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Abstract
A new Q555X mutation on the SYN1 gene was recently found in several members of a family seg-

regating dyslexia, epilepsy, and autism spectrum disorder. To describe the effects of this mutation

on cortical gray matter microstructure, we performed a surface-based group study using novel dif-

fusion and quantitative multiparametric imaging on 13 SYN1Q555X mutation carriers and 13 age-

and sex-matched controls. Specifically, diffusion kurtosis imaging (DKI) and neurite orientation and

dispersion and density imaging (NODDI) were used to analyze multi-shell diffusion data and obtain

parametric maps sensitive to tissue structure, while quantitative metrics sensitive to tissue compo-

sition (T1, T2* and relative proton density [PD]) were obtained from a multi-echo variable flip

angle FLASH acquisition. Results showed significant microstructural alterations in several regions

usually involved in oral and written language as well as dyslexia. The most significant changes in

these regions were lowered mean diffusivity and increased fractional anisotropy. This study is, to

our knowledge, the first to successfully use diffusion imaging and multiparametric mapping to

detect cortical anomalies in a group of subjects with a well-defined genotype linked to language

impairments, epilepsy and autism spectrum disorder (ASD).
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1 | INTRODUCTION

Many neurodevelopmental conditions, such as autism spectrum disor-

der (ASD), schizophrenia, epilepsy, and attention-deficit/hyperactivity

disorder (ADHD), are believed to have a strong genetic origin (Fischl,

2004; Geschwind, 2011; Hu, Chahrour, & Walsh, 2014; Lewis & Levitt,

2002; Rossignol, 2011; Walsh et al., 2008). Furthermore, some of these

conditions, such as ASD, dyslexia, dyspraxia, and epilepsy, are often

observed in association (Pagnamenta et al., 2010a; Richardson & Ross,

2000; Schachter, Galaburda, & Ransil, 1993; Tuchman, Mosh�e, & Rapin,

2009; Tuchman & Rapin, 2002). The increased co-occurrence of these

neurodevelopmental disorders suggests that they may share common

risk genes. Indeed, we recently reported a Q555X mutation on the

SYN1 gene, found in several members of a large French-Canadian fam-

ily (Fassio et al., 2011). Carriers of both genders are affected by lan-

guage impairments of different degrees of severity (dyslexia, specific

language impairment, speech dyspraxia), while men are furthermore

afflicted with focal epilepsy, with two male subjects also suffering from

ASD (Nguyen et al., 2015).

SYN1 is a gene on chromosome X involved in encoding synaptic

proteins called synapsins, a family of neuron-specific phosphoproteins

implicated in vesicular release and transport, synaptogenesis, and syn-

aptic maintenance. In vitro studies have shown that this gene plays an

important developmental role in neurite outgrowth, and an ongoing

role in the distribution of neurotransmitter vesicles and synaptic excit-

ability (Fassio et al., 2011; Fornasiero, Bonanomi, Benfenati, & Valtorta,

2010; Garcia et al., 2004; Lignani et al., 2013).

Although the role of SYN1 on the development of neurons has

been investigated in vitro, not much is known about its biophysical

repercussion on the adult human brain. In particular, there is no study,

to our knowledge, that has investigated in vivo cortical gray matter

microstructure in a group of subjects affected with SYN1 dysfunction.

Thus, although no apparent macroscopic cerebral anomalies were iden-

tified on previous structural MRI of SYN1Q555X subjects, we
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hypothesized that state-of-the-art quantitative MRI modalities sensi-

tive to tissue microstructure and composition could help identify the

presence of subtle gray matter alterations. Therefore, we acquired mul-

timodal MRI data from 26 participants: 13 SYN1Q555X subjects (9

female, 18–67 years old; 4 male, 17–52 years old) and 13 age- and

sex-matched controls.

Two different MRI modalities were chosen for their complemen-

tarity. First, an advanced multi-shell diffusion sequence was acquired.

Although diffusion MRI (dMRI) has to date been mostly used to study

white matter, recent studies have shown it is also sensitive to cortical

microstructure properties, such as radial and tangential fiber popula-

tions, and neuropil volume fraction (Jespersen, Leigland, Cornea, &

Kroenke, 2012; Kleinnijenhuis et al., 2013; Leuze et al., 2014; Seehaus

et al., 2015; Shepherd, €Ozarslan, Yachnis, King, & Blackband, 2007).

Diffusion data was used to estimate diffusion kurtosis imaging (DKI)

metrics, including mean kurtosis (MK), fractional anisotropy (FA) and

mean diffusivity (MD; Jensen & Helpern, 2010). The NODDI model

was also used to estimate the following metrics: intra-cellular volume

fraction (ICVF), isotropic volume fraction (ISOVF), and orientation dis-

persion index (OD; Zhang, Schneider, Wheeler-Kingshott, & Alexander,

2012).

Second, a multi-contrast sequence was used to compute quantita-

tive longitudinal and apparent transverse relaxation times (T1 and T2*),

as well as normalized proton density (PD; Jutras, Wachowicz, Gilbert, &

De Zanche, 2017). While these metrics are also sensitive to the under-

lying tissue architecture, they are thought to be mostly sensitive

towards tissue composition, as opposed to dMRI metrics which are

more sensitive to tissue structure. For example, T1 and T2* are known

to be sensitive to myelin and iron content, while PD and T1 are also

non-specific markers of water concentration (St€uber et al. 2014; Lutti

et al. 2014; Cohen-Adad 2014; Gelman et al. 2013).

A surface mapping of all these quantitative MRI metrics allowed

their characterization and visualization over the full cortical sheet.

Compared to traditional voxel-based approaches, bidimensional surface

mapping allows for better inter-subject registration of the cortex, and

lessens the partial volume contamination with CSF, white matter, or

opposite banks of sulci (Glasser et al., 2016).

2 | METHODS

2.1 | Participants

The research protocol was approved by the Centre Hospitalier de

l’Universit�e de Montr�eal (CHUM) Research Ethics Committee, and all

subjects gave written informed consent. All 17 members of an

extended family carrying the SYN1Q555x mutation identified in a previ-

ous study (Nguyen et al., 2015) were recruited (see Figure 1). Of these,

four subjects had to be excluded from the current study. The eldest

female subject (IV:2) could not participate due to precarious health.

Another female subject (V:10) was excluded as she previously suffered

a ruptured cerebral aneurysm. A male subject carrying a pacemaker

(VI:15) could not pass an MRI examination. Finally, another male sub-

ject (VII:1) with more severe ASD was unable to remain motionless dur-

ing the MRI examination and could not complete the protocol

adequately. Hence, 13 SYN1Q555x mutation carriers were included (9

females, 18–67 years old, mean 5 45 years old; 4 males, 17–52 years

old, mean 5 36 years old).

2.1.1 | Clinical observations

In a previous study, all SYN1Q555x mutation carrier subjects were

administered an exhaustive neuropsychological test battery including

tests sensitive to reading and writing abilities. All SYN1Q555x mutation

carriers presented with normal or near-normal intellectual functioning

(IQ). Lowest IQ, without verbal-performance dissociation, was observed

in male subjects affected with both reflex bathing seizures and moder-

ate to severe dyslexia. Female subjects presented with either mild to

moderate dyslexia or some reading/writing difficulties (noted with non-

words) not sufficient for the diagnosis of a dyslexic disorder, but con-

firming the involvement of the phonological pathway present in all

SYN1Q555x mutation carriers. Table 1 gives a brief overview of the main

neuropsychological findings.

