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Abstract
Investigations of between-person variability are enjoying a recent resurgence in functional magnetic

resonance imaging (fMRI) research. Several recent studies have found persistent between-person

differences in blood-oxygenated-level dependent (BOLD) activation patterns and resting-state

functional connectivity. Conflicting findings have been reported regarding the extent to which

(a) between-person or (b) within-person cognitive state differences explain differences in BOLD

activation patterns. These discrepancies may arise due to statistical analysis choices, parcellation

resolution, and limited sampling of task-fMRI datasets. We attempt to address these issues in a

large-scale analysis of several task-fMRI paradigms. Using a novel application of multivariate dis-

tance matrix regression, we examine between-person and task-condition variability estimates

across varying levels of “resolution”, from a coarse region-of-interest level to the vertex-level, and

across different distance metrics. These analyses revealed that under most circumstances, differ-

ences in task conditions explained a greater amount of variance in activation map differences than

between-person differences. However, this finding was reversed when comparing activation maps

at a “high-resolution” vertex level. More generally, we observed that when moving from “low” to

“high” resolutions, the variance explained by between-person differences increased while variance

explained by task conditions decreased. We further analyzed the relationships among subject-level

activation maps across all task-conditions using an unsupervised clustering approach and identified

a superordinate task structure. This structure went beyond conventional task labels and highlighted

those experimental manipulations across task conditions that produce contrasting versus similar

whole-brain activation patterns. Overall, these analyses suggest that the question of the subject-

versus task-effects on BOLD activation patterns is nontrivial, and depends on the comparison

“resolution,” choice of distance metric, and the coding of task-conditions.
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1 | INTRODUCTION

Conventional group-level analyses in task-based functional magnetic

resonance imaging (task-fMRI) disregard between-subject variability

as noise, with the strong assumption that spatial and temporal activity

is similar across subjects. Recent cognitive neuroscience research has

challenged this assumption (Seghier & Price, 2018). Several recent

studies have shown that between-person variability is a ubiquitous

feature of blood-oxygenated-level dependent (BOLD) activation

patterns and resting-state functional connectivity (Finn et al., 2015;

Gordon et al., 2017; Gratton et al., 2018; Miller, Donovan, Bennett,

Aminoff, & Mayer, 2012; Rosenberg, Finn, Scheinost, Constable, &

Chun, 2017). In fact, several earlier studies by Miller et al. (2002,

2009, 2012) found that between-person differences in whole-brain

BOLD activation patterns persist across differences in task conditions.

Specifically, they found that whole-brain activation patterns were

more similar across conditions within the same subject than activation

patterns across subjects in the same condition. In contrast, a recent study

of task-related changes in functional connectivity and whole-brain acti-

vation by Gratton et al. (2018) found that whole-brain activation
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patterns are driven more by differences in task conditions than by

persistent individual differences. Thus, the relative contribution of

between-person versus cognitive state changes has yet to be clarified.

We identify three potential factors contributing to the inconsistency in

findings: (a) Estimation of between-subject and task-condition variability,

(b) the spatial resolution at which activation maps are compared, and

(c) the choice of task-fMRI paradigms.

Previous analyses of between-person differences in whole-brain

activation patterns (Miller et al., 2009, 2012; Gratton et al., 2018)

relied on comparisons of the average pair-wise correlation of whole-

brain activation maps across subjects versus task conditions. As such,

these previous analyses do not provide estimates of the variance in

whole-brain activation map differences explained by either between-

person or task condition differences. To estimate the unique variance

in whole-brain activation pattern differences explained by subject and

experimental factors, we use a regression-based approach for distance

matrices, known as multivariate distance matrix regression (MDMR;

Shehzad et al., 2014; Zapala & Schork, 2006). As a simple extension of

the multiple regression framework, MDMR on whole-brain activation

pattern distance matrices provides explained variance estimates for

both between-person and task-condition factors. To the best of our

knowledge, this is the first application of MDMR to understand

between-person and task condition variability in BOLD activation pat-

terns. We applied MDMR to a large set of task-fMRI paradigms to

examine between-person variability in whole-brain activation pattern

across task-paradigms.

While some have compared whole-brain activation maps at a voxel-

level (Miller et al., 2009), others have compared whole-brain activation

maps at a coarser region-of-interest (ROI) level (Gratton et al., 2018).

The brain is hierarchically organized, and even at the level of current

whole-brain BOLD fMRI imaging (~2 mm), there is no “optimal”

parcellation resolution (e.g., 300 vs. 600 ROIs) (Eickhoff, Constable, &

Yeo, 2018; Schaefer et al., 2017). However, the resolution at which

subject whole-brain activation maps are compared is likely to have a

moderate, if not dramatic, effect on estimates of between-person and

task-condition variability. For example, regional BOLD changes due to

stimulus presentation may exhibit the same coarse spatial pattern across

subjects, yet small spatial scale changes in this overall pattern may be

present. In this case, a coarse ROI parcellation (e.g., 200 ROIs) may

underestimate the degree of between-person variability, as compared

with task-conditions. To understand the effect of “resolution” on

between-person variability estimates, we conducted an MDMR analysis

on a range of “resolutions” using a recently developed multi-resolution

parcellation scheme (Schaefer et al., 2017).

