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Abstract

The neurobiology of major depressive disorder (MDD) remains incompletely under-

stood, and many individuals fail to respond to standard treatments. Repetitive trans-

cranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (DLPFC) has

emerged as a promising antidepressant therapy. However, the heterogeneity of

response underscores a pressing need for biomarkers of treatment outcome. We

acquired resting state functional magnetic resonance imaging (rsfMRI) data in

47 MDD individuals prior to 5–8 weeks of rTMS treatment targeted using the F3

beam approach and in 29 healthy comparison subjects. The caudate, prefrontal cor-

tex, and thalamus showed significantly lower blood oxygenation level-dependent

(BOLD) signal power in MDD individuals at baseline. Critically, individuals who

responded best to treatment were associated with lower pre-treatment BOLD power

in these regions. Additionally, functional connectivity (FC) in the default mode and

affective networks was associated with treatment response. We leveraged these

findings to train support vector machines (SVMs) to predict individual treatment

responses, based on learned patterns of baseline FC, BOLD signal power and clinical

features. Treatment response (responder vs. nonresponder) was predicted with

85–95% accuracy. Reduction in symptoms was predicted to within a mean error of

±16% (r = .68, p < .001). These preliminary findings suggest that therapeutic outcome

to DLPFC-rTMS could be predicted at a clinically meaningful level using only a small

number of core neurobiological features of MDD, warranting prospective testing to

ascertain generalizability. This provides a novel, transparent and physiologically plau-

sible multivariate approach for classification of individual response to what has

become the most commonly employed rTMS treatment worldwide. This study uti-

lizes data from a larger clinical study (Australian New Zealand Clinical Trials Registry:

Investigating Predictors of Response to Transcranial Magnetic Stimulation for the

Treatment of Depression; ACTRN12610001071011; https://www.anzctr.org.au/

Trial/Registration/TrialReview.aspx?id=336262).
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1 | INTRODUCTION

Major depressive disorder (MDD) is the leading cause of years lived

with disability and remains poorly understood. As few as 11–30% of

patients achieve remission with initial treatment, even after

8–12 months (Rush, 2007). Repetitive transcranial magnetic stimulation

(rTMS) has emerged as an important noninvasive antidepressant

approach for individuals who do not respond to first-line behavioral

and pharmacological therapies. RTMS involves focal magnetic stimula-

tion applied external to the scalp, typically at the dorsolateral prefrontal

cortex (DLPFC), and induces electrical stimulation in underlying cortical

tissue. RTMS has the relatively unique capacity to directly target and

modulate brain regions and networks to elicit clinical changes (Fisher,

Nakamura, Bestmann, Rothwell, & Bostock, 2002; Rastogi et al., 2017).

While rTMS is life-changing for some individuals, response outcomes

vary widely. Treatment is time-intensive (>4 weeks of daily rTMS),

costly (USD $4,000–12,000; McClintock et al., 2018) and often has lim-

ited availability resulting in a considerable and unnecessary burden for

nonresponders (NRs) and clinics. These factors underscore the impor-

tance of developing a more complete understanding of the neurobio-

logical signature of this condition and identifying clinically meaningful

biomarkers for single-subject prediction of treatment response to aid

and accelerate treatment selection.

Although previous work in this field has identified various bio-

markers of depression and treatment response, the capacity to accu-

rately predict treatment outcomes to DLPFC-rTMS, which is the most

commonly employed and FDA approved rTMS treatment, has remained

elusive. Recent studies suggest that neuroimaging markers may achieve

higher predictive accuracy than clinical or demographic variables (Cash

et al., 2019; Drysdale et al., 2017; Fox, Buckner, White, Greicius, &

Pascual-Leone, 2012). Neuroimaging has fundamentally advanced our

understanding of the neurobiology of depression and provides the

means to examine and potentially predict the regional and network-

wide effects of rTMS treatment that mediate individual treatment

response. Previous research has primarily focused on abnormal connec-

tivity within and among large-scale functional brain networks. The

default mode network (DMN) and the affective network (AN) are now

considered central to the neurobiology of depression and the therapeu-

tic effects of rTMS (Downar & Daskalakis, 2013; Kaiser, Andrews-

Hanna, Wager, & Pizzagalli, 2015; Sheline, Price, Yan, & Mintun, 2010;

Tik et al., 2017). DMN abnormalities are associated with excessive

internal rumination, self-referential processing, and episodic memory

retrieval and have been linked to illness duration and treatment

response (Hamilton, Farmer, Fogelman, & Gotlib, 2015; Kaiser et al.,

2015; Liston et al., 2014). The AN comprises the connections of the

affective division (pregenual and subgenual cingulate cortex, SGC) of

the anterior cingulate cortex (Sheline et al., 2010; Yu et al., 2011), and

has been linked to abnormal emotional regulation and processing, dis-

ease severity and treatment response (Baeken, Duprat, Wu, De Raedt, &

van Heeringen, 2017; Salomons et al., 2014; Sheline et al., 2010; Yu

et al., 2011). Nonetheless, this line of research has thus far failed to

reveal an individual clinically meaningful biomarker of treatment

response, suggesting that such measures may comprise only one

dimension of the neural dynamics mediating treatment outcome.