2.1.2 | Subjects matching

Thirteen healthy subjects matched for age and sex were recruited for

the control group (9 females, 22–67 years old, mean 5 45 years old; 4

males, 19–55 years old, mean 5 37 years old). Inclusion criteria for the

FIGURE 1 Family pedigree. Circles: female subjects, squares: male subjects. Filled symbols show SYN1Q555x carriers
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control group included the absence of learning difficulties and of neu-

rological, psychiatric, or language disorders. An independent two-tail t

test revealed that subject and control groups did not differ significantly

in age, intracranial cavity size, total brain volume, bilateral cerebrum

volume, or overall movement during examination (see Table 2). Volu-

metric data was obtained from the volBrain segmentation (see Section

2.3.1), while movement data is given by the eddy command output (see

Section 2.3.2) and represents a summary of the mean total movement

in each volume relative to the previous volume during the diffusion

sequence acquisition, created by computing the displacement of each

voxel and then averaging the squares of those displacements across all

intracerebral voxels.

TABLE 1 Clinical observations of the SYN1Q555x mutation carriers

Subject Age Sex Notes

IV-2 X (79) F Intellectual deficit. Excluded from our study due to advanced age and precarious health.

V-2 55 (44) F Moderate mixed dyslexia with predominant deficit of the phonological pathway. Speech dyspraxia.

V-4 52 (41) M Reflex bathing seizures. Severe mixed dyslexia with predominant deficit of the phonological pathway. Speech
dyspraxia.

V-5 67 (56) F Mild grapheme-phoneme conversion and spelling difficulties (cannot be classified as dyslexic disorder).

V-6 65 (54) F Moderate mixed dyslexia with predominant deficit of the phonological pathway. Mild to moderate speech
dyspraxia, associated with mild oro-facial apraxia.

V-9 57 (46) F Mild phonological dyslexia. Mild speech dyspraxia, associated with mild oro-facial apraxia.

V-10 X (53) F Severe dyslexia of mixed type with predominant involvement of the lexical pathway. Mild speech dyspraxia.
Excluded from our study because of a ruptured cerebral aneurism.

VI-1 31 (20) M Reflex bathing seizures. Severe dyslexia of mixed type with predominant involvement of the lexical pathway.
Speech dyspraxia.

VI-2 25 (14) F Mild dysfunction of the lexical pathway1 slight involvement of the phonological pathway (cannot be
classified as dyslexic disorder).

VI-5 34 (22) F Mild mixed dyslexia.

VI-6 42 (31) F The profile does not show any dyslexia.

VI-9 39 (28) F The profile does not show any dyslexia.

VI-15 X (21) M Reflex bathing seizures. Severe mixed dyslexia with predominant involvement of the phonological pathway.
Excluded from our study due to pacemaker MRI incompatibility.

VI-21 19 (X) F Not evaluated at the time of the neuropsychological study because of her young age, but seemed to present a
delay in language development at that time.

VI-25 42 (30) M Reflex bathing seizures. Speech dyspraxia. The profile does not show any dyslexia.

VII-1 20 (X) M Reflex bathing seizures. Severe ASD. Not evaluated at the time of the neuropsychological study because of his
young age. Not included in our study because of severe movement artefacts in MRI data.

VII-2 17 (X) M Reflex bathing seizures. Mild ASD. Not evaluated at the time of the neuropsychological study because of his
young age.

Age is given at the time of the MRI exam for the current study, and at the time of neuropsychological evaluation for the previous study (in parenthesis).
X: Not included in study.

TABLE 2 Subjects and control group comparison

SYN1Q555x Control p Value

N 13 (9) 13 (9) 1.00

Age 42.2 6 16.8 (17.4–67.8) 42.8 6 15.4 (19.3–67.5) .264

Intracranial cavity (cm3) 1,378 6 117 (1,219–1,591) 1,369 6 159 (1,169–1,693) .948

Brain size (cm3) 1,224 6 111 (1,022–1,367) 1,173 6 148 (988–1,4700) .278

Right cerebrum (cm3) 533 6 53 (440–605) 508 6 65 (424–644) .233

Left cerebrum (cm3) 534 6 53 (438–607) 507 6 65 (420–637) .204

Movement (mm) 1.16 6 0.08 (1.04–1.32) 116 6 0.17 (0.73–1.44) .707

Values are given as “mean 6 SD (min–max)”, except for N, which is “Total (number of females).”
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2.2 | MRI acquisition

All MRI acquisitions were performed at the CHUM Notre-Dame Hospi-

tal on a Philips Achieva X 3T system equipped with a 32-channel head

coil and a high-performance gradient system (80 mT/m). The protocol

included the sequences necessary for morphological assessment, multi-

shell diffusion-weighted imaging, and multi-contrast imaging targeting

quantitative tissue properties. Sequences parameters are given below:

� Sagittal 3D T1: Gradient-echo sequence with inversion recovery. TR:

8.1 ms, TE: 3.7 ms, TI: 1,000 ms, spatial resolution: 1 mm isotropic,

FOV: 240 3 240 3 170 mm, BW: 191.4 Hz/pixel, SENSE accelera-

tion factor: 2.

� Sagittal 3D T2: Turbo spin echo sequence with variable angles. TR:

2,500 ms, TE: 242 ms, spatial resolution: 1 mm isotropic, FOV:

240 3 240 3 170 mm, BW: 934.8 Hz/pixel, SENSE acceleration fac-

tor: 4 (23 2).

� Sagittal 3D multi-contrast mapping: Variable flip-angle multi-echo

gradient-echo sequence. TR: 31 ms, TE: 2.3, 4.6, 6.9, 9.2, 11.5, 13.8,

16.1, 18.4, 20.7, 23, 25.3, and 27.6 ms, spatial resolution: 1 mm iso-

tropic, FOV: 240 3 240 3 170 mm, BW: 517 Hz/pixel, SENSE

acceleration factor: 4 (23 2), flip angles: 68 and 348.

� Axial diffusion: Single-shot spin-echo EPI sequence. TR: 9,000 ms,

TE: 78 ms, spatial resolution: 2 mm isotropic, FOV:

224 3 224 3 128 mm, BW: 2,744.0 Hz, SENSE acceleration factor:

2.1. Multi-shell acquisition with 8 b 5 300 mm2/s directions, 32

b 5 1,000 mm2/s directions, 60 b 5 2,000 mm2/s directions and 6

interleaved b 5 0 mm2/s acquisitions. A reference image with

reversed phase encoding direction is acquired for the correction of

EPI distortions.

2.3 | Data processing

2.3.1 | Structural data

Cortical surface generation and registration

Structural data (T1-weighted and T2-weighted images) was processed

using the Human Connectome Project (HCP) processing pipelines

(Glasser et al., 2013). The processing included registration across

modalities, bias field correction, cortical and white matter surface gen-

eration, conversion of FreeSurfer output to GIFTI and CIFTI files, and

surface registration to the fs_LR template (Van Essen, Glasser, Dierker,

Harwell, & Coalson, 2012). Parametric maps described below were

transferred on each subjects’ native cortical surface mesh using a

ribbon-constrained volume-to-surface mapping, with the ribbon

defined from 25% to 75% of cortical thickness to reduce partial volume

contamination with CSF and white matter. Parametric surface maps

were then resampled to the common 32k_fs_LR mesh for group

processing.