A third factor contributing to the aforementioned inconsistent

findings may be the choice of task paradigm. Different paradigms

involve different task demands and sensory modalities. In addition,

many task paradigms afford more or less variability in the strategies

utilized. For example, a variety of different encoding strategies can be

utilized when performing an episodic-memory retrieval task

(Bernstein, Beig, Siegenthaler, & Grady, 2002; Miller et al., 2012).

Importantly, different strategies applied to the same task are associ-

ated with different whole-brain activation patterns (Delgado, Gillis, &

Phelps, 2008; Fink, Marshall, Weiss, Toni, & Zilles, 2002; Iaria,

Petrides, Dagher, Pike, & Bohbot, 2003; Miller et al., 2009, 2012).

Therefore, the level of inter-subject variability in whole-brain activa-

tion patterns may be dependent on the type of task paradigm used.

One might predict that “lower-order” tasks, such as simple sensory-

motor tasks afford less inter-subject variability in strategy than

“higher-order” tasks, such as working-memory or social cognition

tasks, and thus, less inter-subject variability in whole-brain activation

patterns.

Accordingly, the amount of variance explained by task conditions

would depend on how these conditions are categorized. Two task

conditions eliciting the same neural mechanisms will presumably yield

the same whole-brain pattern of BOLD activity, and thus, the distinc-

tion between these two task conditions will explain little or no vari-

ability in whole-brain BOLD activation patterns. Though it is quite

common to assume two task conditions with different stimuli and task

demands elicit different whole-brain BOLD activation patterns, this is

not always the case. For example, it has been shown that activation

patterns produced by “task-switching” paradigms are statistically indis-

tinguishable from those produced by “working-memory,” “response-

inhibition,” and “response-selection” paradigms (Lenartowicz, Kalar,

Congdon, & Poldrack, 2010). On the other hand, two task conditions

eliciting widely different neural mechanisms will explain a greater

amount of variability in whole-brain BOLD activation patterns. These

issues related to the recent discussion of a brain-based “cognitive”

ontology or taxonomy (Bolt, Nomi, Yeo, & Uddin, 2017; Poldrack &

Yarkoni, 2016), using task-fMRI BOLD activation patterns to delineate

categories of cognitive processes or mechanisms. In relation to the

above discussion, the variance explained by task conditions will depend

on how these task conditions are coded, meaning which task conditions

we distinguish from each other. To examine interrelationships among

differently coded task conditions, we use a graph-based clustering

approach to identify clusters of similar whole-brain activation maps

across all task conditions.

To assess the contribution of these factors to between-person

and task condition variability estimates, we analyze task-fMRI data

provided by the Human Connectome Project (HCP; Barch et al.,

2013). To summarize, the primary goals of this study are (a) to use a

novel MDMR analytic approach to simultaneously estimate the unique

variance in whole-brain BOLD activation map differences explained

by between-person and task condition variability, (b) to assess the

influence of cortical parcellation “resolution” on between-person vari-

ability estimates, and (c) to assess the choice and coding of task para-

digm on between-person variability estimates.

2 | MATERIALS AND METHODS

2.1 | Task descriptions

Surface-based activation maps were collected from 416 unrelated,

healthy subjects provided by the HCP (Van Essen et al., 2013) as they

performed seven tasks: Emotion, gambling, language, motor, rela-

tional, social, and working memory. A brief description of each HCP

task is presented here, but for more details see Barch et al. (2013).

The working-memory task was an N-back task with eight condition

types of 0-back and 2-back conditions with faces, places, tools, and
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body parts presented as stimuli. The gambling task was a card

guessing game, which involved guessing the number on a mystery

card to win or lose money in two different conditions: “mostly win” or

“mostly lose” outcome conditions. In the motor task, there were six

condition types where subjects were directed to perform particular

motor movements from the fingers, toes, or tongue in response to

visual cues. The language task was a story-comprehension task with

interleaved blocks of two condition types: Brief auditory stories and

simple arithmetic problems (e.g., “fourteen plus twelve.”). The social

task was a “theory of mind” task where participants are presented

with short video clips of two condition types: Interacting or randomly

moving shapes. In the relational task, subjects are presented with pairs

of objects and told to distinguish them on either subject-specified

dimensions in one condition or experimenter-specified dimensions in

the other condition. In the emotion task, participants were told to

match either emotionally expressive faces (e.g., angry or fearful) in

one condition or shapes in the other condition. In total, each subject

completed 24 task conditions across the seven tasks.

2.2 | Task-fMRI preprocessing and analysis

A detailed description of the HCP structural and functional minimal-

preprocessing pipeline is provided in Glasser et al. (2013). We briefly

describe the surface-based functional preprocessing and analysis pipe-

line relevant to the question of inter-subject variability: (a) Subject's

volume scans are mapped to CIFTI gray-ordinates standard space (32k

Conte69 mesh) using an advanced “areal-feature-based” multi-modal

registration algorithm (MSMAll; features used included myelin maps,

resting-state networks, and resting state topographic maps), (b) 2 mm

FWHM surface-based smoothing using a geodesic Gaussian algo-

rithm, (c) 2 mm subcortical parcel-constrained smoothing (only the

cortical surface vertices were used in subsequent analyses), and

(d) conversion to CIFTI dense time series format for further

processing. Subsequent preprocessing included an extra surface-

based smoothing using a geodesic Gaussian algorithm with 4 mm

FWHM (no further smoothing was conducted). Computation of

whole-brain activation maps for each subject was computed using a

standard general linear model (GLM) analysis using FSL's FMRIB's

Improved Linear Model (FILM) with autocorrelation correction

(Woolrich, Ripley, Brady, & Smith, 2001). Task condition regressors

were constructed by convolution with a canonical hemodynamic

response function (HRF; Glover, 1999). Temporal derivatives of each

convolved regressor were included in the GLM to account for timing

differences, but estimates for these terms were not used for the anal-

ysis. The standardized beta estimates (z-statistics) were used as BOLD

“activation” estimates for each vertex and used in further analyses.

