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Abstract

Mind wandering (MW) has become a prominent topic of neuroscientific investigation

due to the importance of understanding attentional processes in our day-to-day experi-

ences. Emerging evidence suggests a critical role for three large-scale brain networks in

MW: the default network (DN), the central executive network (CEN), and the salience

network (SN). Advances in analytical methods for neuroimaging data (i.e., dynamic func-

tional connectivity, DFC) demonstrate that the interactions between these networks are

not static but dynamically fluctuate over time (Chang & Glover, 2010, NeuroImage,

50(1), 81–98).While the bulk of the evidence comes from studies involving resting-state

functional MRI, a few studies have investigated DFC during a task. Direct comparison of

DFC during rest and task with frequent MW is scarce. The present study applies the

DFC method to neuroimaging data collected from 30 participants who completed a

resting-state run followed by two runs of sustained attention to response task (SART)

with embedded probes indicating a high prevalence of MW. The analysis identified five

DFC states. Differences between rest and task were noted in the frequency of three

DFC states. One DFC state characterized by negative DN–CEN/SN connectivity along

with positive CEN–SN connectivity was more frequently observed during task vs. rest.

Two DFC states, one of which was characterized by weaker connectivity between net-

works, were more frequently observed during rest than task. These findings suggest that

the dynamic relationships between brain networks may vary as a function of whether

ongoing cognitive activity unfolds in an “unconstrained” manner during rest or is “con-

strained” by task demands.
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1 | INTRODUCTION

Mind wandering (MW) is a complex and multifaceted construct (Seli

et al., 2018; Wang, Poerio, et al., 2018) that encompasses self-

generated thoughts and various cognitive states related to an “inner

life.” MW has solicited immense research interest, particularly in the

area of attention, due to its potential to explain attentional lapses in

daily activities (Thomson, Besner, & Smilek, 2015). The mind can start

to wander away from the immediate external environment during

periods of wakeful rest (akin to task-free, resting-state) as well as dur-

ing mental activities with externally imposed constraints (akin to

experimental task settings). Indeed, the neural underpinnings of MW

have been investigated separately in resting-state studies (Doucet

et al., 2012; Godwin et al., 2017; Gorgolewski et al., 2014; Poerio

et al., 2017; Turnbull et al., 2019; Van Calster, D'Argembeau, Salmon,

Peters, & Majerus, 2017; Wang, Bzdok, et al., 2018; Wang et al.,
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2009) and in task-based studies (Christoff, Gordon, Smallwood,

Smith, & Schooler, 2009; Hasenkamp, Wilson-Mendenhall, Duncan, &

Barsalou, 2012; Sormaz et al., 2018; Stawarczyk, Majerus, Maquet, &

D'Argembeau, 2011). Available evidence suggests that, broadly, MW

is associated with specific patterns of activation and connectivity of

the brain regions that are part of three prominent neurocognitive net-

works: the default network (DN), the salience network (SN), and the

central executive network (CEN; Christoff, Irving, Fox, Spreng, &

Andrews-Hanna, 2016; Fox, Spreng, Ellamil, Andrews-Hanna, &

Christoff, 2015).

The DN includes a set of core brain regions, the medial prefrontal

cortex (mPFC) and the posterior cingulate cortex (PCC; Andrews-

Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010; Buckner, 2012),

which demonstrate intrinsic functional coupling with one another dur-

ing the resting state (Di & Biswal, 2014a; Greicius, Krasnow, Reiss, &

Menon, 2003; Uddin, Kelly, Biswal, Castellanos, & Milham, 2009). The

DN is traditionally thought to play a critical role in internally directed

cognition versus externally directed cognition (Uddin, Iacoboni,

Lange, & Keenan, 2007). Externally directed cognition is proposed to

involve the CEN, which comprises the dorsolateral prefrontal cortex

(dlPFC) and the posterior parietal cortex (PPC; Corbetta & Shulman,

2002). The switching and coordination between DN and CEN are

suggested to be facilitated by the SN, comprising key components

such as the frontoinsular cortex (FIC) and the dorsal anterior cingulate

cortex (dACC) (Goulden et al., 2014; Menon & Uddin, 2010;

Sridharan, Levitin, & Menon, 2008; Uddin, 2015). Emerging evidence

suggests a more complex, dynamic relationship than initially suggested

between these networks (Ciric, Nomi, Uddin, & Satpute, 2017; Najafi,

McMenamin, Simon, & Pessoa, 2016).

Indeed, brain networks dynamically interact over time, as revealed

by recent advances in analytical methods for functional neuroimaging

data (i.e., time-varying functional connectivity, also referred to as

dynamic functional connectivity, DFC; Allen et al., 2014; Chang &

Glover, 2010). This analytical method has been applied in both

resting-state and task-based fMRI investigations and has revealed

reoccurring patterns of DFC between networks, referred to as brain

states (Allen et al., 2014; Marusak et al., 2017; Nomi, Vij, et al., 2017;

Rashid, Damaraju, Pearlson, & Calhoun, 2014). Emerging evidence has

suggested a correspondence between DFC states and mental states

(e.g., Gonzalez-Castillo et al., 2015). The emphasis on brain dynamics

as a promising new approach (Calhoun et al., 2014; Cohen, 2017;

Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013; Williams &

Henson, 2018) goes along with an increased interest in better delineat-

ing the brain dynamics related to MW during rest and task (Christoff

et al., 2016; Kucyi, 2017; Zabelina & Andrews-Hanna, 2016).