Sub-cortical gray matter segmentation

To avoid registration issues, we opted to compute metrics for the sub-

cortical gray matter structures using a segmentation-based approach. A

precise segmentation for each subject was obtained on the T1-

weighted image using volBrain (http://volbrain.upv.es), an online brain

volumetry platform (Manj�on & Coup�e, 2016). The mask files obtained

from volBrain were examined for each subject to make sure the seg-

mentation was accurate. The segmentation mask was then used to

extract median values for each parametric map, while the volume was

given directly in the volBrain output. Subcortical structures included left

and right caudate nuclei, putamen, thalamus, globus pallidus, hippocam-

pus, amygdala and accumbens.

2.3.2 | Diffusion data

Preprocessing

Raw images were first denoised with the MPPCA algorithm (Veraart

et al., 2016; Veraart, Fieremans, & Novikov, 2015), which exploits

dMRI data redundancy in the PCA domain, as implemented in MRtrix3

(http://www.mrtrix.org/). A Gibbs ringing correction based on local

subvoxel shifts was then applied (Kellner, Dhital, Kiselev, & Reisert,

2015), as it was found that dMRI-derived metrics can be very sensitive

to this artefact (Perrone et al., 2015; Veraart, Fieremans, Jelescu, Knoll,

& Novikov, 2015). The reverse phase-encoded pair of b0 images was

used to estimate the susceptibility-induced off-resonance field using

FSL topup command (Andersson, Skare, & Ashburner, 2003; Smith

et al., 2004). This field estimation output was then fed to FSL eddy

command, for the simultaneous estimation and correction of eddy

current-induced distortions and subject movements (Andersson & Sotir-

opoulos, 2015). The distortion-corrected dataset was then registered to

the T1-weighted image, using the method implemented in the HCP dif-

fusion processing pipeline (Glasser et al., 2013). Data was finally slightly

smoothed with a 1.25 mm full width at half maximum (FWHM) kernel

to reduce the effect of any residual noise or Gibbs ringing artefacts, as

it was found to significantly improve the appearance of dMRI-derived

metrics, without losing much details due to smoothing. Results of all

intermediate steps were examined visually for each subject to assess

the quality of the data and processing. Two diffusion models were then

used to compute quantitative parametric maps.

Diffusion kurtosis imaging

Diffusion Kurtosis Imaging (DKI) uses a statistical description of the

diffusion-weighted signal (Lu, Jensen, Ramani, & Helpern, 2006). It is a

natural extension of diffusion tensor imaging (DTI) that accounts for

the non-Gaussian nature of diffusion distribution in restricted environ-

ments, such as in biological tissues (Jensen & Helpern, 2010). It was

shown to be more accurate than DTI, especially at higher b values

(Veraart et al., 2011), and could be more sensitive to microstructure

changes in disease and aging (Bonilha et al., 2015; Falangola et al.,

2008; Grinberg et al., 2016; Guglielmetti et al., 2016; Lee et al., 2014;

Steven, Zhuo, & Melhem, 2014). In addition to traditional DTI metrics,

DKI also provides indices of radial, tangential, and mean kurtosis, unit-

less values that quantify the deviation of the diffusion distribution from

a Gaussian (Veraart, Sijbers, Sunaert, Leemans, & Jeurissen, 2013). DKI

metrics were computed using the Diffusion Kurtosis Imaging software

(https://github.com/NYU-DiffusionMRI/Diffusion-Kurtosis-Imaging),

and the following metrics were used in the group comparison: mean

kurtosis (MK), fractional anisotropy (FA) and mean diffusivity (MD). We

4 | CABANA ET AL.CABANA ET AL. 3431



should note that metrics common to DTI and DKI (e.g., FA and MD)

are not quantitatively the same if computed using one model or the

other (Lanzafame et al., 2016; Yan et al., 2013).

Neurite orientation and density imaging

Neurite orientation and density imaging (NODDI) is a physiological

model that aims at increasing specificity and sensitivity of diffusion-

derived metrics (Zhang et al., 2012). It estimates the complex micro-

structure related to dendrites and axons using a three-compartment

physiological model. The estimation of neuronal density or dispersion is

of clinical interest since these aspects are related to cerebral function

and can be affected in various pathologies and normal aging (Billiet

et al., 2015; Caverzasi et al., 2016; Kunz et al., 2014; Mueller, Lim,

Hemmy, & Camchong, 2015; Winston, 2015; Winston et al., 2014).

NODDI was shown to be useful in disentangling the contribution of

neurite (axons/dendrites) orientation dispersion and density that can

be confounded in FA (Zhang et al., 2012). The model was fitted using

the Matlab (The MathWorks Inc., Natick) implementation of AMICO

(Daducci et al., 2015; https://github.com/daducci/AMICO/), and the

following metrics were used in the group comparison: intra-cellular vol-

ume fraction (ICVF), isotropic volume fraction (ISOVF), and orientation

dispersion index (OD).

2.3.3 | Multi-contrast data

Preprocessing

In order to improve the quality and robustness of the parameters estima-

tion, denoising of the individual echoes was first performed using the

AONLM algorithm (Manj�on, et al., 2010), as implemented in the MRI

Denoising software (https://sites.google.com/site/pierrickcoupe/soft-

wares/denoising-for-medical-imaging/mri-denoising). This algorithm

was chosen amongst many others as it was found to reduce significantly

the noise level while also preserving the details in fine structures. The

third echo image of both flip angles series was then extracted and a

masked brain image obtained using the FSL BET tool (Smith, 2002). The

choice of the third echowas determined as that resulting in optimal brain

extraction and registration. Each of the series of imageswas then individ-

ually registered to the T1-weighted reference image. The alignment

parameterswere determined by using the previouslymasked brain image

and then applied to the complete echo series using cubic b-spline inter-

polation. The 348 series showed a contrast very similar to the T1-

weighted image, and it has been determined that a simple rigid alignment

using FSL FLIRT (Jenkinson, Bannister, Brady, & Smith, 2002) resulted in

excellent alignmentwith the reference image. The 68 series showed a dif-

ferent contrast, closer to a PD-weighted image. In this case, the rigid

alignment on the T1-weighted image using the FLIRT command proved

ineffective. For this reason, we used a boundary-based alignment, as

implemented for the registration of diffusion data in the HCP diffusion

processing pipeline (Glasser et al., 2013), which was found to work flaw-

lessly in all subjects. Results of all intermediate steps were examined vis-

ually to assess the quality of the data processing.

Metric estimation

Preprocessed multi-contrast imaging data was then processed using

the VFA-FLASH method presented in Jutras et al. (2017), with slight

adaptations. The proposed parameters for the N4ITK B1 bias field cor-

rection (Tustison et al., 2010) were found to be suboptimal in our case,

and the default options as implemented in the N4BiasFieldCorrection

command of ANTs v2.1.0 (https://github.com/stnava/ANTs/releases)

were used instead. Another difference from the method presented in

the method paper (Jutras et al., 2017) is that no smoothing was applied

to the T2* map, as denoising of the raw data prior to parameter estima-

tion proved to give better results, without the introduction of addi-

tional partial volume effect and loss of details. The following parametric

maps were used in the group comparison: longitudinal relaxation time

(T1), apparent transverse relaxation time (T2*) and relative proton den-

sity (PD). To allow for inter-subject comparison, PD was properly nor-

malized to the mid-point between gray and white matter peaks in the

distribution histogram, as described in Jutras et al. (2017).

2.4 | Analyses

2.4.1 | Correlation analyses

Prior to the evaluation of group differences, we performed analyses to

assess the relationship between the several metrics used in our study.

