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Abstract

RNA editing occurs in the organellar mRNAs of all land plants but the marchantioid liverworts, making liverworts a perfect group for

studying the evolutionof RNA editing. Here, weprofiled the RNAeditingof 42exemplars spanning theordinal phylogeneticdiversity

of liverworts, andscreened for thenuclear-encodedpentatricopeptide repeat (PPR)proteins in the transcriptome assembliesof these

taxa. We identified 7,428 RNA editing sites in 128 organellar genes from 31 non-marchantioid liverwort species, and characterized

25,059 PPR protein sequences. The abundance of organellar RNA editing sites varies greatly among liverwort lineages, genes, and

codon positions, and shows strong positive correlations with the GC content of protein-coding genes, and the diversity of the PLS

class of nuclear PPR proteins.
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Introduction

RNA editing is a co- or posttranscriptional process that

changes the content of the transcripts, resulting in sequences

of mature RNA transcripts deviating from that of the genomic

templates (Covello and Gray 1993; He et al. 2016). In plants,

this process mainly converts cytidines (C) to uridines (U) in

organellar transcripts, and occasionally U to C (Gray 2012;

Ichinose and Sugita 2016). Plant organellar RNA editing plays

important roles in gene expression and functioning, by restor-

ing start/stop codons, removing internal stop codons, main-

taining proper splicing of transcripts, or modifying amino

acids (Sloan 2017). RNA editing occurs in organellar genomes

of all land plant lineages except the marchantioid liverworts

(Rüdinger et al. 2008). In general, angiosperms contain 200–

500 RNA editing sites in their mitochondrial (mt) genomes,

but only 30–50 editing sites in their plastid (pt) genomes

(Oldenkott et al. 2014). Lycophytes possess the highest num-

ber of editing sites, with for example, the mt genome of

Selaginella moellendorffii holding 2,139 C-to-U RNA editing

sites in only 18 protein-coding genes (PCGs) (Hecht et al.

2011) and the pt genome of Selaginella uncinata holding

3,415 such sites in its 82 genes (Oldenkott et al. 2014).
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Mosses have the fewest RNA editing sites, with only 11 and 1

RNA editing sites in the mt (Rüdinger et al. 2009) and pt

genes, respectively, of Physcomitrella patens (Takenaka et al.

2013). RNA editing sites have been characterized in many

vascular plants (Richardson et al. 2013; Guo et al. 2015,

2017; Edera et al. 2018), but only in a few nonvascular plants,

that is, the liverwort Marchantia polymorpha (Rüdinger et al.

2008), the hornworts Anthoceros formosae (Kugita et al.

2003) and Leiosporoceros dussii (Villarreal et al. 2018), and

the moss Physcomitrella patens (Rüdinger et al. 2009). Thus,

empirical data are still scarce to understand the phylogenetic

distribution and evolution of RNA editing among nonvascular

land plants.

