corrected for small vol-

ume within the detected choice-selective regions). To illustrate that

the significant correlation was not merely driven by the participant

with the lowest values in both variables (see Figure 3b), we ran the

same analysis without that participant's data. The correlation coeffi-

cient of the reduced sample size decreased slightly to r = 0.683, how-

ever, it remained statistically significant (t(27) = 4.86, pFWE < 0.05,

corrected for small volume).

3.2.2 | Rule-selective brain regions

Next, we investigated whether information about the task rule was

represented during the decision phase. Rule-selective activity patterns

were observed in the prefrontal regions of both hemispheres including

the left MFG and bilateral IFG, the PPC including the bilateral superior

parietal lobules (SPL), and the left supramarginal gyrus (SMG) in the IPL.

We further computed a “null” conjunction of the choice and the rule

contrasts and found that a cluster centered around the left inferior fron-

tal sulcus (IFS) was the only brain region to code both choice and rule

(p < 0.001, cluster corrected at pFDR < 0.05; Figure 3c,d and Table 1).

FIGURE 2 The average behavioral performance across participants.

The performance was modulated by the contraction bias (see text),
irrespective of what rule was applied. Error bars represent the
standard error of the mean [Color figure can be viewed at
wileyonlinelibrary.com]
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3.3 | Control analyses

To further ensure that the results from the choice decoding analysis

were mainly driven by choice-related BOLD signals, we conducted two

additional sets of decoding analyses. These analyses controlled for

effects related to stimulus order and saccade direction. The results are

displayed in Figure 4 (p < 0.001, uncorrected at voxel level due to the

significant reduction in amount of data). Importantly, both sets of ana-

lyses yielded highly similar decoding results to the main results, with

overlapping clusters in bilateral IPS, FEF, and the left lPFC. This result

demonstrates that our paradigm has effectively disentangled choice

representation from stimulus order and saccade selection and confirms

that the results derived from the main analysis are choice-specific.

FIGURE 3 Neuroimaging results. (a) Brain regions carrying choice information independent of the stimulus order and the direction of the ensuing

saccade (cluster corrected at pFDR < 0.05). (b) A significant correlation between participants' behavioral performance and choice decoding
accuracy was observed in the right FEF (pFWE < 0.05, small volume corrected within the brain regions shown in a). (c) Brain regions containing
information about the task rule. (d) Results from the conjunction analysis showing brain regions that represent both the choice and the rule
information (c and d cluster corrected at pFDR < 0.05). The unthresholded statistical maps are available at https://neurovault.org/collections/

PTJKPIWY/ [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Brain regions identified as containing information related to choice, task rule, and both

Anatomical regions Cluster size MNI (x,y,z) t-value Mean accuracy

Choice

R. IPL (PFm), IPS (hIP2, hIP3), SPL 953 32 −64 50 5.28 59.28

L. IFG, MFG, PreCG, SFS (FEF) 1,137 −58 18 32 5.28 53.52

L. IPL (PF, PFm), IPS (hIP1, hIP2) 661 −52 −42 36 4.66 56.92

R. PreCG, SFS (FEF) 249 34 4 52 4.58 57.95

Task rule

L. MFG, PreCG 1,001 −52 8 38 5.25 58.97

R. IFG, PreCG 512 58 12 32 5.21 58.24

L. SPL 567 −4 −70 48 4.99 59.84

L. IPL/supramarginal gyrus (PFm, PF, PGa, PGp) 422 −60 −50 34 4.97 57.88

R. SPL 249 20 −74 64 4.65 52.43

Conjunction

L. IFG, IFS, MFG, PreCG 377 −56 16 34 4.54

All results are reported at a cluster corrected statistical level of pFDR < 0.05 with an initial voxel-wise threshold of p < 0.001. MNI coordinates, t-values,
and the mean accuracies refer to the peak voxel within each cluster.
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Finally, to assess whether overall changes in the activity level of

single voxels within a cluster could account for the observed choice

information, we ran a decoding analysis with a single voxel searchlight.

The analysis did not reveal any significantly informative brain regions

(p < 0.001, cluster corrected at pFDR < 0.05), indicating that choice-

related information was indeed represented by locally distributed

activity patterns rather than a univariate code.

4 | DISCUSSION

In the present study we employed a modified version of the vibrotac-

tile frequency discrimination task to explore brain regions that carry

information about perceptual choice independent of stimulus order

and saccade selection. Using MVPA on human fMRI data, we found

vibrotactile choice-selective brain activity patterns in oculomotor

regions including bilateral FEF and intraparietal regions, as well as the

left lPFC. We thereby provide novel fMRI evidence for brain regions

representing abstract choice in somatosensory decision-making.