Functional network connectivity can be examined by temporally

correlating neural activity inferred from fluctuations in the blood oxy-

genation level-dependent (BOLD) signal (Zalesky, Fornito, & Bullmore,

2012). The amplitude (or power) of the BOLD signal is typically

normalized and consequently obscured during analysis (Cole, Yang,

Murray, Repovs, & Anticevic, 2016). However, emerging research sug-

gests the regional oscillatory power of neural ensembles may provide

complementary information to functional connectivity and may repre-

sent a vital feature of brain function influencing the integrity, commu-

nication, and integration of focal and distributed neural systems

(Shine, Aburn, Breakspear, & Poldrack, 2018; Turchi et al., 2018; Yang

et al., 2014; Zalesky, Fornito, Egan, Pantelis, & Bullmore, 2012). Fur-

thermore, preliminary evidence suggests that rTMS in healthy individ-

uals modulates BOLD power in key structures implicated in MDD

(Chen et al., 2013; Dowdle, Brown, George, & Hanlon, 2018). We

hypothesized that BOLD signal power would provide unique insights

into the neurobiological signature of depression and facilitate the per-

sonalized prediction of treatment outcome.

While decades of MDD research have failed to pinpoint a strong

univariate biomarker of treatment outcome, multivariate approaches

such as machine learning (ML) enable nonlinear fusion of complex multi-

dimensional data (i.e., multiple variables) to predict a binary or continu-

ous outcome. Multivariate approaches can accommodate a greater

degree of heterogeneity within a disorder and often outperform univari-

ate biomarker approaches (Cao et al., 2018; Drysdale et al., 2017;

Redlich et al., 2016; Reggente et al., 2018). Data-driven feature reduc-

tion techniques have been used for ML, starting with a large number of

initial features, and selecting those connectivity features with the

highest predictive value. These approaches have been criticized as they

can lack transparency and potentially identify spurious nonphysiological

factors. An alternative recommended, and potentially highly effective

approach is to employ existing domain knowledge to select a small num-

ber of robust neurobiological features and develop a classification model

with inherent physiological plausibility (Mwangi, Matthews, & Steele,

2012; Passos et al., 2016). High accuracy can be achieved with a small

number of features, provided that each variable contributes relatively

unique and complementary predictive value.

We acquired neuroimaging data from individuals with MDD prior to

DLPFC-rTMS treatment and healthy comparison subjects (no treatment).

We hypothesized that depressed individuals would display a novel topo-

graphic signature of aberrant BOLD power relative to healthy individuals.

Furthermore, we hypothesized that core connectivity, amplitude, and

clinical features would provide strong and complementary predictive

information, enabling development of a transparent model that can clas-

sify individual treatment outcomes with high accuracy.

2 | MATERIALS AND METHODS

2.1 | Participants

Forty-seven individuals with MDD (19 female, mean age 43 ± 12

years) and 29 healthy individuals (9 female, mean age 39 ± 15 years)
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were recruited and provided written informed consent. The protocol

was approved by the Alfred Hospital, Monash and Swinburne Univer-

sity Research Ethics Boards (Australia), and conducted according to

the principles expressed in the Declaration of Helsinki. Standard inclu-

sion and exclusion criteria were used, as outlined in Supporting Infor-

mation Methods. Following rejection for head motion, artifacts,

outliers, and noncompleters (see Supporting Information Methods),

the number of individuals with depression submitted to analysis for

(a) baseline differences compared to healthy controls, and

(b) regression analysis with treatment response, denoted in brackets,

was functional connectivity analysis: 43 (36); BOLD signal power anal-

ysis: 41 (34); machine learning analysis for prediction of treatment

response: 33 (Supporting Information Table S1). The demographics of

the healthy and depressed groups (Supporting Information Table S1)

did not differ in terms of age (χ2[37] = 43.58, p = .21) or gender ratio

(χ2[1] = 0.37, p = .55). Further details are outlined in Supporting Infor-

mation Methods.

2.2 | Study procedure

A methodological overview is displayed in Figure 1. Depression sever-

ity was assessed using the Montgomery–Asberg depression rating

scale (MADRS) at baseline, Week 1, 3 and at treatment endpoint.

MDD participants received a baseline MRI scan before commencing

5–8 weeks of initially daily (5 days per week, Monday to Friday) and

later titrated rTMS treatment, targeted to DLPFC using the F3 beam

method as previously described (Beam et al., 2009; or equivalent F4

site, Bailey et al., 2018). After 3 weeks, responders continued left-

sided treatment whereas NRs were randomized to continue with left,

right or bilateral treatment (full details in Supporting Information). HC

received the MRI scan without treatment.

2.3 | Neuroimaging procedures

Anatomical and functional scans were acquired on a 3 T Siemens MRI

scanner. Acquisition parameters and preprocessing procedures are

typical and outlined in Supporting Information Methods. In short,

preprocessing followed the pipeline described for ICA-AROMA

(Pruim, Mennes, van Rooij, et al., 2015), shown to improve sensitivity

and specificity of fMRI analyses (Ciric et al., 2017; Parkes, Fulcher,

Yucel, & Fornito, 2018; Pruim, Mennes, Buitelaar, & Beckmann, 2015;

Pruim, Mennes, van Rooij, et al., 2015).