Individual parametric maps presented above were first averaged across

all participants. The group-averaged maps were evaluated visually for

qualitative contrast correlations between metrics. Vertex-wise spatial

correlation between each metric pair was assessed via a linear regres-

sion. The correlation is quantified with respect to the R2 determination

coefficient, and the Pearson r coefficients. Regions affected with

susceptibility-induced artefacts (e.g., near frontal sinus or auditory

canals) were masked out to avoid biasing the results.

2.4.2 | Group analyses

Individual subjects’ parametric maps were first surface-smoothed with

a 6 mm FWHM Gaussian kernel. Group-wise differences were then

assessed for statistical significance via permutation-based t tests using

the PALM software (Winkler, Ridgway, Webster, Smith, & Nichols,

2014). All analyses were conducted with age, sex, age 3 sex, age2 and

age2 3 sex included as covariates in a general linear model (GLM),

using 10,000 permutations, assuming independent and symmetric

errors, and corrected for false discovery rate (FDR).

Non-parametric combination

To integrate all metrics into a unified and comprehensive statistical

analysis, a two-tail non-parametric combination (NPC) was computed,

using the Fisher method (Winkler et al., 2016). NPC is a method to per-

form joint inference on multivariate data with minimal assumptions.

First, each hypothesis is tested separately using synchronous permuta-

tions over all parametric maps (i.e., partial tests). The resulting empirical

p-values for each partial test are then combined into a joint statistic.

The choice of using the NPC method, as opposed to classical mul-

tivariate tests (e.g., MANOVA, MANCOVA, Hotelling’s T2), was made

with regards to its simplicity and demonstrated superiority (Winkler

et al., 2016). Specifically, NPC was shown to be more powerful, allows

an exact control of error rates over the multiplicity of modalities, and

needs fewer assumptions than classical multivariate tests. Moreover,
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whereas classical multivariate tests such as Hotelling’s T2 generally

show a decrease in power as the number of tests is increased, espe-

cially when the number of observations (i.e., number of subjects) is low,

NPC becomes more powerful as the number of modalities increases,

even when the number of variables equals or exceeds the number of

observations. As such, given our relatively low number of subjects

(n 5 26) and high number of partial tests (n 5 9), NPC was deemed the

method of choice.

Regions of interest (ROI) analysis

The NPC map was used to identify clusters of highly significant group

differences. The clusters were defined as contiguous regions of FDR-

corrected p values < .05 spanning an area greater than 50 mm2. ROIs

were manually drawn over the identified clusters, to be able to separate

groups of clusters that were visually apparently connected. The size and

mass of each cluster, defined as the sum of the Fisher statistic of all

data points inside a cluster, were computed as quantitative measures of

their significance (Bullmore et al., 1999). Median value for each map

and each individual subject were obtained in these ROIs, and a one-tail

t test was done to characterize group differences in these clusters.

3 | RESULTS AND DISCUSSION

We investigated the cortical microstructure properties of a group of 13

SYN1Q555x mutation carriers, compared to a group of 13 age- and sex-

matched controls. The cortex was characterized using two MRI acquisi-

tion methods which were deemed a priori to complement each other.

First, a multi-shell diffusion imaging protocol allowed the evaluation of

several metrics sensitive to the structural properties of cortical gray

matter. Specifically, DKI was used to compute MK, MD, and FA maps,

while NODDI was used to estimate ICVF, ISOVF, and OD. On the other

hand, a multi-contrast VFA-FLASH sequence allowed the quantitative

estimation of fundamental relaxometry metrics (i.e., T1, T2*, and PD)

sensitive to tissue composition, such as water, myelin, or iron content.

3.1 | Inter-parameters spatial correlations

To get a better understanding of the overall properties of the various

metrics used in this study, we first explored their spatial correlations

and complementarity across the cortex. As both diffusion models (i.e.,

DKI and NODDI) represent two different ways of interpreting the

same data, we expected to find strong correlations between their

respective metrics. Inversely, our initial assumption was that dMRI and

quantitative relaxometry metrics should complement each other. The

metrics were first averaged across the whole cohort to increase signal-

to-noise ratio. The maps were then visually examined for qualitative

contrast correlations between metrics, and the vertex-wise correlation

coefficients between each metric pair were also computed.

Figure 2a shows the group-averaged maps for all metrics. Qualita-

tively, some broad features are seen to be spatially concordant in sev-

eral cortical maps. Notably, matching contrasts are seen in the primary

motor, premotor and supplementary motor cortices as well as primary

somatosensory, visual and auditory cortices, anterior cingulate gyrus

and insula. We suggest that this could be explained by the fact that

each metric is sensitive to some characteristics of the same underlying

environment, with all chosen markers being affected to various degrees

by the cyto- and myeloarchitecture. Despite these overall similarities,

we also observe that parametric maps derived from the diffusion

sequence (top two rows) looks quite different from the metrics from

the multiparametric mapping sequence (bottom row). This suggests

that combining diffusion data with quantitative multiparametric map-

ping might prove useful in characterizing the microstructure, by exploit-

ing the sensitivity of these measures to different underlying physical

properties of the cortex.

Quantitatively, a strong pairwise correlation (MK-ICVF: r 5 .78,

MD-ISOVF: r 5 .94, FA-OD: r 5 –.73) is observed between the two

diffusion models (see Figure 2b,c). The strong similarities between MD

and ISOVF suggests that any changes found in MD should most likely

be also seen in ISOVF, given the very high correlation. This behavior is

expected since the isotropic diffusivity compartment represented by

ISOVF in the NODDI model is related to the free protons, which

exhibit maximum diffusivity. Both relaxation metrics (i.e., T1 and T2*)

were also found to be somewhat correlated (r 5 .63). On the other

hand, diffusion metrics generally correlated poorly with the multipara-

metric mapping metrics, suggesting a good complementarity between

these two modalities, as assumed a priori.

3.2 | NPC analyses

Our study design allowed a characterization of the cortex using a large

number of individual parametric maps. However, the identification and

interpretation of several spatially concurrent metric changes can be

challenging. Moreover, as the statistical power of our study is inher-

ently limited by the size of our unique population, it is possible that

subtle microstructural changes could simultaneously affect several met-

rics in a given location, while still showing up as non-significant on the

level of individual parameters. One interesting approach that deals with

these issues is to use a non-parametric combination (NPC) statistical

model. Indeed, the multiplicity of metrics should be helpful as the

power of NPC increases with the number of modalities given as inputs.

While the NPC statistic is not informative by itself as to which metric

might be affected, its increased power could be useful to identify the

location of altered cortical regions. The identification of these regions

in turn can be used to interpret our findings in relation to the neuro-

psychological phenotype of our population.

Figure 3 shows the NPC statistic of a two-tailed t-test, displayed

as -log(p), for p < .05, which represents the probability of altered

microstructure, all metrics combined. Clusters of FDR-corrected p

value � .05 and area �50 mm2 were identified as regions where the

most significant changes were observed. The relative mass index for

these clusters, defined as the sum of all statistics inside a cluster, nor-

malized to the largest cluster mass, was computed as a quantitative

measurement of alterations extent, that is a larger mass is indicative of

larger microstructural changes, in terms of statistics and size. This index

thus represents a way to identify which cortical regions are most

affected in our group of SYN1Q555x carriers.
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Twenty-two clusters were found, and their anatomical location,

size and relative mass are described in Table 3. The mass index indi-

cates that the most affected regions are located in the right hemi-

sphere, that is the inferior-anterior part of the supramarginal gyrus

(cluster #16, normalized mass 5 1.0), the occipito-parieto-temporal

junction (#13, mass 5 0.806), the superior temporal gyrus (#11,

mass 5 0.468), and posterior collateral sulcus (#22, mass 5 0.355). In

the left hemisphere, the most significant clusters were located on the

anterior part of the superior frontal gyrus (#10, mass5 0.283), the pos-

terior part of the middle temporal gyrus (#2, mass 5 0.260) and the

insula (#1, mass 5 0.185).