The identification of choice information distributed across

effector-specific premotor (FEF) and lateral prefrontal structures

aligns well with previous electrophysiological studies in monkeys

using the vibrotactile frequency discrimination task (Haegens et al.,

2011; Hernández et al., 2002, 2010; Romo et al., 2004). Most inter-

estingly, and yet to be explored in the monkey literature, we also

observed vibrotactile choice-selective activity patterns in intraparietal

regions (IPS and IPL), which constitute, alongside the FEF and subcor-

tical structures, the oculomotor system. This finding is compatible

with a vast amount of evidence from monkey research using saccade

responses in visual random-dot motion (RDM) tasks suggesting a

major involvement of monkey FEF and LIP (homologous to human

IPS) in sensory evidence accumulation toward a decision (Ding & Gold,

2012; Kim & Shadlen, 1999; Roitman & Shadlen, 2002; Shadlen &

Newsome 2001). With our results, we establish an important link

between researches from two influential perceptual decision-making

paradigms and thereby promote the notion of supramodal decision

making mechanisms.

Note however, that previously reported decision-related signals

in the FEF and LIP were mainly observed in studies in which percep-

tual choice was directly mapped to a specific, predictable saccade

direction. A significant portion of decision-related signals in the FEF

or LIP disappeared when saccade directions were decorrelated from

perceptual choices (Bennur & Gold, 2011; Gold & Shadlen, 2003;

reviewed in Huk et al., 2017). Similarly, recent human fMRI studies

also failed to capture decision-related signals in the FEF or IPS when

there was no fixed mapping between choice and saccade direction

(Filimon et al., 2013; Hebart et al., 2012; Li Hegner, Lindner, & Braun,

2015). From these results one might conclude that oculomotor regions

may merely represent the motor decisions. Crucially, there are several

aspects of our study which render this interpretation unlikely: The

current experiment was designed so that choice-related signals could be

separated from sensory and motor components of the task. Moreover,

we further validated the effectiveness of this experimental protocol with

control analyses on behavioral and fMRI data. Thus, we are confident

that the distinctive activity patterns observed in oculomotor regions

were mainly driven by the choice information. In light of this, our data

provide novel evidence for choice selectivity in human oculomotor

regions, which is not confined to saccadic decisions, but pertains to con-

texts where choices are made in a more abstract form.

One question emerged from our findings is why oculomotor

regions represent perceptual choice despite its independence from

the ensuing saccade direction? In fact, there is a growing body of liter-

ature showing that intraparietal regions are selective for various kinds

of task-relevant information during a decision process (reviewed Huk

et al., 2017). In particular, the observed choice selectivity in intraparie-

tal regions is consistent with previous human fMRI studies which suc-

cessfully decoded categorical choice regarding the identity of visual

stimuli (Hebart, Schriever, Donner, & Haynes, 2014; Li, Mayhew, &

FIGURE 4 Comparisons between choice-selective regions identified

in the main analysis with regions detected in the additional analyses
controlled for effects related to the stimulus order (a, b) and the
saccade selection (c, d). Results of the main analysis are displayed in
green, while results from the control analyses are depicted in
magenta. (a) Except the right FEF, all other clusters found in the main
analysis (the bilateral intraparietal regions, the left lPFC, and the left
FEF) overlap partially with those from the analysis controlled for the
stimulus order. (b) Detail of the left prefrontal regions (cf. a) showing
partial overlaps. (c) In addition to the overlapping regions shown in a,
an overlap in the right FEF is also evident between the main analysis
and the analysis controlled for saccade selection. (d) The left panel
depicts the detail of overlaps in the left frontal regions, while a
detailed view of the right FEF is displayed in the right panel (cf. c).
Results are shown at a cluster corrected threshold of pFDR < 0.05 for
the main analysis and at uncorrected voxel-wise threshold of
p < 0.001 for the control analyses. The unthresholded statistical maps
are available at https://neurovault.org/collections/PTJKPIWY/ [Color
figure can be viewed at wileyonlinelibrary.com]
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Kourtzi, 2009). It also agrees with the well-established role of the

monkey PPC in representing abstract categorical information

(Freedman & Assad, 2011, 2016). Indeed, these authors have pro-

posed a common neural mechanism underlying abstract decision-

making and categorization. Likewise, in line with our findings in the

FEF, several studies have demonstrated that the functionality of pre-

motor structures goes beyond the coding of motor-related informa-

tion and extends to sensory and task information (Ferrera, Yanike, &,

Cassanello, 2009; Mante, Sussillo, Shenoy, & Newsome, 2013;

Nakayama, Yamagata, Tanji, & Hoshi, 2008; Siegel, Buschman, &

Miller, 2015; Yamagata, Nakayama, Tanji, & Hoshi, 2009, 2012).