2.4 | Calculation of signal power and frequency

Voxel-wise BOLD signal power across the scan duration was calcu-

lated for each individual using a band power periodogram

(0.01–0.10 Hz). Voxels displaying statistically significant differences in

BOLD signal power between HC and MDD were identified by subjec-

ting data to nonparametric testing, as outlined in section 2.6.

F IGURE 1 Methodology. MDD (n = 47) and HC (n = 29) were recruited and underwent MRI scanning. Following preprocessing, BOLD power
was calculated at each voxel. Next, statistical comparison of MDD and HC data identified regions of significantly reduced BOLD power in the
MDD group. Significant regions (p < 0.01) were binarized, generating a mask which was used to systematically calculate BOLD power for each
individual and later examine predictors of rTMS treatment response. Maps of the default mode and affective network were generated by placing
a seed in the posterior cingulate cortex and subgenual cingulate cortex respectively. An average group level connectivity map was then generated
for each network. Individual BOLD power, AN and DMN connectivity constituted the neurobiological SVM features. MDD individuals underwent
5–8 weeks of initially daily (5 days per week, Monday to Friday) and later, titrated rTMS treatment, targeted to DLPFC using the F3 beam method
as previously described (Bailey et al., 2018; Beam, Borckardt, Reeves, & George, 2009). After 3 weeks, responders continued to receive left-sided
treatment, whereas nonresponders were randomized to continue with left, right or bilateral treatment (full details in Supporting Information).
Clinical severity was assessed using MADRS at baseline, Week 1, 3 and treatment endpoint. Initial clinical response at Week 1 was included as an
optional SVM feature. SVM accuracy for prediction of treatment outcome was extensively interrogated using leave-one-out cross-validation (CV),
K-fold CV, K-fold CV with power and connectivity maps calculated de novo for each training sample permutation. SVM performance was
additionally tested using SVM regression and the receiver operator characteristic curve. The manner in which the SVM separated R/NR was
illustrated using the SVM hyperplane [Color figure can be viewed at wileyonlinelibrary.com]
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Frequency spectra were examined using a fast Fourier transform. Sig-

nal power within the somatomotor network was also examined as a

control, as further outlined in Supporting Information Methods.

2.5 | Resting-state network connectivity

FC was examined within two core networks implicated in MDD: the

default mode (DMN) and affective (AN) resting-state networks

(Downar & Daskalakis, 2013). A conventional seed-based approach

was employed whereby the DMN and AN were seeded in the poste-

rior cingulate cortex and subgenual cingulate (Liston et al., 2014; Shel-

ine et al., 2010) respectively (Figure S1, Supporting Information

Methods). Additional control analyses in the somatomotor network

are outlined in Supporting Information Methods.

2.6 | Statistical analyses

2.6.1 | Neuroimaging analyses

Between-group voxel-wise differences in power and functional connec-

tivity were nonparametrically tested in FSL Randomize (5,000 permuta-

tions) using threshold-free cluster enhancement (Nichols & Holmes,

2002). Power differences between MDD and HC groups were conser-

vatively thresholded at p < .01 (family-wise error corrected). To deter-

mine the association between power and clinical outcome, a mask was

first generated by binarizing the regions showing significant between-

group differences in power (p < .01). The mean power within this

masked region was then systematically calculated for each individual.

This measure was subjected to regression analysis with treatment out-

come and utilized as a feature for machine learning (described later).

Statistically significant differences between-groups in DMN an AN

functional connectivity were computed in the same manner using a

threshold of p < .05 (family-wise error corrected).

2.6.2 | Regression analyses

Data were first subjected to the Shapiro–Wilk test for normality and

then tested using Pearson's or Spearman's analysis for normally or non-

normally distributed data respectively. Univariate regression analysis

was tested on the full dataset with all participants as well as when those

with the lowest treatment response (<0% improvement) were excluded

(both values are reported). This approach has been employed elsewhere

and has the potential advantage of revealing latent response patterns to

rTMS relative to baseline (Cash et al., 2017; Hamada, Murase, Hasan,

Balaratnam, & Rothwell, 2013; Strube, Bunse, Malchow, & Hasan, 2015;

Wiethoff, Hamada, & Rothwell, 2014). Additional aspects related to sta-

tistical analysis are detailed in Supporting Information Methods.

2.7 | SVM learning

SVM was employed for binary classification of responders and NRs.

SVM regression was employed to assess predictive accuracy relative

to actual response, across the continuum of clinical responses.