3.2.1 | Contribution of individual metrics to NPC

The results obtained above using the NPC multivariate method are

obviously dependent on the inputs given to the algorithm, that is the

joint distribution depends on the partial tests. Moreover, we have

shown how the metrics from DKI and NODDI were highly correlated

with each other. To get an idea of how the choice of including the

parametric maps presented above influenced the identification of

altered cortical regions, we performed additional analyses by succes-

sively excluding individual metrics in the NPC step.

First, as both diffusion models seemed redundant, we excluded all

three maps from the NODDI model, to see if any information would be

FIGURE 2 Group-averaged parametric maps. (a) Mean parametric maps for all 26 subjects. (b) Across cortex vertex-wise correlation coeffi-
cient between each metric pair. The matrix is color-coded with respect to the R2 determination coefficient, and numbers on the figure are
the Pearson r coefficients. (c) Vertex-wise scatter plots of the four most correlated metric pairs, color-coded by density [Color figure can be
viewed at wileyonlinelibrary.com]
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FIGURE 3 Non-parametric combination statistics of all metrics, showing clusters of significant differences between SYN1Q555X and control
groups. FDR-corrected p values are shown as 2log(p), from p 5 .05 (blue) to p 5 .01 (red). Clusters of FDR-corrected p value � .05 and
area �50 mm2 are identified with a black border and a number used throughout this article. Grayscale background image represents the
group-averaged curvature map, that is sulcus in light gray and gyrus in dark gray. (a) Lateral-medial view on inflated, group-averaged surfa-
ces; (b) antero-posterior oblique view [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Identification of significantly altered clusters location, size, and relative mass

# Location Position Size (mm2) Mass
Left hemisphere

1 Insula Superior/anterior 272 0.185

2 Middle/inferior temporal gyrus Posterior 346 0.260

3 Supramarginal gyrus Inferior/posterior 62 0.058

4 Supramarginal gyrus Inferior / anterior 94 0.084

5 Postcentral gyrus Inferior 73 0.061

6 Postcentral gyrus Posterior 147 0.185

7 Lateral occipital sulcus Posterior 85 0.059

8 Cuneus/pericalcarine cortex Anterior 57 0.019

9 Superior frontal gyrus Anterior 170 0.108

10 Superior frontal gyrus Anterior 447 0.283

Right hemisphere

11 Superior temporal gyrus Inferior/anterior 547 0.468

12 Middle temporal gyrus Posterior 362 0.204

13 Inferior parietal lobule/Lateral occipital cortex Anterior 831 0.806

14 Inferior parietal lobule Posterior 435 0.306

15 Superior parietal lobule Anterior 163 0.174

16 Supramarginal gyrus Inferior/anterior 727 1.000

17 Postcentral gyrus Posterior 286 0.284

18 Postcentral gyrus Anterior 451 0.328

19 Precentral sulcus Inferior 49 0.048

20 Lateral occipital sulcus Posterior 70 0.054

21 Superior parietal lobule Inferior/posterior 64 0.039

22 Collateral sulcus Posterior 572 0.355

Clusters were identified on the NPC map as regions of contiguous FDR-corrected p value < .05 and area > 50 mm2. Location was determined from
the group-averaged gyrus-based segmentation and curvature maps. Relative mass is defined as the sum of all statistics inside a cluster, normalized to
the largest cluster mass
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lost when only DKI is considered. Results of this analysis are shown in

Figure 4. It is apparent that the exclusion of NODDI metrics from the

analysis had a very subtle effect. Overall, the distribution of clusters

appears mostly unchanged, thus indicating that most of the information

given by NODDI is still present in the DKI maps. However, we also see

some notable differences such as the apparition of a new cluster in the

posterior part of the left insular cortex and the disappearance of cluster

#18, on the anterior bank of the right hemisphere postcentral gyrus.

These results suggest that while DKI metrics largely reflects the same

information as NODDI metrics, both models can complement each

other.

Continuing from this NODDI-less NPC map, we successively

removed one parametric map at a time from the NPC analysis, and

evaluated how each one affects the results. As shown in Figure 5, the

exclusion of MK, T1 or T2* from the dataset barely affected the results

at all. On the other hand, excluding MD had a dramatic impact, as no

FDR-corrected cluster was found. This shows that MD was the main

contributor to the observed alterations. Excluding FA or PD also had a

large impact on the results, as an overall decrease in -log(p) was seen

(increased p values), while several clusters disappeared altogether.

These results point to an important contribution of these two metrics

to the overall distribution of altered clusters.

3.2.2 | Clusters analysis

To better characterize the observed cortical alterations, we performed

a ROI based one-tail t test on the clusters defined in Figure 3. This test

allowed a detailed view of the characteristics observed in each of these

clusters, and a global view of the patterns observed across clusters. Fig-

ure 6 clearly shows that the significant decrease in MD/ISOVF is found

consistently across all clusters. An increase in FA is also notable for all

FIGURE 4 FDR-corrected NPC results, excluding the NODDI parametric maps from the analyses, presented on (a) lateral-medial view on
inflated, group-averaged surfaces and (b) antero-posterior oblique view. Note that the black borders shown on this figure are the same as
Figure 3, that is they represent the clusters of significant cortical alterations, as found by the NPC analysis on all data, including NODDI
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 FDR-corrected NPC results, excluding the NODDI parametric maps from the analyses, and excluding one more metric at a time.
Color scale represents 2log(p) [Color figure can be viewed at wileyonlinelibrary.com]
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regions, but this increase is not significant everywhere. Four clusters (1,

6, 16, and 17) with p < .005 were found in FA, and seven others (2, 5,

10, 19, 20, and 21) with p < .05. On the opposite, OD, which could be

considered the counterpart of FA (see Figure 2), showed a significant

decrease in only two clusters (1 and 5), while also showing increased

values elsewhere, although not significant. This indicates that while FA

and OD generally show opposite trend across the cortex, they can in

fact vary differently on a more local level. It could also be indicative of

a noisier behavior of OD, leading in a higher variability across subjects,

and thus a decrease in sensitivity. Proton density (PD) is also found to

be significantly decreased in several clusters (i.e., 2, 7, 11, 13, and 15).

Other significant changes include two clusters of decreased MK (11

and 13). Finally, a consistent increase in T1 and decrease in T2* are

found across all clusters, although this trend was not significant.

3.2.3 | Single ROI analyses

The next step in our analysis was to take all the clusters defined above

as a single region of interest (ROI), in order to evaluate the distribution

of the mean values on an individual subject level. This allowed us to

assess the robustness of the previous findings, and determine if the

observed trends were present in all subjects.

First, the mean value for all parametric maps were obtained for

each subject, using all previously defined clusters taken together as a

single large ROI. These values were then used to plot the values distri-

bution across subjects, and to perform a new two-tail t test. Figure 7

shows the results of this analysis, with the data taken after regression

of the GLM. The significant diminution in MD and ISOVF found previ-

ously in all clusters is well represented by the difference in group mean

values. The distributions are well defined, and the values do not seem

largely driven by outlying subjects. The same can be said about the sig-

nificant augmentation of FA and diminution of PD, although in these

cases there is a bit more overlap between the two groups distribution.