The abundance of RNA editing in organellar genes may be

determined by many factors. The RNA editing frequency is

clearly associated with the function of the gene (Jobson and

Qiu 2008; Edera et al. 2018), with genes encoding

membrane-bound proteins or under strong functional selec-

tions holding more RNA editing sites (Mower and Palmer

2006; Edera et al. 2018). RNA editing frequency may also

be positively linked to the genomic GC content, especially

across second codon positions (Malek et al. 1996; Smith

2009; Hecht et al. 2011; Guo et al. 2017), and the diversity

of nuclear-encoded pentatricopeptide repeat (PPR) proteins

(Fujii and Small 2011). The PPR proteins, characterized by tan-

dem arrays of a weakly conserved 35 amino-acid motif (Small

and Peeters 2000), form one of the largest gene families in

land plants (Cheng et al. 2016), with most angiosperms

encoding 400–600 PPRs (Fujii and Small 2011). PPR proteins

are divided into two major classes, the P and PLS classes, with

the latter further subdivided into five groups, namely PLS, E1,

E2, Eþ, and DYW, based on the characteristic of the carbox-

yterminus. The majority of PLS-class members may be dedi-

cated to RNA editing processes (Fujii and Small 2011),

especially the DYW type proteins, whose functional cytidine

deaminase activities have recently been confirmed (Oldenkott

et al. 2019). The diversity of DYW domains was reported to be

well correlated to the frequency of RNA editing sites in plants

(Salone et al. 2007; Rüdinger et al. 2008). Based on empirical

and in silico predictive RNA editing data, the abundance of

plastid RNA editing was proposed to be strongly and positively

correlated (PCC¼ 0.9) to the diversity of PLS PPR proteins in

21 green plants (Fujii and Small 2011). As these correlation-

ships were inferred with simple regression methods without

accounting for phylogenetic relationships, which may yield

trivial implications on biological relationships (Maddison and

Fitzjohn 2015). Therefore, comparative methods incorporat-

ing the phylogenetic information (Martins and Hansen 1997)

need to be implemented to further test such correlations.

With some 7,300 extant species (Söderström et al. 2016),

liverworts compose a diverse lineage of land plants. Although

their relationships to other bryophytes remains somewhat

controversial (Morris et al. 2018), they undoubtedly arose

early in the diversification of land plants, and hence might

be critical to unravel the timing and subsequent evolution of

various innovations such as RNA editing, a process possibly

acquired by the common ancestor of land plants (Hiesel et al.

1994; Sabater et al. 2002). Here, we screened deep genomic

and organellar transcripts enriched transcriptomic sequence

data to critically analyze RNA editing in mt and pt genes of 42

liverworts from 13 of the 15 liverwort orders. We also char-

acterized the diversity of six types of PPR proteins based on

transcriptome assemblies. Our study aims to contrast RNA

editing site abundance and variation 1) between mt and pt

genomes, and 2) among different liverwort clades, and to test

for a relationship of RNA editing site abundance 3) with the

GC content, 4) and the diversity of PPR proteins.

Materials and Methods

Taxon Sampling and NGS Experiments

We sampled fresh collections of 42 liverworts (supplementary

table S1, Supplementary Material online) representing all but

2 of the 15 orders of liverworts (Crandall-Stotler et al. 2009).

Individual shoots and branches of each accession were sepa-

rated under a dissecting microscope to avoid contamination

from other organisms, cleaned with distilled water, and used

for DNA and RNA isolations using the modified CTAB meth-

ods following Porebski et al. (1997) and Reid et al. (2006),

respectively. Approximately 1lg of genomic DNA and RNA

were used to generate paired-end sequencing libraries with

the insert fragment size of 300–500 and 200–300 bp, respec-

tively. NGS sequencing was carried out on an Illumina HiSeq

2000 platform at Majorbio (Shanghai, China). The raw se-

quencing data in fastq format (�10 and �6 G raw data for

genomic and transcriptomic sequencing, respectively) were

trimmed and filtered for adaptors, low quality reads, under-

sized inserts, and duplicate reads using Trimmomatic (Bolger

et al. 2014).

Genome Assembly and Annotation

The filtered reads from each species were de novo assembled

into contigs (�1 kb) using the CLC Genomics Workbench

v5.5 (CLC Bio, Aarhus, Denmark) using default parameters

(word size ¼ 20, bubble size ¼ 50, minimum contig length

¼ 1,000). All contigs were blasted to the Marchantia poly-

morpha pt and mt genomes (GenBank accession:

NC_037507 and NC_037508), to retrieve the pt and mt con-

tigs, respectively. These contigs were elongated and assem-

bled into organellar genome scaffolds using overlapping

methods (Dong et al. 2019). Ultimately, we assembled 29

and 40 complete mt and pt genomes, respectively. For the

remaining 13 mt genomes and the 2 pt genomes, for which

corresponding contigs could not be linked due to frequent

occurrences of repeated sequences, we anchored the contigs

by mapping them to the organellar genomes of Marchantia

polymorpha and connected them with Ns to generate the
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draft genomes. The PCGs of the organellar genome were

annotated following the steps described in Xue et al.

(2010). The exact gene and exon/intron boundaries were fur-

ther confirmed in Geneious v10.0.2 (www.geneious.com) by

aligning orthologous genes with the available annotated liv-

erwort organellar genomes (such as Pleurozia, GenBank ac-

cession no.: NC_013444) to those of the 42 liverworts.

RNA Editing Site Identification

The DNA-seq reads and RNA-seq reads were mapped to the

corresponding draft organellar genome using Bowtie2

(Langmead and Salzberg 2012) and Tophat2 (Kim et al.