2.3 | Construction of whole-brain activation map
distance matrices

Whole-brain activation map distance matrices were constructed at

the vertex-level, and across a range of resolution sizes at a ROI level

(N = 100, 200, 400, 600, and 800; higher number of ROIs corresponds

to a more fine-grained parcellation) using the whole-cortex Schaefer

parcellation (Schaefer et al., 2017). Activation estimates for each ROI

were calculated as the mean standard beta estimate for all vertices

contained within the ROI. As whole-brain cortical activation patterns

were of interest, noncortical vertices were excluded from the compu-

tation of the distance matrix. The “distance” between two whole-brain

activation maps represents the dissimilarity in activation estimates

(estimated from the GLM described above) of all vertices or ROIs

between each map. Note, the activation estimates for all vertices or

ROIs were not thresholded before the distance computation, meaning

the activation estimates of all vertices or ROIs contributed to the dis-

tance computation. The whole-brain activation map distance matrix

was constructed by computing both the City block (L1-norm) and

Euclidean (L2-norm) distance metrics between all pairs of whole-brain

activation maps across all subjects. Vertex- and ROI-values of each

activation maps were z-score standardized before computation of dis-

tance to remove arbitrary mean and scaling differences. Pearson cor-

relation and cosine distance, both equivalent (up to a constant factor)

to squared Euclidean distance on z-scored data (Berthold & Höppner,

2016), were attempted but resulted in a singular distance matrix with

negative sums of squares residual estimates in the MDMR analysis

(R2 > 1). However, the relative difference between the task condition

versus subject estimates was similar for the correlation/cosine dis-

tance and Euclidean distances. The whole-brain activation map dis-

tance matrix is constructed by computing the distance (City block or

Euclidean) between all subject's task-condition activation maps

(N = 24 task-conditions). The resultant 9,984 (416 subjects × 24 task-

conditions) by 9,984 task-activation map distance matrix was then

input to the MDMR analysis. An illustration of this process on a hypo-

thetical task-fMRI dataset of two subjects and two tasks is presented

in Figure 1.

2.4 | Multivariate distance matrix regression

2.4.1 | Omnibus analysis

MDMR was used to quantify the variability in whole-brain activation

map dissimilarity explained by between-person or task condition differ-

ences. We ran two MDMR models with two types of task dummy-codes:

One in which only the task paradigm is coded (ignoring separate condi-

tions within each task paradigm), and one in which all conditions of each

task paradigm are coded. The statistic of interest was the explained vari-

ance (R2) estimates for the subject and task dummy-coded predictors.

Comparison of the explained variance estimates between the task para-

digm and task condition dummy-coded models provide an estimate of

how much explained variance is added to the model when conditions

within each task paradigm are added to the model. These analyses were

conducted on the whole-brain activation map distance matrices con-

structed from both the vertex-level data and Schaefer ROI-parcellations.

The “statistical significance” of the mean difference between task condi-

tion and between-person R2 estimates was tested using bootstrapped

confidence intervals (N = 100). In particular, clustered bootstrapping was

used, where “subjects” (all 24 task-condition activation maps) were

resampled with replacement, as opposed to individual task condition

maps within subjects, to account for the nested structure of the data.
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Statistical significance was declared if the 95% percentile between the

two R2 bootstrapped distributions did not overlap.

2.4.2 | Post hoc task-paradigm specific analysis

To assess the between-person variability within each task-paradigm

separately, we ran a post hoc MDMR model for each task paradigm.

For each MDMR model, subject- and task-conditions were separately

dummy-coded into two sets of categorical predictors and regressed

onto task paradigm distance matrices. For five out of seven tasks

(excluding the motor: 5 conditions and WM task: 8 conditions), only

one dummy-variable for task condition was needed for an active- ver-

sus control-condition contrast. As in the task-general MDMR analysis

above, the statistic of interest was the explained variance (R2) esti-

mates for the subject and task condition dummy-coded predictors.

2.5 | Clustering analysis

To further explore the organization between whole-brain activation

maps, we applied the Louvain modularity maximization graph-clustering

algorithm (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) to a

whole-brain activation map similarity matrix. The whole-brain activation

similarity matrix was computed from the Pearson correlation similarity

between each whole-brain activation map using the N = 100 resolution

Schaefer parcellation, as this was found to be most responsive to task

differences (see Section 3). However, we also demonstrate that the par-

tition from this ROI-parcellation resolution was minimally different from

the partitions using higher-resolutions or vertex-level data. Roughly,

the objective of the graph-clustering algorithm (implemented in the

Brain Connectivity Toolbox; Rubinov & Sporns, 2010) is to partition

the whole-brain activation maps into communities that maximize the

within-cluster similarity of whole-brain activation patterns. Negative

weights (i.e., negative correlation coefficients) were set to contribute

asymmetrically to the modularity objective function (Rubinov & Sporns,

2011). In addition, an iterative fine-tuning algorithm was used that

recursively applied the Louvain algorithm until no further increases in

the modularity objective function were achieved (Geerligs, Rubinov,

Cam-CAN, & Henson, 2015). Because modularity-maximization algo-

rithms suffer from a well-known resolution limit (Fortunato &

Barthélemy, 2007), the modularity objective function is often modified

with a resolution parameter (Betzel & Bassett, 2016; Geerligs et al.,

2015) to control the resulting “resolution” of the clusters. To choose a

value for this parameter, we searched across a range of resolution

parameter values, and chose the values that produced the most consis-

tent partitions across 50 runs of the algorithm, measured as the average

adjusted Rand index (Traud, Kelsic, Mucha, & Porter, 2011) using code

provided in the Network Community toolbox (http://commdetect.