Feature selection was guided by priori domain knowledge of

established neurobiological features related to depression and treat-

ment response. BOLD signal power was included based on the strik-

ing differences between healthy and depressed individuals and its

association with treatment outcome (Figure 2). The relevance of

DMN and AN connectivity to depression is one of the most

established findings in the literature (Fox et al., 2012; Greicius et al.,

2007; Hamilton et al., 2015; Kaiser et al., 2015; Liston et al., 2014;

Ressler & Mayberg, 2007). Clinical response at the end of Week

1 was included as an optional feature (Bailey et al., 2018); SVM accu-

racy was tested with and without inclusion of this feature. We consid-

ered that initial response might offer the potential for greater

prediction accuracy early on in treatment (Bailey et al., 2018), while

reliable prediction based on treatment outcome alone typically

requires 3–4 weeks (O'Reardon et al., 2007).

SVM analyses were performed in MATLAB. The capacity of SVM

to predict treatment outcome using neuroimaging and clinical features

was characterized and stringently tested using a range of techniques.

Each of these tests splits the dataset into training and validation sam-

ples and ascertains classification accuracy across different permuta-

tions, generating overall SVM accuracy values (Figure 1, right panel).

First, performance was tested using leave-one-out cross-validation. In

addition, SVM regression (Chang & Lin, 2011) was utilized to deter-

mine the accuracy with which individual treatment response could be

predicted on a continuous, rather than binary, scale. SVM accuracy

was further tested using 12-fold (K-fold) cross-validation with 10,000

permutations as recommended elsewhere (Hastie, Tibshirani, & Fried-

man, 2009). Next, an additional K-fold cross-validation approach was

employed in which neuroimaging features (BOLD power and connec-

tivity maps) were calculated de novo for each iteration of the training

sample, and the model was retrained for each fold.

Treatment responders (R) were defined as patients who showed a

partial or full response to treatment, quantified as a >25% change in

MADRS scores. NRs were defined as individuals who demonstrated a

<25% change in MADRS score. This cut-off is used in a related ML

study (Drysdale et al., 2017) and has the advantage of making the dis-

tribution of R and NR subsamples more equivalent for the purposes of

ML analysis, but differs from the 50% improvement criterion which is

more commonly employed, in particular in clinical studies evaluating

the efficacy of rTMS. In the present scenario, this approach was bene-

ficial for binary classification, given that the response rate was at the

lower end of the normal response range observed with rTMS

(30–55%). It is critical to note that our subsequent analyses demon-

strated that ML accuracy was not contingent upon choice of response

threshold. Furthermore, we also used SVM regression to predict a

continuous measure of outcome response that was independent of

any threshold. It is also worth noting that this study is not designed to

assess the efficacy of rTMS, which has been addressed in many other

studies and reviews (Fitzgerald, Hoy, Anderson, & Daskalakis, 2016),

but rather to predict response. The data presented here is a small sub-

set of individuals who received an MRI, derived from a much larger

open-label treatment study, and full characterization of treatment
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outcomes across the entire cohort is still underway and will be

reported in due course.

Accuracy and stability of the model were further tested by divid-

ing R/NR subpopulations according to the bimodal clinical outcome

split (see section 3). The relative importance of each individual feature

was examined by removing each feature individually and testing SVM

classification performance. The SVM hyperplane was extracted to

characterize the manner in which the SVM was able to separate

responders and NRs. The receiver-operating curve (ROC) and area

under curve (AUC) were calculated to further examine classification

performance (Supporting Information Methods).

3 | RESULTS

3.1 | BOLD signal power

BOLD signal power was significantly reduced in MDD compared to

HC in clusters localized in medial prefrontal cortex, caudate, putamen,

thalamus and anterior cingulate cortex (p < .01; Table S2, Figure 2a–

d). These findings were not driven by head motion, nor baseline clini-

cal severity (Supporting Information Results). Frequency spectra were

comparable between groups in terms of frequency distribution, but

not power (Figure 2e). For MDD individuals who completed treatment

(n = 33; Table S1), power in these regions inversely correlated with

clinical improvement, assessed by percentage change in the

Montgomery–Asberg depression rating scale (MADRS) score from

treatment start to endpoint (Figure 2f; <0% response withheld

[n = 8/33]: r = −.55; p = .004; all participants: r = −.42; p = .01).

3.2 | Resting-state network connectivity

Within the AN, FC was significantly reduced in MDD compared to HC

between the SGC seed and a cluster comprising the medial PFC

(p < .05; Figure 3). This mPFC cluster was adjacent to and partially

overlapping with the mPFC area found to show reduced power in

MDD individuals (Figure 2a). FC of the DMN was not significantly dif-

ferent between the two groups. It is worth briefly noting that we did

not set out to identify or confirm between-group differences in DMN

connectivity, and indeed our whole brain statistical analysis using

5,000 permutations is likely to be too stringent for such a purpose.

Regression analysis demonstrated that MDD individuals with lower

FC within the DMN (averaged over all DMN voxels, see Supporting

Information Methods) were associated with superior clinical

responses (percent change in MADRS score from pretreatment to end

of treatment) when those with lowest treatment response were with-

held (<0% response withheld [n = 8/35]: r = −.59, p = .001; all partici-

pants: r = −.28; p = .09; Figure S3B), and similarly for FC with the AN

(<0% response withheld [n = 8/35]: r = −.40, p = .03; all participants:

r = −.23, p = .17; Figure 3c). Partial correlation analysis suggested that

the significant association between treatment response and FC within

these two networks was not attributable to baseline clinical severity

(Supporting Information Results). Moreover, baseline MADRS score

was not correlated with treatment outcome (r = −.09, p = .6).