Time-varying functional connectivity analyses have been used in

few resting-state and/or task-based studies related to MW

(Karapanagiotidis et al., 2018; Kucyi & Davis, 2014; Mooneyham

et al., 2017). For example, Kucyi and Davis (2014) investigated both

static and dynamic functional connectivity of the DN during rest and

a painful stimulation task with MW probes. They found that dynamic,

but not static, functional connectivity within the DN was related to

MW reported during the task. In addition, Mooneyham et al. (2017)

examined the DFC between DN, SN, and CEN during an attention-to-

the-breath task, which is characterized by fluctuations between

focused attention and MW (Hasenkamp et al., 2012). In this study,

the DFC state that was characterized by decreased DN–SN/CEN con-

nectivity and increased CEN–SN positive connectivity was associated

with greater dispositional mindfulness and proposed to reflect a

“focused attention” state, while the DFC state that was characterized

by positive connectivity between and within the three networks was

inferred to reflect a “MW” state. As such, there is initial evidence of

the utility of examining time-varying functional connectivity in the

context of attention tasks during which MW is likely to occur.

While emerging evidence highlights the need to consider brain

dynamics in both resting-state and task-based fMRI studies, direct rest-

task comparisons of DFC involving an attention task to assess MW are

scarce. Emerging research suggests that resting-state FC profiles may

shape task FC profiles, while there can be meaningful differences in the

FC patterns between rest and task (Bellana, Liu, Diamond, Grady, &

Moscovitch, 2017; Bolt, Nomi, Rubinov, & Uddin, 2017; Warren et al.,

2018). DFC investigations comparing rest and task states are warranted

for a more comprehensive understanding of dynamic brain network (re)

configurations as a function of various cognitive states (Geerligs,

Rubinov, Cam, &Henson, 2015), especially as they are related to the per-

formance on attention tasks (Fong et al., 2019).

Here, we aim to compare DFC states between rest and an attention

task (i.e., sustained attention to response task, SART) that has been

widely used to investigate MW at both the behavioral and neural levels

(e.g., Christoff et al., 2009; Denkova, Brudner, Zayan, Dunn, & Jha,

2018; Smallwood et al., 2004; Smallwood, Beach, Schooler, & Handy,

2008; Smilek, Carriere, & Cheyne, 2010). Because of its monotonous

and repetitive nature, SART has been proposed to promote MW. MW

during SART has typically been explored via experience-sampling

probes, which reveal frequent self-reported MW during this task

(Christoff et al., 2009; Denkova et al., 2018; Seli, 2016). In the present

study, participants completed a 6-min resting-state scan followed by

30 min of the SART. Based on prior investigations involving static FC,

we expected to observe brain states common to both rest and task, as

well as states that differentiate between rest and task. Furthermore,

based on prior work (Mooneyham et al., 2017), we predicted that states

characterized by DN–CEN and DN–SN anticorrelation would occur

more often during the attention task, as an indication of task-imposed

constraints.

2 | MATERIALS AND METHODS

2.1 | Participants

Forty-six healthy adults participated in the study (30 women;

Mage = 31.22, SD = 11.51).1 Participants had normal or corrected-to-

1While handedness was not formally evaluated, three subjects self-reported being left-

handed. This is consistent with the recent recommendation to include left-handed individuals

in neuroimaging studies in a proportion similar to the 10% left-handed population frequency

(Willems, Van der Haegen, Fisher, & Francks, 2014). It is possible that inclusion of left-

handed participants may eventually lead to increased variance between subjects and hence
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normal vision and did not report history of neurological or psychiatric

illness. The experimental protocol was approved by the University of

Miami Institutional Research Board, and all participants provided writ-

ten informed consent and received monetary compensation for their

participation.

2.2 | MRI data acquisition and procedure

MRI data were collected using a 3-Tesla General Electric scanner. The

functional images consisted of series of images acquired in oblique axial

fashion using an echoplanar imaging sequence (TR = 2000 ms,

TE = 30 ms, field of view = 220 mm, matrix size 64 × 64, flip angle = 75,

number of slices = 41, slice thickness = 3.4 mm, voxel size = 3.4 × 3.4 ×

3.4 mm), thus allowing for full-brain coverage. Anatomical images were

acquired using on a three-dimensional (3D) Bravo sequence

(TR = 9.2 ms, TE = 3.7 ms, field of view = 256 mm, matrix size = 256 ×

256, slice thickness = 1mm, voxel size 1× 1 × 1mm).

2.2.1 | Resting state fMRI

At the beginning of the fMRI session, participants completed a 6-min

resting-state run consisting of 180 volumes. They were instructed to

lie still with their eyes open and to allow their thoughts to flow with-

out focusing on any particular structured mental activity, such as men-

tal calculation or counting.

2.2.2 | Sustained attention to response task fMRI

Then, participants performed a modified version of the Sustained

Attention to Response Task (SART, Robertson et al., 1997), which was

previously used to investigate the neural correlates of MW (Christoff

et al., 2009). The task consisted of a continuous array of single digits

(0 through 9) presented visually. Each digit was displayed for 500 ms

followed by a fixation cross displayed for 1,500 ms (see Figure 1). Par-

ticipants were instructed to withhold their responses (i.e., not pressing

any button) to the digit 3 (target) and to respond by a button press to

all other digits (nontargets). Responses were accepted during the stim-

ulus display as well as during the fixation cross that followed stimulus

offset. Based on previous studies suggesting that low target occur-

rence can increase the probability of MW (Smallwood et al., 2004),

targets were presented on ~ 5% of the trials. Hence, 30 target trials

were presented throughout the experiment and always separated by

at least six nontarget trials. The average interval between target trials

was 48 s.