In this ROI test, we also observe a significant (p < .05) diminution in

MK in the subject group, although the effect seems small compared to

the dataset size and variance. This figure also shows that the higher T1

and lower T2* values in the subject group cannot be regarded as signif-

icant, as the group distributions overlap largely.

FIGURE 6 Detailed results on the clusters identified above.
Numbers on x-axis represent clusters number. One-tailed statistics
for all metrics, displayed as 2log(pFDR). Blue: SYN1Q555X < control;
Red: SYN1Q555X > control. Results for pFDR < .05 and pFDR < .005
are highlighted with dashed and solid lines respectively [Color fig-
ure can be viewed at wileyonlinelibrary.com]

FIGURE 7 Analysis of mean values over all the identified clusters taken as a single ROI. Data points represent mean values for each
participant. On each box, the center mark indicates the median value, and the top and bottom edges indicate the 25th and 75th percentiles,
respectively, while whiskers extend to extreme values not considered outliers. Stars and lines show significant results of the two-tailed t
test at *p < .05, **p < .01, ***p < .001
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Clinical phenotype sub-groups

Our subjects group was characterized by a wide range of clinical phe-

notype. Let’s recall that in our group of 13 SYN1Q555x carriers, six were

diagnosed with varying degrees of dyslexia, four had reflex bathing

seizures, and one had mild ASD. To help disentangle the effects of the

genetic mutation with that of the clinical phenotypes, we performed

additional analyses by dividing the SYN1Q555x group in sub-groups clas-

sified by clinical phenotype.

As not all the subjects in the SYN1Q555x group were diagnosed

with dyslexia, we first looked at whether there was a difference in

microstructural properties between SYN1Q555x subjects with or without

dyslexia. Figure 8 shows the distribution of mean values across all iden-

tified clusters for the control group (HC), SYN1Q555x subjects without

dyslexia (Q555X-noD) and with dyslexia (Q555X-Dys). The significant

decrease found previously in MD and PD is observed in both

SYN1Q555x sub-groups, regardless of diagnosis. This suggest that these

alterations could be a direct consequence of the mutation itself, and

not an effect of having dyslexia. The observed increase in FA is also

present in both SYN1Q555x sub-groups, but the effect appears stronger

in the dyslexic group. These results suggest that FA could be indicative

of the language impairments severity in the SYN1Q555x group. We

should note nonetheless that the limited sample size limits the inter-

pretability of these results.

Given the observed sex-dependent phenotype, that is male sub-

jects being clinically more affected than females (more severe dyslexia,

addition of epilepsy and/or ASD), we hypothesized that we would find

more severe alterations in the male than the female group. To verify

this hypothesis, we looked at the distribution of mean values across all

the clusters taken as a ROI. Figure 9 shows box plots of subject groups

separated by gender. Overall, the significant decrease in MD and

increase in FA is quite evident, but we did not observe a stronger effect

in the male group. Interestingly though, T2* seemed to be more

affected in the male group, while the decrease in PD seemed more

prominent in the female group. It is however worth mentioning again

that segregating our subjects in subgroups lowers the statistical power

considerably given the limited number of subjects.

FIGURE 8 Microstructure characteristics of typical readers and dyslexic subjects. Data represents mean values across all identified
clusters. HC: healthy control subjects; Q555X-noD: subjects carriers of the SYN1Q555x mutation, but not affected by dyslexia; Q555X-Dys:
subjects carriers of the SYN1Q555x mutation and diagnosed with dyslexia

FIGURE 9 Gender-based group differences. Data represents the mean value across all identified clusters for each subject, separated by
gender and by group (control vs. SYN1Q555x). On each box, the center mark indicates the median value, and the top and bottom edges
indicate the 25th and 75th percentiles, respectively. Whiskers extend to extreme values not considered outliers. Lines and stars above box
pairs indicate a significant difference was found (*p < .05, **p < .01, ***p < .001) on a two-tail t test
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3.3 | Additional analyses

3.3.1 | Leave-one-out test

As the sample sizes were relatively low in both the subjects and control

group, we performed additional analysis to assess the robustness of

our findings, and rule out the possibility of a single or a few outliers

that could bias the results. Using the same ROI dataset as above, that

is the subject-level mean values across all identified clusters, a two-tail

t test was performed repeatedly following the removal of a single sub-

ject from the dataset. Figure 10 shows the results of this test, as a dis-

tribution of p values for all parametric maps. These results demonstrate

clearly that the findings of alterations in MD, ISOVF, FA and PD are all

very robust, as all iterations of the test still rendered p value < .05. In

fact, all results for MD and ISOVF gave a p value 5 .0001, which is the

absolute limit achievable in our test design, that is with 10,000

permutations.

3.3.2 | Morphological assessment

The relative thinness of the cortex (�2–5 mm) compared to the MRI

resolution (2 mm isotropic in our case for dMRI), implies that cortical

parametric mapping is inevitably sensitive to partial volume contamina-

tion with adjacent CSF and/or white matter voxels. It is thus important

to assess for possible morphological differences between our groups to

see if different degrees of partial volume effect could explain the

observed microstructural changes. For example, it could be possible

that the decrease in MD observed in the SYN1Q555x group was due to

a decreased contribution of CSF, which exhibit very high diffusivity. An

increase in cortical thickness (less partial volume with CSF) could then

be responsible for decreased MD.

Thus, we conducted additional independent one-tail t tests on

cortical thickness as well as curvature, as both of these morphological

features could have an impact on partial volume effect. Figure 11

shows the results of this test. We observe various regions of higher or

lower curvature and thickness throughout the cortex, but none of

these changes survived FDR correction. Importantly, we see that these

changes do not correlate with the clusters of significant alterations

observed previously on the NPC map, as shown with the black borders

on Figure 13. Moreover, we observe either apparently randomly dis-

tributed increase or decrease in curvature and thickness, which is

inconsistent with the overall changes in MD, which was shown to be

decreased globally. Consequently, partial volume effect can effectively

be disregarded as a possible leading cause of the observed changes.

3.3.3 | Population

One aspect of this work on which we obviously had no direct control

was the choice of subjects. Given that the SYN1Q555x mutation was

only specifically found in this extended family, we wanted to maximize

the number of subjects by including all family members with the muta-

tion who could successfully perform the MRI exam. As such, our sub-

jects group is somewhat heterogeneous with regards to gender (9

female vs. 4 males) and spans a wide age range (17–67). This heteroge-

neity can be limiting when trying to evaluate possible small changes

compared to controls, especially given the relatively small sample size.

We accounted for the group variability in the study design, by

matching each subject to a control of the same sex and age group

(within 5 years). However, even given the comparability of groups with

regards to gender and age, it remains that these variables could

account for a large portion of the variance for some metrics. As the null

hypothesis in the permutation tests used here was tested by shuffling

the residuals sign (i.e., cohort mean subtracted data), it is of paramount

importance to remove as much variance as possible to increase

FIGURE 10 Results of the leave-one-out analysis on the ROI
data. Stars indicate the p value for each iteration of the test.
Dashed line indicates the p 5 .05 level. Note that results for MD
and ISOVF were all equal to p 5 .0001, which is the limit achieva-
ble in the test performed with 10,000 permutations

FIGURE 11 Results of the one-tailed t test for structural metrics, shown as –log(puncorr). Regions in blue represent SYN1Q555X < control,
whereas regions in red represent SYN1Q555X > control. The black borders represent clusters of microstructural alterations, as identified pre-
viously (see Figure 3) [Color figure can be viewed at wileyonlinelibrary.com]
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statistical power. Age and gender was thus included in our GLM, such

that the variance associated with these variables was regressed out of

the data prior to the residuals sign permutations. To account for the

fact that some parameters could have a non-linear relationship with

age, we also included age2 in the covariates. Finally, given the possibil-

ity that the age effect could be different with gender, combinations

between age and gender were also included in the GLM. Specifically,

all analyses were conducted with age, sex, age 3 sex, age2 and age2 3

sex included as covariates. It should be noted however that there may

be a risk of overfitting the age and sex effects given the small number

of participants, and that a simpler design without the inclusion of cova-

riates might have been more conservative. Results of an NPC analysis

with this simpler design (not shown here) showed that the distribution

of altered regions remains essentially the same as in Figure 3, although

in this case the findings do not survive FDR correction due to a consid-

erably lower statistical power.