2013) separately as described by Edera et al. (2018). The

resulting mapping files in bam format were sorted to generate

vcf file using Samtools (Li et al. 2009) and Bcftools

(Narasimhan et al. 2016), from which, the snp file were pro-

duced using a custom perl script (Dryad Digital Repository,

accession 10.5061/dryad.nzs7h44ms). The RNA mapping files

were processed using Redo (Wu et al. 2018) using default

parameters. The Redo output of the RNA editing site anno-

tation file was then manually filtered against the SNP sites by

their positions on the genome sequence to remove potential

genomic SNPs. The final annotation file of the RNA editing

sites and the corresponding transcriptome mapping bam file

were imported in Geneious v10.0.2 to manually check the

bioinformatically identified editing sites and make necessary

revisions to further reduce false positives and false negatives.

Transcriptome Assembly and PPR Protein Identification

All transcriptomes including those from the outgroups were

de novo assembled using Trinity pipeline (Grabherr et al.

2011). The open reading frames were extracted and anno-

tated from the transcriptome assembly using TransDecoder

(http://sourceforge.net/projects/transdecoder/). The peptide

file of each species was filtered for redundancy using Cd-hit

(Li and Godzik 2006) with a similarity threshold of c¼ 0.9, and

screened for PPR domains using the pipeline as described by

Cheng et al. (2016).

Correlation Tests between the Number of RNA Editing Site
and PPR Protein Diversity/GC Content

To assess the evolutionary correlationships between the abun-

dance of RNA editing sites and the diversity of PPR proteins, as

well as the GC content. We used the phylogenetic general-

ized least-squares (PGLS) regression, allowing k to be fitted by

maximum likelihoods (Mundry 2014). In all analyses, variables

were log transformed to make them normally distributed. We

calculated the variance–covariance matrix for the ML tree de-

rived from 127 organellar genes using “corPagel” as

implemented in the R package “ape” (Paradis et al. 2004),

and then fit the regression by maximizing the restricted

log-likelihood using “gls” as implemented in the R package

“nlme” (Pinheiro et al. 2016).

Results and Discussions

RNA Editing Site Abundance in Liverworts

Our genomic and transcriptomic data yielded high read cov-

erage for both mt and pt PCGs (supplementary fig. S1,

Supplementary Material online). Altogether, we identified

7,428 C-to-U RNA editing sites from the 128 organellar

PCGs of 33 liverworts, including 4,694 RNA editing sites for

42 mt PCGs (supplementary table S2, Supplementary Material

online) and 2,734 RNA editing sites for 86 pt PCGs (supple-

mentary table S3, Supplementary Material online). The aver-

age number of RNA editing sites per mt gene (3.39) is more

than three times that per pt gene (0.96). No RNA editing was

detected from either organellar genome of any complex thal-

loid (Marchantiopsida) species.

The number of organellar RNA editing sites varies signifi-

cantly among liverwort lineages, and even among different

accessions of the same species (fig. 1). The Haplomitriales

(with Haplomitrium sampled here), widely recognized as

emerging from the deepest splits in liverworts, has the highest

editing level, whereas its sister group, the Treubiales, has the

fewest editing sites among all liverworts with the exception of

the complex thalloids (Marchantiopsida), which completely

lack editing sites (fig. 1). The simple thalloids, that is,

Pelliidae and Metzgeriidae, exhibit the second highest RNA

editing frequency, followed by the Jungermanniales, except

for two Herbertus species with a low editing level.

The abundance of RNA editing also varies among genes

and functional categories within liverworts (supplementary

fig. S2, Supplementary Material online), with high editing level

in the respiration complex and photosynthesis related protein

genes, and low editing level in ribosomal protein genes, a

pattern consistent with that observed in angiosperms (Edera

et al. 2018). RNA editing sites show relatively higher editing

efficiencies in the second and first codon positions compared

with the third codon positions (supplementary fig. S3,

Supplementary Material online), and occur primarily in the

second codon positions of both mt and pt genes (supplemen-

tary fig. S4, Supplementary Material online), leading to amino

acid changes that primarily increase the hydrophobicity of

proteins (supplementary fig. S5, Supplementary Material on-

line). Such modifications may be essential for protein folding,

functioning, and interacting with other proteins (He et al.