On occasion, and in a pseudorandom fashion to limit participant

expectation, two probe questions related to MW and confidence were

presented in succession. The first probe question (Probe 1) assessed task

engagement and MWby asking “Where was your attention focused just

before the probe?” Participants responded by choosing between (a) “on

task” or (b) “off task” response. “On task” was described to the partici-

pants as being fully focused on performing the task-at-hand. “Off task”

was described to the participants as thinking of anything unrelated to the

task, such as plans for the weekend, an earlier dispute, or any personal

experiences. The second probe question (Probe 2) assessed the partici-

pant's confidence regarding the Probe 1 response; this procedure was

akin to confidence judgments used to assess meta-cognition in the per-

ception or memory domain in prior studies (e.g., Fleming & Dolan, 2012).

The question asked, “How confident are you in your answer to the previ-

ous question” and participants rated their confidence on a 4-point scale

ranging from 1 being “not all” to 4 being “very confident”. Each probe

questionwas presented on the screen for 4 s. After the second question,

a fixation cross was presented for 2 s after which the presentation of

digits was resumed. Thirty probe trials were presented throughout the

experiment and always separated by at least six nontarget trials. Based

on previous studies suggesting that a 1-min interval between probes led

to ~50% mind wandering reports during a task (Seli, Carriere, Levene, &

Smilek, 2013), the average interval between probe trials was 50 s.

The task consisted of two runs, each lasting approximately

15 min. Each run consisted of 296 nontargets, 15 targets, and 15 pro-

bes. During the last 60 s of each run, participants performed a letter

task requiring a button press every time a letter was presented on the

screen. Each letter was displayed for 500 ms followed by a fixation

cross displayed for 1,500 ms; thus, a total of 30 letters were pres-

ented at the end of each task run. The latter task was designed to

control for low level perceptual and motor demands (Forster, Nunez

Elizalde, Castle, & Bishop, 2013).

Before performing the two SART runs in the fMRI scanner, partici-

pants were given detailed instructions and performed an 8-min prac-

tice in a mock scanner in order to familiarize themselves with the task

and environment, and to ensure that they understood the instructions

regarding the probe questions.

E-Prime 2.0 software (Psychology Software Tools Inc., Sharpsburg,

PA) was used for stimulus presentation and collection of behavioral

responses. All stimuli were white and centred on-screen with a black

background. All responses were made on a four-button MRI-

compatible response box placed under the subject's right hand.

In addition, participants completed an 8-min n-back task at the

end of the scanning session. These data are outside of the scope of

the present report.

2.3 | Data analyses

The main goal of the present study was to perform time-varying ana-

lyses on the resting-state run and the two SART task runs. We col-

lected neuroimaging data from 46 participants. However, the final

DFC analyses included only 30 participants. Participants' data were

excluded due to incidental findings (n = 2), not complying with task

instructions (n = 1), incomplete resting-state run (n = 1), and excessive

motion (n = 12 with motion greater than 3 mm in any direction and

mean framewise displacement [FD] greater than 0.2 mm at any of the

three runs, Power et al., 2014). The greater proportion of participants'

reduced statistical sensitivity in the present study. While recent evidence suggests that

functional connectivity in motor areas but not in nonmotor areas during the resting-state

may show differences between right- and left-handed participants (Pool, Rehme, Eickhoff,

Fink, & Grefkes, 2015), future studies should consider a formal investigation of the impact of

handedness on DFC patterns.

4566 DENKOVA ET AL.



data excluded for excessive motion could be due to (a) the conserva-

tive motion cutoff criteria; (b) the long length of each task run

(~15 min), and (c) the exclusion from the analyses for excessive

motion in any of the three runs. Indeed, to avoid motion confound,

we adopted stringent motion exclusion criteria (Parkes, Fulcher,

Yucel, & Fornito, 2018) and checked for potential differences in mean

FD across runs as well as potential correlations between mean FD

and brain states metrics (see section 2.3.3. Exploratory follow-up and

control analyses). Time-varying analyses were based on 30 partici-

pants' data (20 women; Mage = 29.17, SD = 11.58).

2.3.1 | Behavioral task analyses

While SART can yield various outcomes, the present study focused on

three main outcomes related to (a) accuracy as indexed by A prime,

which is a nonparametric measure of sensitivity considering the rate

of correct target trials and incorrect nontarget trials (Stanislaw &

Todorov, 1999), (b) RT variability as indexed by the intra-individual

coefficient of variation (ICV), which is calculated by dividing the stan-

dard deviation RT of correct nontarget trials by the mean RT of cor-

rect nontarget trials (i.e., standard deviation RT/mean RT; Bastian &

Sackur, 2013), and (c) subjective reports of mind wandering calculated

as the percentage of “off task” reports throughout each task run. The

first two outcomes are typically considered objective SART metrics

and the third is considered a subjective outcome, since it pertains to

self-reports. Paired t tests were used to compare the two task runs on

these outcomes.

2.3.2 | Time-varying resting-state and task fMRI
analyses

Preprocessing and ROI signal extraction

Preprocessing steps were separately performed for the resting-state run

(rest run) and task runs (task run 1 and task run 2) in the same order:

realignment, brain extraction, coregistration, normalization to the EPI

template (2 × 2 × 2), and smoothing (6-mm full-width half-maximum

isotropic Kernel). Before applying smoothing, fMRI data were detrended,

regression of Friston's 24 motion parameters (6 rigid-parameter time

series, their temporal derivatives, plus all 12 regressors squared) and

band-pass filtering (0.01–0.1 Hz) were applied. All steps were conducted

using the Data Processing and Analysis for Brain Imaging (DPABI) tool-

box (Yan,Wang, Zuo, & Zang, 2016).

After pre-processing, time series were extracted for the core

regions of the DN, CEN, and SN.2 This procedure is akin to the one

used by Mooneyham et al. (2017) and based on the ROIs originally

provided by Sridharan et al. (2008). The regions included the mPFC

and PCC for the DN, the FIC and dACC for SN, and the dlPFC and

PPC for the CEN (see Table 1, see also Figure S1). Time courses were

extracted from the 6-mm radius sphere around the coordinates pro-

vided in Table 1 using the DPABI toolbox.