To evaluate the contribution of age to the variance of the paramet-

ric maps, a linear and quadratic fit was performed to show how each

metric varies with age and age2. Figure 12a shows the mean values

across the whole cortex for all individuals, plotted against age. Linear

and quadratic fit R2 value are given on the figure, which represents the

proportion of the variance that is explained by these covariates. A sig-

nificant relationship with age is seen for most of the metrics. Specifi-

cally, MK, ICVF, MD, and ISOVF all show a linear increase with age,

with up to 62% of the variance explained by age in the case of MK. T1,

T2*, and PD all showed a somewhat linear decrease with age, although

age2 obviously did explain a bit more variance, up to 49% in the case

of T2*. Finally, FA and OD both showed an apparent quadratic relation-

ship with age. Given the inverse correlation between these metrics

observed across the cortex earlier (see Figure 2), it is not surprising to

see how FA and OD show opposite variation with age. Yet, this obser-

vation indicates that the relationship between these metrics is present

not only spatially across the cortex, but also with age. In this case, OD

was the most highly correlated with age2, with an R2 of 0.49. An

increase in OD (decrease in FA) is observed up to age 40, with the

opposite relationship past this age.

Figure 12b shows the same data as in Figure 12a, but after regres-

sion of all covariates. This figure clearly demonstrates how our GLM

design neatly removes much of the data variance, thus allowing the

evaluation of the split between subjects and controls group mean

values.

3.3.4 | Subcortical gray matter

Although the main focus of our study was to investigate cortical gray

matter properties, our data also allowed the characterization of sub-

cortical gray matter structures. The mean values for all parametric

maps in left and right subcortical structures were used to perform an

independent two-tail t test. Figure 13 shows the results for this test.

Contrary to what is found in the cortex, MD and FA do not seem

to be significantly affected, but ICVF, ISOVF, and T1 are altered in

some structures. These results show that two structures in the right

hemisphere are mostly affected in the SYN1Q555x group, that is caudate

nuclei and thalamus. These structures both showed lowered ICVF and

ISOVF compared to control. An increase in T1 is also observed, though

only significant in the caudate nuclei, while the thalamus showed a sig-

nificant decrease in MK The fact that alterations are found predomi-

nantly in the right hemisphere agrees with what was observed in the

cortex, and could be indicative of altered connectivity in the cortico-

striato-thalamic network.

3.4 | Interpretation of findings

3.4.1 | Relation between microstructure alterations and

clinical phenotypes

The surface-based approach and combinatory analyses used in this

study allowed for a much higher sensitivity and specificity than what is

usually seen in traditional voxel-based studies. Indeed, it is difficult to

get a proper inter-subjects registration of the complex and variable

cortical structure using a volume-based approach. Because of this,

most cortical studies have been severely affected by a lack of proper

inter-subject alignment over the full cortex, which limits sensitivity to

detect changes in small, localized regions. Moreover, this study is, to

our knowledge, the first to use quantitative metrics sensitive to tissue

microstructure and composition over the whole cortex in a population

with a well-defined genotype linked to dyslexia, epilepsy and ASD.

Nevertheless, we can compare our unique results with previous studies

to validate if our findings agree with results from other imaging modal-

ities. As the main condition throughout our subjects group is a language

impairment, we first compare our results with reported studies in

dyslexia.

Prior research in dyslexia examined cerebral volumetrics, functional

activation, structural and functional connectivity in gray and/or white

matter structures, but none has yet considered gray matter microstruc-

ture (Bailey, Hoeft, Aboud, & Cutting, 2016; Baillieux et al., 2009; Cay-

lak, 2009; Cui, Xia, Su, Shu, & Gong, 2016; Elnakib et al., 2014; Finn

et al., 2014; Frye et al., 2011; Lebel et al., 2013; Maisog, Einbinder,

Flowers, Turkeltaub, & Eden, 2008; Paulesu, Danelli, & Berlingeri,

2014; Pollack, Luk, & Christodoulou, 2015; Rimrodt, Peterson, Denckla,

Kaufmann, & Cutting, 2010; Tamboer, Scholte, & Vorst, 2015). Our

results showed an alteration in gray matter microstructure in dyslexic

subjects in several regions, with the most affected ones being the

supramarginal gyrus (SMG), the occipito-parieto-temporal junction, the

superior temporal gyrus (STG) in the right hemisphere as well as the

superior frontal gyrus (SFG), the middle temporal gyrus (MTG) and the

insula in the left hemisphere. Several altered regions (e.g., bilateral

MTG, SMG, and the occipito-temporal junction) are in good agreement

with previous findings of neuroimaging studies in reading and dyslexia.

Indeed, these regions are generally viewed as part of the “reading-

writing” pathway and have been showed to be either under- or over-

activated in dyslexics (Barquero, Davis, Cutting, Tolvanen, & Lyytinen,

2014; Maisog et al., 2008; Price, 2012; Richlan, Kronbichler, &

Wimmer, 2009, 2011; Rimrodt et al., 2009; Shaywitz & Shaywitz,

2008). On the other hand, a new finding of our study is the alteration

observed in the SFG. We suggest that this alteration can be explained

by the contribution of the SFG to higher cognitive functions, executive

processing and working memory, which are particularly involved in
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reading comprehension (Boisgueheneuc et al., 2006; Cain, 2006; Car-

retti, Borella, Cornoldi, & De Beni, 2009).

With regards to our clinical observations on the epileptic subjects

reported before, the significant group differences found here are con-

cordant with the “parieto-insulo-temporal epileptic network” initially

proposed based on seizure semiology, ictal electroencephalographic

(EEG) recordings and functional imaging (Nguyen et al., 2015). Indeed,

affected males had seizures often featuring early somatosensory symp-

toms and frequently triggered by the contact of water, suggesting acti-

vation of the parietal cortex but also the insula, a key integrative

multisensory region. In addition, seizures captured on scalp EEG in a

patient showed epileptiform discharges over the right temporal region.

Finally, single photon emission computed tomography (SPECT) showed

right temporo-insular hyperperfusion during seizures in two patients.

FIGURE 12 Whole cortex parametric maps mean values variation with age. Each data point represents the mean value over the whole
cortex for an individual. (a) raw data, prior to regression of covariates. The linear (red) and quadratic (blue) relationship with age is
displayed, and its R2 value given in legend. (b) data after regression of covariates. Red and blue lines here represent the subjects and control
group means [Color figure can be viewed at wileyonlinelibrary.com]
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3.4.2 | Hemispheric asymmetry

Although there is no definitive evidence for a left-right lateralization

in epilepsy, ASD or dyslexia in general, it seems to be the case in our

well-targeted group of subjects. While these neurodevelopmental

conditions might be of various origin, it seems plausible in our case

that they could be linked specifically to the SYN1Q555X mutation. One

could thus speculate that the observed asymmetry is in part gene-

specific (i.e., SYN1Q555X-specific), although the downstream mechanis-

tic pathways are largely unknown. In addition, this asymmetry could

in part be related to the epileptic condition affecting four of our sub-

jects. Indeed, analysis of multimodal neurophysiological data sug-

gested an epileptic focus in the right hemisphere for 3 of them

(unknown for the other; Nguyen et al., 2015). Prior morphological

studies in patients with focal epilepsy have revealed subtle atrophy

distributed predominantly ipsilateral to the side of seizure onset, max-

imum within the epileptogenic lobe but also in more distant regions

(Bernhardt, 2010). These morphological changes suggest that tissue

microstructure might also be predominantly affected in the hemi-

sphere of the epileptic focus.