weebly.com/). All values for the parameter from 0.75 to 1.04 yielded

perfect across-run consistency, with a drop-off in consistency thereaf-

ter (Supporting Information Figure S3). There is a “rebound” after this

drop-off in the consistency parameter at the value of 1.13. Thus, we

present two clustering solutions at the following values of the resolu-

tion parameter, 1.04 and 1.13, that present a “coarse” and “fine-

grained” view of the relationships among activation maps, respectively.

The resulting clusters provide insight into what types of task con-

ditions drive the greatest differences among whole-brain activation

patterns, and how consistent these differences are across subjects. To

interpret each cluster, we inspected the number of activation maps

from each task condition in each cluster. The number of task condition

activation maps in each cluster were visualized in a word cloud cre-

ated using the wordcloud function in MATLAB. To visualize the activa-

tion patterns associated with each cluster, we computed the average

(centroid) activation pattern by computing the mean for all vertices

across cluster members.

FIGURE 1 Example MDMR analysis of whole-brain activation patterns. An example MDMR analysis of two subjects performing two hypothetical

tasks, a working-memory (N-back task) and a face perception task. For each task, there are two separate conditions: Body and tool stimuli for the
working-memory task, and faces and shapes for the face perception task. Whole-brain activation patterns are computed for the two conditions of
each task using the conventional GLM approach. To construct a distance matrix, dissimilarity estimates are computed between all pairs of whole-
brain activation patterns, where higher values represent greater dissimilarity in whole-brain activation patterns. The whole-brain activation
pattern dissimilarity matrix is then regressed on a matrix of predictors representing subject, task paradigm, and condition factors using MDMR
[Color figure can be viewed at wileyonlinelibrary.com]
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3 | RESULTS

3.1 | MDMR results

The results of the MDMR analysis revealed that task condition differ-

ences explained a greater amount of variance (100 ROI/City block:

R2 task-paradigm = 0.3404, R2 task-condition = 0.467) in whole-brain activa-

tion patterns than between-person differences (100 ROI/City block:

R2 subject = 0.143) for all resolutions of the Schaefer parcellation

(Figure 2). Of note, all comparisons of R2 values were statistically sig-

nificant, as confirmed by zero overlap in their bootstrapped R2 distri-

butions (visually apparent from Figure 2). This was true for both the

City block distance and Euclidean distance. However, this finding was

reversed at the vertex-level with the City block distance: Between-

person differences explained a greater amount of variance in whole-

brain activation patterns than did task paradigm. One contributing

factor for this reversal is the “resolution” at which distances are com-

puted: As the resolution increases from the 100 ROI Schaefer

parcellation to the vertex-level, the amount of variance explained by

task condition decreases, while between-person differences increases.

Another contributing factor to this reversal is the differential emphasis

on large distances by the City block and Euclidean distance metrics.

The Euclidean distance metric places greater weight on large distances

given that the difference between each vertex or ROI is squared,

which is not the case with the City block metric. Thus, large activation

differences in ROIs or vertices between task paradigms are given

greater weight in the total distance calculation with the Euclidean dis-

tance metric. Together, these factors may explain the reversal

observed between the vertex and ROI-level resolutions for the City

block distance metric.

3.2 | Task-specific post hoc MDMR results

To further analyze between-person versus task condition variability of

whole-brain activation patterns, we applied the MDMR analysis sepa-

rately for each task, modeling both conditions within each task and

between-person differences. The results suggest that within a task

paradigm, between-person differences explain a substantially greater

amount of variance than task condition differences of that task para-

digm (Figure 3). The size of this difference was dependent on task

FIGURE 2 MDMR results. Whole-brain activation map Euclidean distance matrix and explained variance estimates across “resolution” sizes.
(a) The whole-brain activation map Euclidean distance matrix presented in this figure was computed on vertex-level data. Each box from top to
bottom presents a progressively more “fine-grained” view of the matrix, from the entire distance matrix (top), to a few subjects (middle), and a
representative single subject (bottom). The pattern of distances within and across each task was similar across all resolutions and distance metrics
(Euclidean and City block). (b) The graph in the right panel of the figure presents bootstrapped (N = 100) explained variance estimates for task
paradigms (green; no conditions within the paradigm modeled), task-conditions (blue; conditions within each paradigm modeled), and subject
(red). All bootstrapped explained variance estimates are presented as scatter plot points in a box-plot format to give a visualization of the
variability in estimates across each bootstrapped sample. MDMR results on Euclidean and City block distance are presented in darker and
brighter colors, respectively [Color figure can be viewed at wileyonlinelibrary.com]
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paradigm. For example, in the Gambling task, the difference between

the “punish” and “reward” conditions explained a minimal amount

of variance in activation map similarity (City block/vertex task

R2 = 0.0024) compared with persistent individual differences (City

block/vertex subject R2 = 0.8649). In contrast, the difference between

the “math” and “reward” condition in the Language task explained a

greater amount of variance (City block/vertex task R2 = 0.0632), with

a comparable percentage of explained variance due to between-

person differences (City block/vertex subject R2 = 0.8632). Consistent

with the total MDMR results, there was an increase in explained vari-

ance due to between-person differences and decrease due to task

conditions when moving from lower to higher ROI resolutions. An

additional observation of note is that areas of high between-person

standard deviation (SD) had a consistent overlap with areas of high

magnitude activation estimates across all task conditions (Figure 3).