2The CEN has been also referred to as the task-positive network or frontoparietal network

(Chang & Glover, 2010; M. D. Fox et al., 2005; Power et al., 2011). Because the present

study was based on prior resting-state and task-based studies that focused on the core

neurocognitive networks referred to as DN, CEN, and SN (Di & Biswal, 2014b; Goulden

et al., 2014; Hasenkamp et al., 2012; Mooneyham et al., 2017; Sridharan et al., 2008; Uddin,

2011), we use the CEN term rather than task-positive network or frontoparietal network.

TABLE 1 ROIs used in the present study

Network Region Hemisphere MNI coordinates

DMN mPFC L −2, 36, −10

DMN PCC L −7, −43, 33

SN FIC R 37, 25, −4

SN FIC L −32, 24, −6

SN ACC R 4, 30, 30

CEN dlPFC R 45, 16, 45

CEN dlPFC L −45, 16, 45

CEN PPC R 54, −50, 50

CEN PPC L −38, −53, 45

F IGURE 1 Diagram of the task. Participants completed a modified version of the sustained attention to response task (SART) during which
they were presented with a continuous array of single digits and were instructed to respond by a button press during presentation of all digits
other than 3 (nontargets) and to withhold responses to 3 (targets). Intermittently, they were probed about their mind wandering (probe 1) and
confidence (probe 2)
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Dynamic functional connectivity analyses

Rest and task run time series of the nine ROIs were concatenated fol-

lowing the procedure for concatenating rest and task data for DFC

analysis previously reported (Hutchison & Morton, 2015).

Concatenated data were submitted to DFC analysis using a sliding

window approach via the GIFT toolbox (http://mialab.mrn.org/

software/gift/#). The choice of window length of 44 s with a step size

of 1 TR was based on previous research also utilizing window sizes

between 30 and 60 s (Allen et al., 2014; Ciric et al., 2017; Hutchison &

Morton, 2015; Nomi, Bolt, Ezie, Uddin, & Heller, 2017; Nomi et al.,

2016; Nomi, Vij, et al., 2017; Steimke et al., 2017; Yang, Craddock,

Margulies, Yan, & Milham, 2014), as well as research demonstrating

that such window sizes capture variability not found in longer win-

dows (Allen et al., 2014; Hutchison et al., 2013). However, DFC ana-

lyses were also repeated with a window length of 66 s. The temporal

structure of each task run was preserved without isolating or deleting

probe periods because probes are an integral part of the task, and the

sliding window analysis focuses on uninterrupted continuous tempo-

ral dynamics. This approach also follows previous work exploring DFC

during rest and task, including the entire task (Hutchison & Morton,

2015). Only the windows of overlap between the rest run and task

run 1 and between task run 1 and task run 2 were deleted. This pro-

duced a correlation matrix that was 958 (sliding windows) × 36

(paired connections) per subject. There were 158 windows for the rest

run, and 400 windows for each of the task runs. Individual correlation

matrices were concatenated across subjects and submitted to k-

means clustering analysis to assess the frequency and structure of

dynamically reoccurring DFC states, also referred to as brain states.

The optimal number of clusters (k) was estimated by applying the

elbow criterion, which is computed as the ratio between within cluster

distance to between-cluster distance (Allen et al., 2014). After deter-

mining the optimal number of brain states, DFC metrics were calcu-

lated separately for each of the three runs (rest run, task run 1 and

task run 2) for each participant. These metrics consisted of

(a) frequency of occurrence, calculated as the percent that a brain

state occurred throughout the duration of each run, and (b) dwell

time, calculated as the average length of time, measured in sliding

windows, that a participant stayed in a given brain state.

To examine differences between rest and task for each brain state,

a series of repeated measures ANOVAs with run type as within-

subject factor with three levels (rest run, task run 1, and task run 2)

were performed separately for frequency of occurrence and dwell

time using the Statistical Package for the Social Sciences (SPSS).

Because the effect of run type was investigated for each state sepa-

rately using five separate ANOVAs for frequency of occurrence and

five separate ANOVAs for dwell time, results were considered signifi-

cant after Bonferroni correction for multiple comparisons

(.05/10 = .005). Effects that violated assumptions of sphericity

were adjusted using the Greenhouse–Geisser or Huynh (if ε > 0.75),

and adjusted degrees of freedom are reported. Significant main

effects of run type were followed by post hoc comparisons with

Bonferroni adjusted p values, and confidence intervals around the

mean difference are reported. Effect sizes are reported as partial eta-

squared (η2p) for F tests and as Hedges gav for paired tests

(Lakens, 2013).

2.3.3 | Exploratory follow-up and control analyses

Correlation between objective and subjective SART outcomes and

brain state metrics

For exploratory purposes, the relationship between SART outcomes

and brain state metrics was examined by calculating Pearson correla-

tions between the three SART outcomes of interest (A prime, ICV,

and % of “off task” reports) and frequency of occurrence and dwell

time of the states showing significant rest-task differences. Because

the number of participants included in the exploratory correlation

analyses (n = 30) may not be sufficient to establish reliable effects

between task outcomes and brain state metrics, the brain-behavior

results should be considered as preliminary, and are provided for com-

pleteness as a guide for future investigations targeting larger sample

sizes.

Task runs split into equal halves

Because task runs were longer than the rest run, we checked if differ-

ences between rest and task DFC metrics could be driven by either

the first or second half of the task runs. For this purpose, a series of

paired t tests were performed to compare the frequency and dwell

time of each state for the first half and second half of the task runs.