F IGURE 2 Decreased power of resting-state BOLD fluctuations in MDD. (a) Power was reduced in MDD compared to HC (p < .01; n = 41) in
areas typically associated with reward circuitry, and was not increased in any region. Areas include bilateral mPFC, bilateral caudate and bilaterally
a subregion of thalamus that is known to project to prefrontal cortex. (b) Three-dimensional view of significant clusters showing a change in
BOLD signal power (p < .01; family-wise error corrected). (c) BOLD signal showing decreased power in MDD (blue) compared to HC (red;
representative participants). (d) Power for each individual averaged within regions of significantly reduced power (bandwidth 0.01–0.1 Hz) and
group average (bar line; *** p < .001). (e) BOLD frequency spectra from the identified regions for MDD (blue) and HC individuals (red). (f)
Negative correlation between endpoint MADRS improvement and power in the identified regions (<0% response withheld [n = 8/33]: r = −.55;
p = .004; all participants: r = −.42; p = .01). Individuals with a weak clinical rTMS response (<0%) are indicated in black circles with no fill [Color
figure can be viewed at wileyonlinelibrary.com]
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3.3 | Individual prediction of treatment outcome
using machine learning

By combining BOLD signal power, DMN and AN connectivity as well

as initial clinical response at 1 week, it was possible to predict treat-

ment outcome with high accuracy (93%), specificity (92%;

i.e., proportion of negatives/NRs that are correctly classified) and sen-

sitivity (95%; i.e., proportion of positives/responders that are correctly

classified) (Figure 4b). In the absence of initial treatment response at

1 week, treatment outcome could be predicted with an accuracy of

85%, specificity of 92%, and sensitivity of 75%. The relative impor-

tance of each feature to prediction accuracy is shown in Figure 4e,

showing that SVM performance was lowest when BOLD signal power

was removed as a feature. SVM regression displayed a good match

between observed and predicted change in MADRS score (p < .001,

r = .68) with a mean error of 16.03% (Figure 4d).

Kernel density estimation of patient response to rTMS indicated

that patients showed a bimodal distribution with distinct subgroups of

responders (peak at 64% reduction in MADRS score) and NRs (peak at

4% reduction in MADRS score) (Figure 4a), similar to that previously

reported elsewhere (Bakker et al., 2015; Downar et al., 2014; Fitzgerald

et al., 2016). This bimodal spread provides an alternative criterion to

differentiate between responders and NRs, which we anticipated might

have greater biological (rather than clinical) validity. When classification

of R and NR was performed based on the trough in the bimodal

response curve (at 45% change in MADRS score), an accuracy of 95%

was achieved with a specificity of 100% and a sensitivity of 83%

(Figure 4b). Figure 4f illustrates that the SVM hyperplane (based on

neurobiological features alone) formed an elongated radial boundary

encapsulating those individuals with the lowest power, DMN, and AN

connectivity to classify and distinguish responders and NRs.

Using K-fold instead of leave-one-out cross-validation, yielded a

binary classification accuracy of 90%, with a specificity of 80%, and a

sensitivity of 84%. An additional K-fold cross-validation approach, in

which power and connectivity masks were calculated de novo for

each iteration of the training sample and subsequently applied to the

test sample (Supporting Information Methods), performed well, partic-

ularly when data was split according to the bimodal distribution

trough (sensitivity = 90%, specificity = 90%, accuracy 90%). When the

clinical split was used, the SVM demonstrated high sensitivity (90%)

but reduced accuracy (78%) and specificity (70%).

The ROC curve demonstrated an excellent balance between sensi-

tivity and specificity (Figure 4c). The area under curve (AUC) was 0.91

(“excellent range”; Mandrekar, 2010) when 25% clinical improvement

was used to separate N and NR and was 0.92 when the trough of the

bimodal response curve was used. It is critical to note that ML perfor-

mance was not contingent on the definition of response threshold.

Regardless of whether this threshold was set at 25% (clinical split,

as per Drysdale et al. (2017)) or 45% (bimodal trough; Figure 4a), pre-

diction accuracy remained at ~90% (Figure 4b,c). For consistency and

clarity, we primarily refer to the results obtained using the clinical

response threshold in the remainder of the text unless otherwise

specified.

4 | DISCUSSION

Successful prediction of individual treatment outcome has remained a

long-standing clinical goal in psychiatry, and in the case of rTMS, can

F IGURE 3 Affective network. (a) Within the AN, FC was significantly reduced in MDD compared to HC between the SGC seed (blue sphere)
and a cluster comprising the medial PFC (p < .05; n = 43). (b) SGC-mPFC connectivity is shown for each individual (asterisk represents p < .05).
The MDD group showed greater heterogeneity compared to HC. (c) Spatial distribution of the affective network. (d) Connectivity within AN
(Pearson's correlation coefficient, r) was associated with treatment outcome when individuals with lowest treatment response were withheld
(<0% response withheld [n = 8/35]: r = −.40, p = .03; all participants: r = −.23, p = .17) [Color figure can be viewed at wileyonlinelibrary.com]
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be considered especially pertinent given the cost and therapeutic

commitment required by patients and clinics. The heterogeneity of

rTMS clinical response is clearly illustrated in the bimodal response

distribution as evidenced here (Figure 4a) and elsewhere (Bakker et al.,

2015; Downar et al., 2014; Fitzgerald et al., 2016), and is suggestive

of the potential to distinguish distinct groups of responders and NRs.