2016). In Arabidopsis thaliana (Hammani et al. 2011),

Physcomitrella patens (Ichinose et al. 2013), and maize (Liu

et al. 2013; Yang et al. 2017), the disruption of RNA editing

activity severely impacts plant growth at specific developmen-

tal stages. Testing the significance of RNA editing process on

the fitness of liverworts may await the development of tools

for genetically transforming liverworts, but the development

RNA Editing of Liverwort Organellar Genes GBE
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of Marchantia as a model system (Bachtrog 2011; Shimamura

2016) contributes little to such understanding since it lacks

organellar RNA editing ability. Hence, other liverwort model

systems must be developed.

PPR Protein Diversity in Liverworts

We identified 25,059 PPR protein sequences (i.e., 165 P and

19,894 PLS class proteins) in the transcriptome assembly of

the 43 liverworts (including the proteome of Marchantia poly-

morpha downloaded from phytozome.jgi.doe.gov; supple-

mentary table S1, Supplementary Material online). The

diversity of PPR proteins varies considerably among different

liverwort lineages (fig. 1). Among the five groups of PLS class

PPR proteins (PLS, E1, E2, Eþ, and DYW), the PLS group

contributes most of the diversity (�80%), and shows greatest

variations in number (2–2,213) among liverworts. The other

four groups of PLS PPR proteins (supplementary fig. S6,

Supplementary Material online) are generally absent in char-

ophycean algae and complex thalloid liverworts, with the ex-

ception of the occasional presence of E1 and E2 proteins in

three complex thalloid liverworts. However, the E2 type pro-

teins from the complex thalloid group (i.e., Wiesnerella denu-

data and Monosolenium tenerum II) form a structure with a

tandem repeat of P type motifs plus a single E2 motif, and the

E1 type protein from Asterella wallichiana forms a structure of

L-S-E1. All these E-type PPR proteins from the complex thal-

loids lack the PLS triplet structure that characterizes the PLS
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FIG. 1.—(a) Phylogenetic tree of liverworts based on a concatenated nucleotide data set of 41 mt and 86 pt genes. Branches are maximally supported

(i.e., 100% bootstrap frequencies) unless otherwise marked. (b) Heatmap of PPR protein diversity across liverworts. (c) Histogram of RNA editing site

abundance in mt (pink) and pt (green) genomes for each liverwort accession.
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PPR proteins. The absence of the functional E and DYW type

PLS PPR proteins observed in complex thalloids might be as-

sociated with their exclusive absence of RNA editing sites. As

Knoop and Rüdinger (2010) have suggested, plant E and Eþ
type PLS proteins are likely products of serial carboxyterminal

domain deletions from the DYW type proteins, the presence

of a few truncated E type PLS protein sequences in complex

thalloids might imply they are from relics of functional genes,

thus providing new evidence for a secondary loss of RNA

editing machinery in this group.

Factors Correlated with the Number of RNA Editing Sites

Based on the in silico prediction of RNA editing sites in three

mt PCGs and PCR amplifications of DYW type protein genes

in over 100 bryophyte species, the diversity of the DYW type

PPR protein genes appears to be positively correlated with the

abundance of RNA editing sites (Rüdinger et al. 2012;

Schallenberg-Rüdinger et al. 2013). Such a correlation of

RNA editing site abundance and PPR protein diversity is here

confirmed across all organellar genes within liverworts. In

general, the number of RNA editing sites in mt and pt genes

is strongly and positively correlated to the diversity of nuclear

PLS class rather than P class PPR proteins (table 1). All the five

types of PLS PPR proteins, but the DYW type, show signifi-

cantly positive correlations with the RNA editing site abun-

dance for both mt and pt genes. As there is an experimentally

proved functional association between DYW type PPRs and

RNA editing (Oldenkott et al. 2019), the lack of evidence for

their correlationships is unclear and should be further tested

with expanded samplings.