Head motion

To check for potential differences in head motion between rest and

task, we performed an ANOVA using the mean FD for rest and each

task run. In order to check for potential relationships between head

motion and brain state metrics, we performed a series of Pearson cor-

relations between the mean FD for each run with the frequency and

dwell time of each brain state.

Window sizes

To assess the robustness of the effects across window lengths, addi-

tional supplementary analyses were conducted using a different win-

dow size (66 s).

2.3.4 | Univariate task analyses

For completeness, we also performed univariate analyses on the SART

neuroimaging data using a procedure similar to prior investigations

examining MW during the SART (Christoff et al., 2009; Stawarczyk

et al., 2011).

Participants

Twenty-seven participants were included in this analysis. Two partici-

pants included in the time-varying analysis did not have enough mind

wandering reports (<3 mind wandering reports) to allow valid compar-

ison between “off task” and “on task”, and one had corrupted E-Prime

timing data.
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Preprocessing

Standard task fMRI preprocessing was performed with steps including

realignment, brain extraction, coregistration, normalization to the EPI

template, and smoothing (6 mm full-width half-maximum isotropic

Kernel). All steps were conducted using the Data Processing and Anal-

ysis for Brain Imaging (DPABI) toolbox (Yan et al., 2016) using SPM12.

First-level analyses

At the individual level, we used a modeling procedure akin to the

one used in prior studies investigating self-reported mind wandering

during an attention task (Christoff et al., 2009; Stawarczyk et al.,

2011). Using the general linear model (GLM) in SPM 12, the 10-s

periods preceding the probes were modeled as two types of “probe”

epochs according to participants' subjective responses to the first

probe question (i.e., “on task” and “off task”). Specifically, the 10-s

preprobe epochs began at the onset of the fifth nontarget trial pre-

ceding the probe and ended at the onset of the probe. For com-

pleteness, the same procedure was followed for the 10-s periods

preceding the targets by modeling two types of “target” epochs for

the participants' objective performance on the target trials

(i.e., “correct withhold” and “error of commission”), respectively.

Confidence ratings were entered as parametric modulation regres-

sors separately for the “on task” and “off task” probe epochs. In

addition, the probe intervals were modeled as 10-s epochs begin-

ning at the onset of Probe; target and nontarget trials (other than

those included in the epochs preceding targets and probes) were

modeled as separate events. The letter task at the end of each

SART run was modeled as a 60-s epoch. The canonical hemody-

namic response function (hrf) was used to model each type of event

and epoch. Motion parameters calculated during realignment were

included as covariates of no interest to control for movement arti-

facts. At the subject level, contrasts of interests were identified to

compare “on task” and “off task” intervals.

Group-level analyses

Individual contrast images (“off task” minus “on task”, “on task” minus

“off task”) were entered into second-level random effects analyses

using one-sample t tests (p < .05 FWE).

3 | RESULTS

3.1 | Behavioral SART results

A prime for task run 1 (M = 0.91, SD = 0.07) was significantly greater

than that for task run 2 (M = 0.85, SD = 0.08; t(29) = 4.74, p < .001,

95% CI [0.031, 0.079], Hedges gav = 0.672) even at Bonferroni-

corrected threshold of p < .02 (.05/3 t tests = .02). However, ICV for

task run 1 (M = 0.33, SD = 0.15) was not significantly different from

that for task run 2 (M = 0.37, SD = 0.15; t(29) = −1.44, p = .16, 95% CI

[−0.084, 0.015], Hedges gav = 0.227) and the percentage of “off task”

reports for task run 1 (M = 50.83%, SD = 19.44) was not significantly

different from that for task run 2 (M = 53.35%, SD = 22.62; t

(29) = −0.719, p = .478, 95% CI [−9.680, 4.643], Hedges gav = 0.116).

3.2 | Time-varying resting-state and task fMRI
results

DFC analyses revealed five brain states that dynamically reoccurred dur-

ing rest and task runs (see Figure 2). State 1 was characterized by slightly

negative connectivity between DN and SN, and DN and CEN, particu-

larly in the case of the mPFC, and positive connectivity between SN and

CEN. States 2 was characterized by slightly negative connectivity

between SN and CEN, particularly for FIC bilaterally, and connectivity

going in opposite directions between PCC and SN (negative), and PCC

and CEN (positive). State 3 was characterized by an overall weaker con-

nectivity between networks and slightly positive connectivity within net-

work. State 4 and State 5 were characterized by overall positive

connectivity between and within networks, particularly stronger for

State 5. Below, we report the results from the analyses comparing rest

and task runs for the frequency of occurrence and dwell time of the five

states. Of note, the two metrics were overall highly correlated with each

other [all rs > .67 and ps < .001 surviving Bonferroni correction of

p < .003 (.05/15 correlations [5 states for rest, 5 for task run 1, 5 for task

run 2] = .003), except for the correlation between frequency and dwell

time of State 4with r = .389, p = .034].