Using a sophisticated machine learning approach, and leveraging

BOLD signal power as a novel neurobiological marker, together with

DMN and AN connectivity and optional inclusion of initial treatment

response, personalized DLPFC-rTMS treatment outcome could be

predicted with an accuracy of 85–95% for classification of binary res-

ponse/nonresponse. Furthermore, individual improvement in clinical

score could be determined within a mean error of ±16%.

This accuracy exceeds that achieved to date using univariate clini-

cal or demographic features, or their integration using machine learn-

ing, and is consistent with recent evidence suggesting that

neurobiological features, potentially mediating disease or treatment

outcomes, can yield higher accuracy for diagnostic purposes or treat-

ment selection in psychiatry (Drysdale et al., 2017; McGrath et al.,

2013). This study is the first to establish an accurate multivariate neu-

roimaging biomarker for DLPFC rTMS treatment outcomes and

follows on from recent influential work by Drysdale and colleagues

(2017) on a different (dorsomedial PFC) target. The DLPFC is the most

commonly employed clinical rTMS treatment target internationally.

Beyond binary classification (Figure 4b,c), the capacity to objectively

estimate the degree of clinical improvement on a single subject basis is

a highly difficult feat, that was achieved using our selection of core

disease-relevant biomarkers (Figure 4d), and may assist clinicians and

patients to evaluate the relative benefit of rTMS treatment. Clinical

response can typically only be meaningfully evaluated after

3–4 weeks of treatment (O'Reardon et al., 2007). The capacity to pre-

dict treatment outcome with high accuracy at baseline or at the end

of 1 week of treatment is very promising and preferable to adminis-

tering a standard 4–8 weeks of treatment. This has the potential to

help objectively direct informed patient treatment strategies, spare

NRs the substantial time and expense of unsuccessful treatment and

reduce rTMS wait lists.

There has been a surge of interest in the capacity of machine

learning to identify diagnostic and prognostic multivariate neuroimag-

ing biomarkers in psychiatry. The present approach represents a pro-

gressive shift away from black-box approaches, and their associated

interpretability problems, toward transparent (or explainable) machine

F IGURE 4 Treatment outcome prediction. (a) The cohort showed a bimodal distribution for clinical response to rTMS (% change in MADRS
score). Distinct subpopulations display low and high treatment response outcomes, separated by a trough at 44.9% improvement. (b) SVM
sensitivity, specificity and accuracy for binary classification of responders (R) and nonresponders (NR) was high, but varied slightly according to
whether treatment response was defined according to (a) clinical outcome (>25% improvement) or (b) the trough separating subpopulations in the
bimodal clinical response curve (45% improvement; n = 33). (c) Receiver operating characteristic (ROC) curves are displayed for binary classifier
accuracy when R/NR were defined according to the clinical or bimodal split defined above. Both indicate performance in the “excellent” category
(area under curve >0.9), although the bimodal split showed greater accuracy in identifying nonresponders. (d) SVM regression results indicated a
good match between predicted and actual treatment response, although the SVM underestimated treatment outcome. (e) The relative
contribution of each feature is illustrated by assessing accuracy when each is removed individually from the combined feature set. (f) The SVM
hyperplane formed an elongated radial boundary encapsulating those individuals with the lowest power, DMN, and AN connectivity to classify
R/NR [Color figure can be viewed at wileyonlinelibrary.com]
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learning. By design, the present approach directly mitigates key criti-

cisms of machine learning including lack of transparency, the risk for

data-driven feature reduction techniques to identify spurious non-

physiological features and the potential for large feature sets (>25) to

accommodate the idiosyncrasies of a data set (overfitting). The risk of

overfitting is greatest in those studies in which the number of features

begins to approach the number of participants in the sample, creating

a tightly fit (overfit) model. The resultant feature set can therefore

“slice and dice” the dataset until all features cumulatively separate

responders from NRs.