Thus, brain areas highly responsive to task conditions on average,

across subjects, exhibit the greatest between-person variability in

those responses compared with low-response areas. In addition, acti-

vation pattern similarity was greater across high SD vertices (top 20%)

compared with low SD vertices (bottom 20%; Supporting Information

Figure S2). As these high SD vertices overlapped with high average

activation vertices, these findings indicate that activation pattern simi-

larity was greater in task-response vertices, compared with nontask-

responsive vertices.

3.3 | Clustering results

To further examine the type of experimental manipulations across task

conditions that produce disparate or similar activation patterns across

subjects, we used a graph-based clustering approach. We first computed

a whole-brain activation pattern similarity matrix across all subjects' acti-

vation maps. The similarity matrix was constructed by computing the

Euclidean similarity (inverse of distance) across all ROIs of the Schaefer

100 parcellation between all subjects' activation maps. We chose the

Euclidean metric and Schaefer 100 ROI parcellation because this resolu-

tion and metric were most responsive to task-conditions (Figure 2). The

objective function of the graph-clustering algorithm contains a resolution

parameter (“gamma”) that controls whether the resulting clusters are

large (“coarse”) or small (“fine-grained”), what we refer to as the “dimen-

sionality” of the clustering. To choose a value for this parameter, we

searched across values of the parameter that maximized the across-run

clustering consistency (see Section 2; Supporting Information Figure S3).

We chose two cluster solutions: A low-dimensional (coarse) and high-

dimensional (fine-grained) cluster solution.

The low-dimensional cluster solution yielded three large clusters

(containing 9,306 out of 9,984 activation maps), corresponding to a lan-

guage/motor (C5), social/emotion (C2), and working-memory/gambling/

emotion/relational task clusters (C3) (Figure 4). The largest cluster (C3;

N = 4,835) contained a wide variety of task conditions. One prominent

commonality among these task conditions was that they required active

(a) (b)

FIGURE 3 Task-specific MDMR analysis for gambling and language task. Explained variance estimates for task condition and subject factors,

along with across-subject mean and SD maps for the (a) gambling and (b) language task. All task-paradigms are displayed in Supporting
Information Figure S1. For each task paradigm, across-subject mean and SD maps for each task-condition are displayed side-by-side, and its
associated explained variance estimate plots are presented below. Euclidean and city-block distance are presented in dark (dark red and dark
green) and bright colors (bright red and bright green), respectively [Color figure can be viewed at wileyonlinelibrary.com]
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attention to rapidly presented visual cues. This was not the case for the

activation maps that belonged to the other two large clusters, C2 and

C5. C2 primarily contained activation maps from the task conditions of

the social task, which required passive viewing of visual stimuli. C5 pri-

marily contained activation maps from the task conditions of the lan-

guage and motor tasks, which involved responding to auditory stimuli

and movements of various body parts to visual cues, respectively. Two

smaller clusters, C7 and C8, were also present in the clustering solution.

C7 (N = 205) primarily contained face and body stimuli conditions from

the working memory task (both from the 0-back and 2-back conditions).

C8 (N = 411) primarily contained the visual cue task condition activation

maps from the motor task. While most activation maps belonging to a

FIGURE 4 Low-dimensional clustering of whole-brain activation maps. Cluster-organized similarity matrix (left) and centroid activation

maps/word clouds (right) for low-dimensional (gamma = 1.04) cluster solution. Values of the similarity matrix vary from 0 (cool colors) to 1 (warm
colors), where 1 represents complete similarity between whole-brain activation maps, and 0 represents complete absence of similarity. Clusters of
the similarity matrix are outlined with a red box and labeled with their corresponding cluster number (e.g., Cluster 2 = C2). Each cluster has an
associated cluster centroid activation map and word cloud, representing the average activation pattern (computed across all vertices) and the
number of task conditions that appear in that cluster by the size of its text, respectively. Beside each cluster label (e.g., Cluster 2) is the number of
activation maps that appear in that cluster [Color figure can be viewed at wileyonlinelibrary.com]
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single task-condition were classified into the same cluster, this was not

the case for every task condition. For example, the activation maps for

the “shapes” condition of the Emotion task was roughly split between C2

(N = 229) and C3 (N = 131). Notably, the social task activation maps that

primarily constitute C2 were elicited by passive viewing of visual shapes.

Thus, these observations suggest that some subject's activation maps

look more similar to other task conditions (e.g., social task) than other

subject's activation maps of the same task condition.