3.2.1 | Frequency of occurrence

Repeated-measures ANOVA revealed a significant main effect of run

type for the frequency of occurrence of State 1 [F(2, 58) = 15.779,

p < .001, η2p = 0.352], with lower frequency for rest run compared to

task run 1 (p < .001, 95% CI [−24.821, −8.552], Hedges gav = 1.383)

and to task run 2 (p = .004, 95% CI [−21.105, −3.384], Hedges

gav = 0.880, see Figure 3); no significant difference between task run

1 and task run 2 was noted (p = .240, 95% CI [−1.776, 10.660],

Hedges gav = 0.290). There was also a significant main effect of run

type for the frequency of occurrence of State 2 [F(1.471,

42.657) = 10.457, p = .001, η2p = 0.265], with higher frequency for

rest run compared to task run 1 (p = .001, 95% CI [4.720, 21.977],

Hedges gav = 0.802) and to task run 2 (p = .017, 95% CI [1.616,

20.331], Hedges gav = 0.621); no significant difference between task

run 1 and task run 2 was noted (p = .734, 95% CI [−7.458, 2.708];

Hedges gav = 0.215). In addition, there was a significant main effect of

run type for the frequency of occurrence of State 3 [F(1.701,

49.334) = 7.033, p = .003, η2p = 0.195], with higher frequency for rest

run compared to task run 1 (p = .050, 95% CI [0.015, 19.453], Hedges

gav = 0.490) and to task run 2 (p = .006, 95% CI [2.746, 19.555],

Hedges gav = 0.549); no significant difference between task run 1 and

task run 2 was noted (p = 1.000, 95% CI [−4.738, 7.571], Hedges

gav = 0.085). There was no significant main effect of run type for the

frequency of occurrence of State 4 [F(1.715, 49.729) = 0.632,

p = .512, η2p = 0.021] or State 5 [F(1.284, 37.232) = 2.370, p = .126,

η2p = 0.076]. Because the absence of statistical significance does not

imply the absence of an effect, and may simply result from a lack of
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power, we further calculated and reported effect sizes for all the

paired comparisons including those for States 4 and 5 (see Table S1).

Note that the effect sizes for all paired comparisons for State 4 were

small (Hedges gav < 0.2).

3.2.2 | Dwell time

Repeated-measures ANOVA revealed a significant main effect of run

type for dwell time of State 1 [F(2, 58) = 15.956, p < .001,

η2p = 0.355], with lower dwell time for rest run compared to task run

1 (p < .001, 95% CI [−12.171, −4.467], Hedges gav = 1.321) and to

task run 2 (p < .001, 95% CI [−13.719, −3.595], Hedges gav = 1.079,

see Figure 3); no significant difference between task run 1 and task

run 2 was noted (p = 1.000, 95% CI [−4.570, 3.894], Hedges

gav = 0.045). No significant main effect of run type was observed for

dwell time of State 2 [F(1.711, 49.610) = 1.642, p = .206, η2p = 0.054],

State 3 [F(1.403, 40.683) = 3.123, p = .071, η2p = 0.097], State 4 [F

(2, 58) = 0.609, p = .547, η2p = 0.021], and State 5 [F(2, 58) = 4.848,

p = .011, η2p = 0.143] considering Bonferroni-corrected threshold of

p = .005 for significance. For completeness, we further reported all

effect sizes for the paired comparisons (see Table S1).

3.3 | Results for exploratory follow-up and control
analyses

3.3.1 | Correlation between objective and subjective
SART outcomes and brain state metrics

While a higher frequency for State 1 during run 1 was linked to better

task performance as indexed by A prime, this correlation did not sur-

vive Bonferroni correction (see Table S2). No other correlations

between task outcomes and brain metrics were noted. Nevertheless,

these brain-behavior correlations should be considered with caution

because of the small sample size; they are provided for completeness

and as a guide for future investigations targeting larger sample sizes.

3.3.2 | Task runs split into equal halves

Paired t tests comparing the first half to the second half of each task

run revealed some differences for task run 1, with the frequency of

State 2 being significantly higher for the first half vs. second half after

Bonferroni correction (see Table S3). To check if this may have had

affected the rest-task differences reported above, we ran a repeated-

measures ANOVA with split task runs (five levels: rest run, task run

F IGURE 3 Frequency of occurrence and dwell time for each state for resting state and task, with the first three states showing a significant
difference in frequency between rest run and task runs and State 1 showing also a significant difference in dwell time between rest run and task
runs. Error bars present standard error of the mean

F IGURE 2 Five brain states reoccurred during resting-state run and task runs. CEN, central executive network; DN, default network; SN,
salience network [Color figure can be viewed at wileyonlinelibrary.com]
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1 first half, task run 1 second half, task run 2 first half, and task run

2 first half) for frequency of occurrence. The results revealed similar

results to the ANOVA without split task runs (see Supporting Informa-

tion section 3.2, Task runs split into equal halves). Hence, a difference

in State 2 frequency between the first and second half of the task run

1 could not explain the observed rest-task differences for the fre-

quency of State 2.

3.3.3 | Motion consideration

There was no significant difference in the mean FD, F(1.362,

39.489) = 1.428, p = .248, across the three runs [M rest run = 0.105

(SD = 0.040), M task run 1 = 0.104 (SD = 0.036), and M task run

2 = 0.113 (SD = 0.043)]. In addition, there were no significant relation-

ships between the mean FD and the frequency or dwell time of the

three states (States 1, 2, and 3) that showed significant differences

between rest and task (see Table S4). These results suggest that it is

very unlikely that our main findings showing rest-task differences

were driven by motion confounds.

3.3.4 | Window size of 66 s

Similar results were observed for the additional analyses conducted

with a window size of 66 s (see details in Supporting Information

section 3.4, Window size and Figure S2).

Consistent with the 44-s window size analyses, repeated-measures

ANOVAs for frequency of occurrence revealed a significant main effect

of run type for State 1 [F(2, 58) = 14.003, p < .001, η2p = 0.326], and

State 2 [F(1.311, 38.016) = 13.848, p < .001, η2p = 0.323]. The main

effect of run type for State 3 [F(1.601, 46.416) = 4.123, p = .030,

η2p = 0.124] did not reach Bonferroni-corrected threshold of p = .005

for significance. There was no significant main effect of run type for the

frequency of occurrence of State 4 (p = .460) or State 5 (p = .068 ). In

addition, consistent with the 44-s window size analyses, repeated-

measures ANOVAs for dwell time revealed a significant main effect of

run type only for State 1 [F(2, 58) = 21.255, p < .001, η2p = 0.423], but

not for the other states.