The abundance of RNA editing site is considered to be

positively correlated with the GC content of organellar

PCGs based on a few discrete loci and/or several closely re-

lated taxa with simple regression analyses (Malek et al. 1996;

Smith 2009; Hecht et al. 2011; Guo et al. 2017). Such corre-

lationships are confirmed here in liverworts with the PGLS

regressions for both mt and pt genes, and for most of their

codon positions, but the third codon positions of mt genes

and the first codon positions of the pt genes (table 1). The

correlation between the GC ratio and the RNA editing abun-

dance in organellar genes of liverworts may suggest that ei-

ther the rise in GC content facilitated the evolution of RNA

editing in land plants or vice versa.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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Table 1

Phylogenetically Controlled Generalized Least Squares (PGLS) Regressions

between RNA Editing Site Abundance and PPR Protein Diversity and GC

Content

Statistics Lambda (k) Slope P values

PPPR/MTE 0.9963 �0.1513 0.0622

PPPR/PTE 0.9996 0.0248 0.5409

PLSPPR/MTE 0.9318 0.7102 0.0000**

PLSPPR/PTE 0.9720 0.6527 0.0000**

PLS/MTE 0.9414 0.4922 0.0000**

PLS/PTE 0.3769 0.9547 0.0000**

E1/MTE 0.9696 0.5141 0.0000**

E1/PTE 0.9912 0.7830 0.0000**

E2/MTE 0.9705 0.4188 0.0014**

E2/PTE 0.6575 1.0741 0.0000**

Eþ/MTE 0.9674 0.5971 0.0001**

Eþ/PTE 0.9973 0.7425 0.0000**

DYW/MTE 0.9967 �0.0933 0.3111

DYW/PTE 0.9993 0.0824 0.2383

MGC/MTE 0.9395 0.0126 0.0006**

MGC1/MTE1 0.9895 9.1152 0.0369*

MGC2/MTE2 0.9699 27.1628 0.0000**

MGC3/MTE3 0.9813 4.1102 0.0639

PGC/PTE 0.9715 0.0301 0.0003**

PGC1/PTE1 1.0000 0.0498 0.8204

PGC2/PTE2 0.9835 14.2927 0.0000**

PGC3/PTE3 0.9795 3.8486 0.0006**

NOTE.—Correlations were tested between each two of the following parame-
ters: the diversity of the P and PLS class PPR proteins (PPPR/PLSPPR) and the diversity
of the five types of PLS PPR proteins (PLS/E1/E2/Eþ/DYW) with the RNA editing site
abundance of the mt and pt genes (MTE/PTE), respectively; GC content of all three
and the first, second, and third codon positions for protein-coding genes of mt
(MGC/MGC1/MGC2/MGC3) and pt (PGC/PGC1/PGC2/PGC3) with the number of RNA
editing sites for all three and the first, second, and third codon positions of mito-
chondrial (MTE/MTE1/MTE2/MTE3) and plastid (PTE/PTE1/PTE2/PTE3) protein-coding
genes, respectively.

*P< 0.05, ** P< 0.01—significance levels.
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Söderström L, et al. 2016. World checklist of hornworts and liverworts.

Phytokeys 59:1–828.

Takenaka M, Zehrmann A, Verbitskiy D, H€artel B, Brennicke A. 2013.

RNA editing in plants and its evolution. Annu Rev Genet.

47(1):335–352.

Villarreal et al. 2018. Genome-wide organellar analyses from the hornwort

Leiosporoceros dussii show low frequency of RNA editing. PLoS One

13:e0200491.

Wu S, et al. 2018. REDO: RNA editing detection in plant organelles based

on variant calling results. J Comput Biol. 25(5):509–516.

Xue JY, Liu Y, Li L, Wang B, Qiu YL. 2010. The complete mitochondrial

genome sequence of the hornwort Phaeoceros laevis: retention of

many ancient pseudogenes and conservative evolution of mitochon-

drial genomes in hornworts. Curr Genet. 56(1):53–61.

Yang YZ, et al. 2017. The pentatricopeptide repeat protein EMP9 is re-

quired for mitochondrial ccmB and rps4 transcript editing, mitochon-

drial complex biogenesis and seed development in maize. New Phytol.

214(2):782–795.

Associate editor: Shu-Miaw Chaw

RNA Editing of Liverwort Organellar Genes GBE

Genome Biol. Evol. 11(11):3233–3239 doi:10.1093/gbe/evz232 Advance Access publication October 25, 2019 3239


	evz232-TF1
	evz232-TF2