Intriguingly, we show that the differentiability of choice representa-

tions in the right FEF is linked to participants' choice behavior. That is,

the higher the decoding accuracy, the better participants performed

the task. Such a link between decoding accuracy and behavioral per-

formance was, however, not evident in the other reported regions,

suggesting that only information in the right FEF can be read out by

downstream systems controlling behavior (Williams, Dang, & Kanw-

isher, 2007; see also De-Wit, Alexander, Ekroll, & Wagemans, 2016).

It is not immediately apparent from our data what functional role this

observed correlation may reflect. Nevertheless, there is compatible

evidence from recent studies in rats suggesting that the behavioral

performance in a decision task is causally related to premotor struc-

tures' ability to categorize accumulated evidence into discrete choices

(Erlich, Brunton, Duan, Hanks, & Body, 2015; Hanks et al., 2015).

Accordingly, one possible interpretation is that decoding accuracies in

the FEF index the quality of such categorization processes and are,

hence, predictive of the behavioral performance. In concert with the

implicated role of premotor structures in the transformation of

abstract concepts into concrete motor commands (Nakayama et al.,

2008; Yamagata et al., 2009, 2012), it is possible that choice informa-

tion in the FEF reflects a temporary storage, waiting for additional

information in order to be transformed into an appropriate saccade

movement. This interpretation agrees with the growing body of evi-

dence for a continuous flow of all task relevant information across a

distributed brain network (Siegel et al., 2015). While this interpreta-

tion is appealing, further research is warranted to enable a temporal

characterization of the information transformation from sensory pro-

cessing to abstract choice and finally motor output.

In addition to the FEF and IPS, we found choice information in

the left lPFC. This is consistent with previous monkey research using

the vibrotactile frequency discrimination task, which shows that the

lPFC computes perceptual choices (Hernández et al., 2010; Jun et al.,

2010). Moreover, an involvement of the lPFC is also compatible with

previous human fMRI studies suggesting lPFC's role in encoding per-

ceptual choice independent of motor preparation (Hebart et al., 2014)

and accumulating sensory evidence (Filimon et al., 2013; Heekeren,

Marrett, Bandettini, & Ungerleider, 2004; Heekeren, Marrett, Ruff,

Bandettini, & Ungerleider, 2006; Liu & Pleskac, 2011; Pleger et al.,

2006). Notably, although choice-selective regions detected in the cur-

rent study are compatible with those reported in previous studies, the

fMRI-MVPA approach used here does not allow inference regarding

the origin of choice information or where the sensory evidence is

accumulated. With respect to this question, Shadlen, Kiani, Hanks,

and Churchland (2008) suggest that abstract decisions evolves via the

accumulation of evidence toward the implementation of particular

rules and that prefrontal regions are, due to their central role in the

rule representation (Sakai, 2008), the most likely regions to host such

a process. Considering that the left IFS has been identified as carrying

both rule and choice information in the present study, it appears to be

a promising candidate region for future studies to scrutinize the evolu-

tion of abstract vibrotactile decisions in humans. Indeed, there is evi-

dence from a previous fMRI study in the visual domain highlighting

left IFS' role in sensory evidence accumulation when choices are

decoupled from specific motor commands (Filimon et al., 2013).

In addition to the left IFS, we suggest that, given their well-

established role in magnitude processing (Jacob, Vallentin, & Nieder,

2012; Nieder, 2016), intraparietal regions are another potential candi-

date structure for deliberating decisions on the relation between two

analog quantities, such as vibrotactile frequencies. A shift to focusing

on intraparietal regions and their interaction with other areas in mon-

key electrophysiology may provide substantial complementary insight

into the neural mechanisms underlying vibrotactile decisions.

In conclusion, our results suggest that the human lPFC and oculo-

motor regions represent vibrotactile choice independent of stimulus

order and saccade selection. These results are highly consistent with

previous results from monkey electrophysiology and provide empirical

support for a pivotal role of human oculomotor regions in decision-

making beyond the mere processing of saccadic movements.
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