3.4 | Univariate results

Correction for multiple comparisons (p = .05 FWE) did not reveal sig-

nificant activations for the “off task” vs. “on task” contrast, nor for the

“on task” vs. “off task” contrast. Adopting a less conservative thresh-

old of p < .001 (uncorrected) solely for the purpose of comparing the

current results with prior MW studies using an uncorrected threshold

(e.g., Christoff et al., 2009), revealed that the “off task” vs. “on task”

contrast yielded increased activity in the right inferior parietal lobule

(BA40; 50 −43 36, z = 3.33, k = 9) and fusiform gyrus (BA37; 46 −39

−7, z = 3.31, k = 5). No significant activations were noted for the “on

task” vs. “off task” contrast (see Figure S3).

4 | DISCUSSION

The primary aim of the current study was to investigate dynamic

interactions between and within three core neurocognitive brain net-

works in the context of rest and an attention task with frequent self-

reported MW. The results revealed five brain states reoccurring

across rest and task. Differences between rest and task were revealed

by differences in the frequency of occurrence of three states.

State 1 occurred more frequently during task (~20–25%) than rest

(~8%) and participants had longer dwell times in State 1 during task

(~15 windows) than rest (~7 windows). This state was characterized

by negative DN–CEN and DN–SN functional connectivity and posi-

tive SN–CEN functional connectivity. We note that the negative con-

nectivity pattern was prominent for the mPFC but not the PCC

component of DN. This finding is consistent with the anterior–

posterior dissociation of the DN previously reported in resting-state

and task fMRI literatures (Goodman et al., 2017; Johnson et al., 2006;

Qin et al., 2012; Sestieri, Corbetta, Romani, & Shulman, 2011; Uddin

et al., 2009).

Overall, the State 1 pattern of negative mPFC-CEN/SN connectiv-

ity and positive CEN–SN connectivity is in line with prior literature

suggesting a role for the SN in switching between the DN and CEN to

guide task-relevant behavior (Goulden et al., 2014; Menon & Uddin,

2010; Sridharan et al., 2008), while “inhibiting” task-irrelevant self-

directed thoughts. A brain state with a similar pattern of connectivity

was reported as one of the three DFC states during the attention-to-

the-breath task (Mooneyham et al., 2017). This brain state was inter-

preted as reflecting the focused attention state. The present findings

enrich prior research by showing that while present during both rest

and task conditions, the brain network configuration characterizing

State 1 occurs more frequently during task than rest, and is the least

frequent state occurring during rest. Hence, State 1 may be a network

configuration prominent during task that enables attention to be

deployed toward goal-relevant behavior despite instances of off-task

thoughts.

In contrast to State 1, State 2 occurred more frequently during

rest than task. State 2 points to the anterior–posterior dissociation of

the DN and further reveals a dissociation in the direction of functional

connectivity between PCC and SN (negative), and PCC and CEN (posi-

tive). On the one hand, a negative functional connectivity between

PCC and insula was previously reported for “off task” episodes during

the SART (Christoff, 2012). On the other hand, a strong coupling

between PCC and dlPFC has been observed during elaboration of

past autobiographical memories (Inman, James, Vytal, & Hamann,

2018), which is also consistent with a stronger DN–CEN coupling dur-

ing planning of autobiographical events (Spreng, Stevens, Chamber-

lain, Gilmore, & Schacter, 2010). MW may share some characteristics

with autobiographical memory (Maillet & Schacter, 2016; Seli et al.,

2018) and some forms of MW may involve deliberate elaboration pro-

cesses similar to those occurring during autobiographical recollection

or planning. Relatedly, deliberate MW has been associated with a

stronger coupling between DN and CEN nodes (Golchert et al., 2017).
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As such, engaging in elaborative and detailed MW that is uninterrupted

by external constraints or occurs in a more deliberate manner could

be related to the more frequent occurrence of State 2 during rest than

during task.

State 3 is the most frequently occurring state during rest (35%)

and is characterized by overall weaker connectivity between and within

networks. This finding is in line with prior evidence revealing that the

most frequent DFC states during rest are characterized by attenuated

between and within network connectivity (Allen et al., 2014; Nomi, Bolt,

et al., 2017; Nomi, Vij, et al., 2017). These states have been referred to

as “metastable brain states” (Nomi, Vij, et al., 2017), that are in the mid-

dle of a continuum providing the balance between extremely focused

(ordered) and extreme unfocused (disordered) states (Hellyer, Scott,

Shanahan, Sharp, & Leech, 2015; Tognoli & Kelso, 2014). From this per-

spective, relatively greater frequency of State 3 during rest versus task

could reflect the nature of the resting state, which is unconstrained by

specific attentional demands and therefore, may involve more frequent

states of flexibility and readiness for appropriate responding to a broad

range of processes.

In contrast to the first three states, State 4, characterized by

synchrony between and within networks, was not significantly differ-

ent between rest and task runs (in addition to exhibiting very small

effect sizes for the paired comparisons). Engaging in self-generated

thoughts regardless of whether they occur during rest or task, is

likely to require cognitive resources (Thomson et al., 2015) and

hence, correspondingly some level of synchrony between networks.

As such, one possible interpretation could be that State 4 may be

related to the emergence of such thoughts regardless of the context

(rest or task) and whether they will be further elaborated in detail

or not.

Thus, so far, we have presented the DFC states revealed in the

present study by discussing the relationship between core network

components as they relate to task and rest. An alternative approach is

to adopt a more global or holistic view of brain function that does not

necessarily subscribe to dichotomies such as task versus rest, task-

evoked versus intrinsic, task-positive brain network versus task-

negative brain network, CEN versus DN (Bolt, Anderson, & Uddin,

2018). Following a more holistic perspective, brain states can be seen

as the repertoire of more or less flexible brain network configurations

that emerge dynamically to enable context-appropriate behavior

based on the skillful interchange between external and internal needs.