The high-dimensional cluster solution yielded a more “fine-grained”

view of the relationships among the activation maps (Figure 5). Half of

the clusters in this solution primarily contained activation maps from

either a single task condition or task paradigm. C6 primarily contained

activation maps from the Emotion task, C39 with the task conditions of

the relational task, C43 with the visual cue condition of the motor task,

C44 with the task conditions of the social task, and C49 with the task

conditions of the gambling task. The task condition activation maps of

the working-memory task were split between four clusters: C3 with pri-

marily “0-back” conditions and the “face” condition of the Emotion task,

C14 with “0-back” body and face stimuli conditions, C28 with “2-back”

body and face stimuli conditions, and C32 with primarily “2-back”

FIGURE 5 High-dimensional clustering of whole-brain activation maps. Cluster-organized similarity matrix (left) and centroid activation

maps/word clouds (right) for high-dimensional (gamma = 1.13) cluster solution [Color figure can be viewed at wileyonlinelibrary.com]
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conditions. Interestingly, the language/motor cluster from the low-

dimensional cluster solution remained mostly intact in C12 of the high-

dimensional cluster solution.

We also tested the degree to which the low- and high-dimensional

clustering of whole-brain activation maps is driven by between-person

differences, regardless of task conditions. We calculated the normalized

mutual information (NMI; Meil�a, 2007) between the cluster membership

and subject membership of each activation map (varies from 0 to 1;

1 representing maximum similarity). The NMI between the cluster mem-

bership and subject membership indices was 0.0231 for the low-

dimensional solution, and 0.0901 for the high-dimensional solution. In

other words, the contribution of between-person differences to the

low- and high-dimensional cluster solutions is minimal. However, the

NMI values are nonzero, indicating that between-person differences did

contribute to the cluster solution for some subjects.

4 | DISCUSSION

4.1 | Between-person and task-condition
differences in BOLD activity

The primary goal of this study was to estimate the variability in BOLD

activation maps explained by between-person and task-condition

differences using a novel MDMR approach. In addition, we sought to

determine the moderating influences on these estimates. Such influ-

ences include parcellation resolution, choice of distance metric, and

task-paradigm coding. In agreement with Gratton et al. (2018), we find

that task conditions explain greater variance between whole-brain

activation pattern differences compared with persistent individual dif-

ferences. This was the case for all parcellation “resolutions” consid-

ered. However, at the vertex-level (N = 59,412), we find that

between-person differences explained a greater amount of variance

than task conditions, for at least the City block distance metric, in

agreement with Miller et al. (2009). More generally, we find that as

the resolution at which whole-brain activation maps are compared

increases, the variance explained by between-person differences

increases more than that explained by task-condition differences

decreases. This finding should not be surprising, given that there is

much more variability in the fine-scale structure of the human

cortex, as opposed to its large-scale arrangement. While comparing

whole-brain activation patterns at lower ROI resolution reduces the

dimensionality of the comparison, it also acts as a spatial smoothing

operation, reducing potential small differences in the anatomical loca-

tion of functional areas (Bijsterbosch et al., 2018; Mikl et al., 2008).

Thus, increasing the parcellation resolution (e.g., 800 ROI parcellation

or vertex-level) would reduce the extent of this implicit smoothing,

thereby potentially increasing inter-subject variability of whole-brain

activation patterns. Of note, spatial smoothing in the pre-processing

of task-activation maps was minimal, 4 mm FWHM geodesic Gaussian

smoothing. On the other hand, task condition differences in whole-

brain activation patterns are most evident at the coarse ROI level

(e.g., 100 ROI parcellation), suggesting that differences between task

conditions are most likely to be reflected in large-scale spatial changes

in task-evoked activity.

4.2 | Differences across levels of resolution

A corollary of this finding is that stable between-person differences in

whole-brain activation patterns evoked by a task are largely due to small

differences in the spatial extent of task-evoked activity that are more

resolved at the vertex- or “fine-grained” ROI-level, as opposed to a

“coarser” ROI parcellation. These small individual differences in the spatial

extent in BOLD activation are not guaranteed to represent the spatial

extent of task-responsive neural populations between subjects. At the

resolution of a vertex or voxel, individual variability may be due to dif-

ferences in vascular innervation or cross-subject alignment of neuro-

anatomical features, such as cortical folding patterns. In terms of vascular

innervation, the measured spatial specificity of blood flow changes

induced by neurovascular coupling is limited in gradient-echo (GE) BOLD

fMRI due to venous drainage from the site of a task-responsive neural

population. In fact, changes in venous blood flow can be detected as acti-

vation as far as 4 mm away from a task-activated neural population

(Parkes et al., 2005; Turner, 2002), well above the 2 mm voxel resolution

now commonly used in GE-BOLD fMRI (and the surface vertex-level

used here). In addition, cross-subject alignment of anatomical features

could still be an issue at a “high” resolution. Though a sophisticated multi-

modal surface normalization procedure (MSM-All) was used by the HCP

for this dataset (Glasser et al., 2013), cross-subject alignment issues, how-

ever minimal, are still likely to be present (Guntupalli, Feilong, & Haxby,

2018). These factors make for a complicated interpretation of whole-

brain activation pattern comparisons at a “fine-grained” resolution near to

the vertex or voxel-level, which would not be present a coarser ROI

parcellation level.