Here, we employed a recommended domain-expertise approach

(Mwangi et al., 2012; Passos et al., 2016) to select robust, core

disease-relevant neurophysiological features aimed to ensure inherent

biological plausibility. While the sample size is comparable to that in

other recent studies (Cao et al., 2018; McGrath et al., 2013;

Nouretdinov et al., 2011; Redlich et al., 2016; Reggente et al., 2018),

we employed a substantially smaller feature set. The resultant ratio of

features to sample size, which may be indicative of the risk of over-

fitting, is ~0.1 in our study, which is considerably lower than compara-

ble recent studies in which the ratio is typically between 0.3–0.5. The

SVM hyperplane clearly illustrates the highly transparent and plausible

manner in which responders were separated from NRs, based on the

nonlinear combination of low power, DMN, and AN connectivity fea-

tures. We also demonstrate that this machine learning algorithm

shows highly robust performance, characterized across a range of

stringent tests designed to preclude overfitting and SVM regression

indicated an authentic relationship between predicted and actual clini-

cal outcome. Nonetheless, as with other recent high-profile ML stud-

ies in psychiatry (Cao et al., 2018; McGrath et al., 2013; Nouretdinov

et al., 2011; Redlich et al., 2016; Reggente et al., 2018), the precision,

generalizability, and clinical utility of this approach will require pro-

spective testing across heterogeneous independent cohorts. The rela-

tive simplicity of this approach and reliance on robust features is

hoped to facilitate clinical application. Notably, the inadequacy of indi-

vidual features for the prediction of treatment response was reiter-

ated by the fact that relationships between individual features and

treatment outcome were only articulated once participants with the

lowest treatment outcome (<0% change) were omitted (e.g., AN con-

nectivity, Figure 3c). We have reported correlations and significance

in the results with and without this subset. This particular analysis is

intended solely to demonstrate the limited utility of univariate bio-

marker approaches in this context. The critical point is that these limi-

tations were overcome across the complete cohort when features

were combined in the multivariateML approach.

ML is beginning to firmly establish a position within the future of

medical diagnosis and prognosis with a number of ML applications

already FDA approved (Topol, 2019). Our findings add to a growing

evidence base that signals a new era in which novel multivariate neu-

roimaging biomarker approaches can assist in clinical decision making

in psychiatry. The present findings are supported by recent data-

driven studies predicting response to other therapies including cogni-

tive behavioral therapy in obsessive-compulsive disorder (Reggente

et al., 2018) and electroconvulsive therapy (Redlich et al., 2016) or

dorsomedial (DMPFC) rTMS in MDD (Drysdale et al., 2017). Treat-

ment effects at DLPFC and DMPFC rTMS target sites are considered

to be mediated via quite separate physiological mechanisms and bene-

fit different MDD subtypes (Downar & Daskalakis, 2013). Together

these studies may directly help to characterize the neurobiological sig-

natures of treatment response to DLPFC and DMPFC rTMS treat-

ment, and aid in treatment selection.

4.1 | BOLD signal power

Comparison of MDD and HC datasets illustrated striking differences

in BOLD signal power. BOLD signal power was then systematically

quantified in areas displaying group level deficits in power and sub-

jected to ML analysis. The regions with significantly lower BOLD sig-

nal power in MDD are implicated in reward processing, motivation,

and emotional regulation, and considered to play a central role in the

neurobiology of depression (Diekhof, Kaps, Falkai, & Gruber, 2012;

Pizzagalli et al., 2009; Robinson, Cools, Carlisi, Sahakian, & Drevets,

2012). Of particular interest, these regions provide a strong match to

the previously proposed corticostriatal pathway for rTMS effects,

namely, DLPFC à putamen/caudate à mediodorsal thalamus à hip-

pocampus and orbital cortex (George, Ketter, & Post, 1994; Li et al.,

2004). The subregion of mPFC identified in our study has repeatedly

been shown to respond to TMS of DLPFC (Chen et al., 2013; Cho &

Strafella, 2009; Li et al., 2004; Paus, Castro-Alamancos, & Petrides,

2001). rTMS of DLPFC and DMPFC has also been shown to induce

dopamine release in caudate nucleus and putamen (Cho et al., 2015;

Strafella, Paus, Barrett, & Dagher, 2001), and modulate thalamic activ-

ity (Li et al., 2004; Speer et al., 2000) suggesting that these regions

form downstream functional targets of rTMS treatment.

We found that individuals with the most aberrant (i.e., lowest)

BOLD power stood to benefit most from rTMS treatment and that

this was the strongest predictor of clinical outcome. Interestingly,

recent work shows that TMS elicits direct, causal increases in BOLD

signal power in healthy individuals in regions very similar to those

identified in our study to have reduced power in depression (caudate,

thalamus, and anterior cingulate cortex) (Dowdle et al., 2018). In addi-

tion, inhibitory DLPFC-rTMS has been shown to reduce BOLD power

(0.008–0.1 Hz) in mPFC (Chen et al., 2013). Moreover, the mPFC sub-

region amenable to BOLD power modulation by DLPFC-rTMS (Chen

et al., 2013) closely matches the region of reduced BOLD power in

MDD observed here (Figure 2a,b). Together, these findings raise the

intriguing possibility that modulation and normalization of BOLD sig-

nal power by excitatory rTMS may be one previously unknown mech-

anism by which TMS elicits its beneficial clinical effects in depression.

Further investigation of this point is warranted. The data also add fur-

ther weight to the argument that rTMS exerts its effects by normaliza-

tion of distributed neural networks rather than solely via the focal

modulation of DLPFC activity.