This perspective also aligns well with the brainweb vision proposed by

Varela et al. (Varela, Lachaux, Rodriguez, & Martinerie, 2001) in which

the “brain appears as a resourceful complex system that satisfies

simultaneously the exogenous and endogenous constraints that arise

at each moment by transiently settling in a globally consistent state”

(Varela et al., 2001, p. 237). Accordingly, the observed relative differ-

ences between task and rest in the frequency of some, but not all

brain states, could reflect the enactment of attentional processes that

can be described on a continuum from externally driven to internally

driven mental activities.

A general consideration of the rest-task comparison concerns

the potentially confounding effect of task activations on task functional

connectivity. Indeed, Cole et al. (2018) recently demonstrated the prob-

lematic impact of task-related activations on functional connectivity in

the context of cognitive tasks with block designs and reported efficient

correction methods. However, as the authors mentioned, these issues

remain ambiguous and understudied in the context of cognitive tasks

involving continuous events (such as SART), rather than experimentally

manipulated and alternating blocks of rest and task. Indeed, there is a

need for more research related to the appropriate methods of correc-

tion in the case of continuous performance tasks. In SART, there is also

an additional complexity arising from the occurrence of internally gener-

ated events and their interaction with the processing of external task-

relevant events. Further research is needed to systematically evaluate

these issues in tasks using a continuous design like the SART and pro-

vide appropriate methods of correction.

Finally, while the univariate analyses were not the main focus

herein, they were provided for completeness. These analyses did not

reveal significant activations in the DN core regions, such as mPFC

and PCC, which were reported in some prior SART studies (Christoff

et al., 2009; Stawarczyk et al., 2011). The difference in results could

be due at least to some degree to methodological differences. For

example, the duration of the task was shorter in the present study

compared to Christoff et al.'s study (~30 min vs. ~60 min). However,

the present study did include more participants (27 for the univariate

analyses) but this may have led to greater variability. Indeed, MW is a

multifaceted phenomenon (Seli et al., 2018) and hence, greater inter-

subject variability in the content as well as in the duration of the MW

episode may preclude a consistent expression of the same features

across all subject. Relatedly, asking participants to choose between

being on task and off task is an imperfect and insufficient method to

capture the variety of self-generated thoughts arising during a cogni-

tive task (Robison, Miller, & Unsworth, 2019). While the distinction

between on task and off task is more prominent at early perceptual

stages reflected in the attenuated neural processing of external stimuli

during MW (e.g., Denkova et al., 2018), there may be more heteroge-

neity in the level of detail and the type of MW (e.g., spontaneous

vs. deliberate) after perceptual disengagement from the task. Indeed,

MW appears to be a multifaceted construct related to a variety of

self-generated thoughts (Seli et al., 2018). Self-generated thoughts

that are elaborated in detail and relying on autobiographical memory

or deliberate MW processes may be more prominently associated

with DN, as revealed by emerging research (Golchert et al., 2017;

Murphy, Wang, et al., 2019; Sormaz et al., 2018; Spreng et al., 2014;

Spreng et al., 2010). Indeed, accumulating evidence has suggested

that the link between DN and MW is more complex than initially con-

ceived (e.g., Murphy, Poerio, et al., 2019; Sormaz et al., 2018; Turnbull

et al., 2019) and “patterns of activity within the DMN are neither nec-

essary nor sufficient to determine if attention is directed away from

the task” (Sormaz et al., 2018, p. 9321).

4.1 | Limitations

There are several important caveats to the present study. First,

we focused on the three core neurocognitive networks and their
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dynamic interactions. This was based on prior research highlighting

the role of these networks in the fluctuations between attention and

MW. Future studies should examine additional large-scale brain net-

works to achieve a better understanding of rest-task dynamics. Sec-

ond, we did not track MW during rest in a similar manner to the

attention task. One potential way to address this in future neuroimag-

ing investigations would be to collect and directly compare retrospec-

tive reports of the phenomenology of MW episodes during rest

(Gorgolewski et al., 2014) as well as during task (Sormaz et al., 2018)

in relation to brain dynamics. Third, MW probe intervals were

included in the DFC analyses because censuring them would distort

the temporal dynamics that are the focus of the present study. While

the probes are part of the task and an indication of whether the par-

ticipant is paying attention, we acknowledge that including them in

the analyses may have added some additional confounding elements

related to memory and decision-making processes. Finally, because of

the general limitations of the dichotomous nature of collecting MW

reports used herein, specific investigation of the brain mechanisms of

MW as a function of the content of “off task” reports is beyond the

scope or capability of this methodology (Karapanagiotidis et al., 2018;

Sormaz et al., 2018 for focus on the content of MW).

5 | CONCLUSIONS

The present study investigated brain network configurations concur-

rently during rest and a task characterized by the interplay between

focused attention and MW episodes. The present findings suggest that

while rest and task conditions may involve a common set of brain states,

meaningful differences in features of some of the states can be

observed between them. Namely, the task condition was associated

with a more frequent occurrence of the brain state characterized by

negative mPFC-CEN and mPFC-SN connectivity along with positive

CEN–SN connectivity, while rest was associated with a more frequent

occurrence of a brain state characterized by weak between- and within-

connectivity, which is typically associated with greater potential for

reorganization. Taken together, these findings highlight the need to con-

sider task and rest states concurrently, from a DFC perspective, in order

to be able to achieve greater insight into brain network reconfigurations

emerging during various situations to enable cognitive states that can be

more or less constrained by external task demands.
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