One central matter is what level of resolution is of greatest inter-

est to task-fMRI researchers. It is a common practice to only interpret

clusters of significantly active voxels/vertices with cluster-correction

based thresholding techniques. In this case, larger brain regions are of

interest, rather than individual vertices/voxels (Smith & Nichols,

2009). Furthermore, some researchers may restrict their analysis to a

priori regions of interest from a data-driven parcellation (Gordon

et al., 2017; Power et al., 2011) or previously reported brain coordi-

nates. However, in some analyses of task fMRI data, interpretation of

BOLD activity at the voxel/vertex level is a common practice. For

example, multivariate pattern analysis (MVPA) commonly analyzes pat-

terns of BOLD activity estimated at the voxel/vertex level. In analyses of

the hemodynamic response using task-fMRI data, it is also quite common

to analyze at the voxel/vertex level to distinguish different vascular com-

ponents of brain tissue (e.g., large veins vs. capillaries). Thus, we reiterate

the sentiment of Schaefer et al. (2017) and others that there is likely no

optimal resolution for all task-fMRI analyses. The level of resolution, and

thus the degree of between-person heterogeneity, will be dependent on

the research question.

4.3 | Mathematical and empirical differences in
distance metrics

This study also highlights the fact that similarity/distance metrics can

perform differently in different contexts. For example, we find that

whole-brain activation patterns are less different across task-conditions

when the City block distance metric was used, as opposed to the
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Euclidean distance. This was reversed for between-person differences:

Whole-brain activation patterns are less different across subjects when

the Euclidean distance was used, as opposed to the City block distance.

The differences between the Euclidean and City block distances used

here, as well as the Pearson correlation and cosine distance, can be

explained in terms of their weighting of large distances. Properly normal-

ized (i.e., z-scored beforehand to eliminate mean and scaling differences),

City block, Euclidean, and Pearson Correlation/Cosine distance differ

solely in terms of the weight given to the difference between two points

when comparing two vectors. City block distance is the least sensitive to

large differences, simply summing the absolute differences between each

vertex/ROI between whole-brain activation patterns. The Euclidean dis-

tance sums the square of the difference between each vertex/ROI,

followed by taking the square root of this sum. This squaring operation

gives large differences between the activation estimates of a vertex/ROI

differentially more weight compared to smaller differences. The correla-

tion and cosine distance (equivalent if the mean is subtracted from each

vertex/ROI) are equivalent (up to a constant factor) to the z-score nor-

malized squared Euclidean distance: Simply summing the squared differ-

ences without taking the square root of this sum, which places even

greater weight on larger differences. As illustrated above, these mathe-

matical properties produce concrete empirical differences in the MDMR

analyses above (Figure 2). For a concrete example, task-condition

explains 46.68% of the variability in whole-brain activation pattern differ-

ences for the City block distance, 49.81% of the variability for the

Euclidean distance, and 73.89% of the variability for the Pearson

correlation/cosine distance. However, the differences between the dis-

tance metrics are likely more pronounced in our sample of task-

activation maps. As can be observed from both the task-condition

mean activation maps (Figure 3) and clustering results (Figure 5), many

of the activation maps in this sample exhibit the same canonical

task-positive/task-negative activation pattern. Differences between

activation maps are mostly restricted to focal regions of this dominant

task-positive/task-negative activation pattern. Thus, the City block

distance would be more sensitive to the overall dominant task-

positive/task-negative activation pattern and place less weight on these

“outlier” regions. In contrast, the Euclidean and correlation/cosine dis-

tance would place greater emphasis on these “outlier” regions.

4.4 | Differences between task-conditions

A further issue in comparisons of between-person and task condition

differences in BOLD activation patterns is the choice of task condi-

tions. Task conditions with many different stimulus and response fea-

tures would be expected to be more dissimilar in their evoked BOLD

activation patterns than task conditions sharing largely the same fea-

tures. In the case of a comparison between persistent individual dif-

ferences and task conditions containing wildly different stimulus and

response features, we would expect task conditions to explain a much

greater amount of variance between whole-brain activation patterns

than individual differences. This goes for differences between task

conditions across task paradigms, as well as differences between task

conditions within a task paradigm. For example, we observed very

minimal differences between the task conditions of the gambling task.

In fact, the difference in task conditions of the gambling task

explained only 0.24% of the differences between whole-brain activa-

tion patterns at the vertex-level. This suggests that the different

features between the conditions of the gambling task, mainly differing

probability of gains versus losses, produce minimal observable

changes in whole-brain activation patterns. In contrast, different

features between the task conditions of the language task, auditory

arithmetic calculations versus passive auditory listening to stories,

explained 6.32% of the differences between whole-brain activation

patterns at the vertex-level. These findings emphasize that the neural

response estimated using BOLD fMRI is differentially responsive to

experimental manipulations of the task-fMRI environment in ways

that may not be expected by current cognitive theory. This further

motivates a cognitive ontology project that attempts to identify those

features of the task-fMRI environment that explain the greatest dif-

ferences in whole-brain BOLD activation patterns (Anderson, 2015;

Bolt et al., 2017; Lenartowicz et al., 2010; Poldrack & Yarkoni, 2016).

4.5 | Other factors contributing to differences in
BOLD activation patterns

Several factors that could contribute to differential estimates of

between-person and task condition variability were not explored in

the main results of this manuscript:

4.5.1 | Thresholding

One such factor concerns the use of a threshold applied to the activa-

tion maps (as is conventional in much of task-fMRI) before computa-

tion of the distance between activation maps. For an initial insight

into the contribution of this factor to between-person and task-

condition differences, we applied a z-score threshold (z > 2) to each

map of the 800-ROI resolution activation maps. We then applied an

identical MDMR analysis to the analysis of the unthresholded maps in

the main results. For thresholded maps, we found that the variability

in BOLD activation maps explained by between-person and task con-

dition differences decreased, as compared with the unthresholded

maps. In other words, thresholding did not differentially affect esti-

mates of between-person and task condition differences.