BOLD signal power showed a weak positive correlation with func-

tional connectivity within the DMN, but not AN (Supporting Informa-

tion Results). Critically, omitting any one of these features

substantially degraded prediction performance (Figure 4e), suggesting
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power and connectivity each explained unique variance in treatment

outcome. While signal power influences the signal to noise ratio and

may influence the capacity of MRI to detect correlated activity, the

amplitude of synchronized neural oscillatory activity relative to neural

“noise” is one factor that may influence the capacity of networks to

communicate effectively (Deco & Kringelbach, 2016). Reduced power

within reward circuitry may thus potentially be one factor contributing

to reward circuit hypoconnectivity in MDD (Fischer, Keller, & Etkin,

2016). Understanding the mechanistic causes of aberrant BOLD signal

power in MDD may ultimately assist in elucidating the pathophysio-

logical basis of network and behavioral dysfunction in depression. This

could involve neurotransmitter abnormalities (Feyissa, Chandran,

Stockmeier, & Karolewicz, 2009; Gsell et al., 2006), excitatory drive

(Miller, Bruns, Ben Ammar, Mueggler, & Hall, 2017), or loss of syn-

chrony within local neuronal ensembles (Zalesky, Fornito, Egan,

et al., 2012).

4.2 | Functional connectivity

The networks included as features for SVM here are two of the three

networks identified as potentially important in mediating rTMS effects

in a previous review (Downar & Daskalakis, 2013), namely DMN, AN

and the central executive network (CEN). In a separate analysis (not

included here), we found that there was no association between CEN

connectivity and treatment response and thus focused solely on

DMN and AN connectivity. A wealth of literature implicates the DMN

and AN, but differences in methodology including study population

(e.g., comorbidity with posttraumatic stress disorder; Philip et al.,

2018), protocol (e.g., 4 days of accelerated intermittent Theta Burst

Stimulation; Baeken et al., 2017), examination of resting state versus

task-related activity and connectivity, and examination of within net-

work versus between-network connectivity present limitations in suc-

cinctly summarizing these findings further in the context of rTMS

response. Of particular note, our study examines within-, rather than

between-network connectivity (Liston et al., 2014), and we have

included supplementary analyses to illustrate that between-network

abnormalities do not account for the present findings. “Between-net-

work” abnormalities in depression are gaining increasing attention and

could be included in future iterations of this approach, but in the pre-

sent context would have compromised benefits pertaining to trans-

parency, ease of application and risk of overfitting.

4.3 | Limitations

Concomitant pharmacological anti-depressant treatment is a potential

confound. Nonetheless, reduced BOLD power in MDD appears

unlikely to be a systematic effect of medication due to the neuroana-

tomical specificity of BOLD power differences, variety of antidepres-

sant subtypes (Table S1) and association with treatment outcome. The

present results were obtained using resting state scans of just under

7 min duration. While this is consistent with the majority of rsfMRI

derived brain–behavior relationships to date, accuracy could poten-

tially be improved with longer acquisition times. We also recommend

taking advantage of recent advances in preprocessing techniques, as

employed here, which have been shown to increase analysis sensitiv-

ity and specificity (Ciric et al., 2017; Parkes et al., 2018; Pruim, Men-

nes, Buitelaar, et al., 2015; Pruim, Mennes, van Rooij, et al., 2015). It is

critical to note that BOLD power was not driven by group or individ-

ual differences in head motion. There were no significant differences

in head motion between groups, nor was there a correlation between

head motion and baseline clinical score, treatment outcome or BOLD

power (detailed in Supporting Information Methods and Results).

While domain-specific knowledge was used to select a minimal set of

features, thereby reducing the risk of overfitting, the size of the sam-

ple studied here is moderate and our findings require replication using

an independent cohort. Finally, while sham conditions have been used

to demonstrate superiority of rTMS relative to placebo (for review,

see Brunoni et al., 2017), research studies such ours typically do not

include sham due to the ethical difficulties involved. Individual clinical

outcome may reflect the summation of both “real” and “placebo”

effects. In the absence of a sham condition, the present approach

therefore predicts meaningful clinical response to rTMS, without fur-

ther differentiation. Conversely, the present approach also predicts

nonresponse to combined “real” and “placebo” effects of rTMS, which

is equally valuable.

5 | CONCLUSION

Our data indicate that aberrant resting state network dynamics in

depression extend beyond functional connectivity to reduced BOLD

signal power, indicating this as a novel feature in the neurobiological

signature of this disorder. BOLD power abnormalities were localized

to areas implicated in MDD and rTMS effects and associated with

treatment outcome. Together, these findings also support the notion

that rTMS effects are likely to be at least partially mediated by

changes at the network level. Leveraging these findings, our transpar-

ent, physiologically plausible and comparatively simple ML approach,

demonstrated accuracy at a clinically meaningful level for the accurate

classification of treatment outcome at a single subject level for what

has become the most commonly employed rTMS treatment world-

wide. Future research should prospectively test this approach across

heterogeneous independent cohorts to evaluate its precision, general-

izability and clinical potential for personalized treatment selection.

Future studies of BOLD power may also yield critical insights into the

neural mechanisms underlying depression, network abnormalities, and

individual treatment response.
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