4.5.2 | Volume-versus-Surface Approach

Another factor is volume- versus surface-based analyses. We chose to

use the cortical surface activation maps for our analysis, as surface-

based registration approaches are known to provide superior align-

ment of cortical structure compared with volume-based approaches

(Anticevic et al., 2008). Although we do not provide a direct compari-

son, this fact makes it likely that the MDMR analysis applied to

cortical volume activation maps would result in higher estimates of

between-person differences compared with the cortical surface acti-

vation maps used in the current study. An important omission in this

study is subcortical structures, which have generally been neglected in

most studies of individual variability of cortical activation and connec-

tivity. To make our findings directly relevant to previous studies we

also excluded subcortical structures, but note that these findings may

not generalize to other areas outside of the cerebral cortex.
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4.5.3 | Definition of ROI

Another factor is how ROIs are defined, and how “activation estimates”

are computed from the defined ROIs. We chose to use the Schaefer

et al. (2017) parcellation, due to the fact it provides multiple levels of res-

olutions (e.g., 100, 200, 400, and so forth). In addition, there are several

potential routes for computing an activation estimate for each ROI in a

parcellation: (a) The average of all vertices/voxels contained in the ROI,

(b) weighted average of all vertices/voxels contained in the ROI, based

on spatial uncertainty estimates, or (c) eigenvector/eigenvalue of ver-

tices/voxels contained in the ROI. In this study, we chose the conven-

tional averaging approach (a). However, approaches such as (b) and

(c) are likely to reduce variability between-persons by accounting for

potential spatial heterogeneity.

4.6 | Unsupervised clustering of activation maps

To identify those features in our sample of task conditions that pro-

duce disparate or similar activation patterns we used a graph-based

clustering approach. Observations of both a low- and high-

dimensional cluster solution yielded interesting findings. The cluster

solutions revealed similarities in whole-brain activation patterns

across task conditions and task paradigms. In the low-dimensional

clustering solution, three large clusters were observed that contained

primarily social/emotion (C2), language/motor (C5), and working-

memory/gambling/relational/emotion (C3) task-condition activation

maps. The task condition activation maps that belonged to the three

clusters had quite distinct stimulus and response features. C2 activa-

tion maps primarily involved passive reception of visual stimuli. Of

note, many of the “shape” condition activation maps of the emotion

task also belonged to this cluster, which involved identifying whether

simple line-drawn circles and ovals are the same or different. The ease

of the task demands in this condition may be similar to passive recep-

tion of visual stimuli. C5 activation maps almost exclusively contained

activation maps from the language and motor tasks, involving

responses to presented arithmetic or story stimuli, and motor move-

ments of hands, feet, or tongue regulated by a flashing visual fixation

cross. The clustering results also revealed interesting observations

regarding between-person differences. In both the low- and high-

dimensional cluster solutions, some subject's BOLD activation maps

were more similar to other task-conditions, than other subject's acti-

vation maps in the same task condition. For example, the activation

maps for the “shapes” condition of the Emotion task was roughly split

between two clusters in the low-dimensional cluster solution.

One notable observation from both cluster solutions is the high

overall similarity in whole-brain centroid activation patterns between

all clusters. This pattern is the classic “task-positive/task-negative” acti-

vation pattern that is consistently observed across a large variety of

task paradigms (Bolt et al., 2017; Fedorenko, Duncan, & Kanwisher,

2013; Hugdahl, Raichle, Mitra, & Specht, 2015; Raichle et al., 2001).

Minor differences in this overall pattern are what distinguish most cen-

troid activation patterns of each cluster from each other. For example,

C2 and C3 from the low-dimensional cluster solution are largely differ-

entiated in terms of the differential higher activation in the lateral pos-

terior cortex (Figure 5). These findings are consistent with a previous

description of the nested structure of whole-brain BOLD activation

patterns (Bolt et al., 2017), in which task-states are differentiated

terms of permutations of a canonical task-positive/task-negative acti-

vation pattern.

5 | CONCLUSION

The results of this study suggest that the relative contribution of stable

between-person differences versus task condition changes on task-

evoked activity is difficult to determine. Our results demonstrate that the

answer can depend on several additional factors: The parcellation “reso-

lution”, choice of distance metric, and coding of task conditions. With

regards to parcellation resolution, variability in large spatial scale activity

patterns is more associated with task condition differences than

between-person differences, while variability in fine spatial scale activity

patterns is more associated with between-person differences than task

condition differences. Firm conclusions will also depend on other factors

not examined here. For example, GLM beta maps used here as represen-

tative of “task-evoked” activity hardly exhaust the characterization of the

brain's BOLD task response (Bolt, Nomi, Vij, Chang, & Uddin, 2018; Cole,

Bassett, Power, Braver, & Petersen, 2014; Gonzalez-Castillo et al., 2012).

In other words, the extent of between-person variability in task-evoked

activity will depend on how one defines “task-evoked” activity. In addi-

tion, while the seven task paradigms provided by the HCP cover a broad

range of behavioral domains, they miss task paradigms from other

domains (action inhibition, introspection, and so forth) that may produce

disparate results from the seven task paradigms studied here. We hope

this study further clarifies the factors influencing between-person vari-

ability in task-evoked activity and encourages further study into the

sources of individual differences in BOLD fMRI data.
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