Moreover, observations of a predominantly affected right hemi-

sphere have been reported by others. Indeed, functional neuroimaging

studies have often revealed atypical lateralization and involvement of

the right hemisphere in dyslexic subjects when compared to typical

readers. Previous reports on dyslexia showed a left–right hemispheric

imbalance in either under- or over-activation of reading-writing related

cerebral regions, as well as loss or reversal of cerebral asymmetry in

certain brain regions, such as planum temporale, perisylvian, or parie-

tooccipital region (Farmer & Klein, 1995; Galaburda et al., 2006a; Val-

dois et al., 2004; Waldie et al., 2017). These results, combined with the

present study, suggests that an altered hemispheric asymmetry, reflect-

ing atypical organization of the right hemisphere, may be a defining

feature of dyslexia.

3.4.3 | Cortical microstructure model

Although the exact action mechanism of the SYN1 gene in the human

brain is not yet fully understood, it is known that synapsins play an

important role in neuronal development, cytoskeletal regulation, neu-

rite elongation and branching, synaptic vesicles spatial localization, and

synapses formation and maturation (see Fornasiero et al. (2010) for a

review). To date, the role of the SYN1 gene has been mostly studied in

vitro on mouse hippocampal neurons, an approach that, while informa-

tive, does not allow a complete picture of the possible outcome of a

mutation on the extremely complex neuronal development of the

human brain. In this sense, this study represents the first observations

of the effects of a SYN1 mutation on cerebral microstructure in vivo in

the mature human brain. It should be mentioned however that given

our small sample size, it is hard to generalize our findings to a larger

population of SYN1Q555x carriers. Nevertheless, it is interesting and

informative to propose an interpretation of the observations made in

our group of subjects.

The observations of altered diffusivity metrics points to changes in

the cortical structure at the microscopic level, as opposed to changes in

tissue composition, such as water or myelin content. Given that SYN1

is known to be implicated in neuropil development, and that diffusion

in the cortex is mostly restricted by the presence of neurites (Jespersen

et al., 2012; Kleinnijenhuis et al., 2013; Leuze et al., 2014; Seehaus

et al., 2015; Shepherd et al., 2007), we hypothesize that these observa-

tions are consistent with an increase in radial and/or tangential fiber

population density (see Figure 14). This increase in the overall number

of neurites would indeed impair the free diffusivity of water and

increase the anisotropy, in the case where the radial population

increase is greater than the tangential component increase (Figure 14c).

This could be tentatively explained in different ways.

First, this could be the result of a cortical structure of smaller, thin-

ner, and more densely packed neurites (Figure 14d). In this model, the

FIGURE 13 Results for the group comparison of subcortical gray matter structures. ac: accumbens, am.: amigdala, ca.: caudate nuclei, hi.:
hippocampus, pa.: globus pallidus, th: thalamus, L: left hemisphere, R: right hemisphere. (a) One-tailed statistics for all metrics, displayed as
2log(pFDR). Blue: SYN1Q555X < control; Red: SYN1Q555X > control. Results for pFDR < .05 are highlighted with solid lines. (b) NPC statistics.
Color scale is displayed as 2log(pFDR), and numbers on the figure show the actual pFDR value [Color figure can be viewed at wileyonlineli-
brary.com]
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isotropic diffusion compartment (ISOVF) is decreased, while the intra-

cellular volume fraction (ICVF) remains unchanged, as is observed in

our data. This would also likely lower the fraction of free water protons

(lower PD) and T2*, due to an increase in the overall cell membrane

surface area. Another possible explanation could be that the cell mor-

phology remains unchanged, but the ratio of somatic to neuropil vol-

ume fraction is lowered. For example, an arrangement of wider

minicolumns driven by an increase in neuropil width is possible (Figure

14e). An alteration of cortical minicolumnar morphometry would agree

with histological observations in the cortex of dyslexic and ASD sub-

jects (Casanova, Buxhoeveden, Cohen, Switala, & Roy, 2002; Opris &

Casanova, 2014). Finally, a denser arrangement of neurites would also

presumably lead to increased local connectivity, which could in turn

induce hyperexcitability, a defining feature of epilepsy. It is also plausi-

ble that this increase in neuropil volume fraction could be indicative of

an increased number of fibers connecting the cortex to sub-cortical

structures, as significant alterations in the right caudate nuclei and thal-

amus, both structures being highly connected to the cortex, were also

observed (see Figure 13).

The presented model to explain diffusion data (reduced MD and

increased FA) suggest increased density of radial and tangential fiber

populations in the SYN1Q555X group. Although this may appear

contradictory to in vitro observations suggesting impaired axon elonga-

tion, it should be kept in mind that results from studies conducted on

primary cultures of hippocampal neurons from genetically altered mice

should not prematurely be compared to in vivo neuroimaging observa-

tions. Indeed, histological analysis of brains derived from single and

multiple synapsin knockouts have revealed broadly normal general

structure and morphology (Chin et al., 1995; Gitler 2004; Takei et al.,

1995), suggesting possible compensatory mechanisms which may occur

in the human’s complex environment but not in cultured neurons

(Cesca et al., 2010). A delayed growth might occur in vivo, but could be

corrected or even aberrantly overcorrected during development.

3.4.4 | Data processing

Every effort was made to ensure that each modality benefited from an

optimal processing pipeline. It should be noted however that the use of

various processing tools might have an impact on the results, to some

extent. For example, omitting the Gibbs ringing removal in the diffusion

data, or the denoising stage in the multi-contrast data processing could

have hypothetically resulted in slightly different results. While we could

have made the choice to reduce data processing to a minimum, we

chose instead to optimize each processing pipeline to maximize data

quality, and we believe this resulted in robust and reliable results.

FIGURE 14 Microstructural interpretation of diffusion results. (a) On a microscopic (cellular) scale, diffusion in the cortex is complex.
Water molecules movement is restricted by the presence of barriers, which are mainly cell membranes of myelinated or unmyelinated
neurites. Given the dense and complex structure of cortical gray matter, the mean diffusivity is quite low and mostly isotropic. (b) On a
mesoscopic scale, diffusion is found to be sensitive to the layered cortical structure of radial (perpendicular to the cortex surface) and
tangential (parallel to the surface) fibers. (c) On a macroscopic scale, that is at the resolution of the MRI experiment, diffusion metrics
represent an average over the full cortex thickness. Increased density of radial and/or tangential fiber populations in variable proportions
could explain the increase in FA and decrease in MD observed in the SYN1Q555X group. (d) A three-compartment model demonstrates how
a structure of thinner and more densely packed neurites can change various metrics, as observed in our data. In this model, ISOVF (in blue)
is lowered, while ICVF (in red) is unchanged. The third compartment (51 – (ISOVF 1 ICVF), in yellow) thus needs to increase. The increase
in overall membrane surface area (black circles) increases the macromolecular protons fraction, which would lower the measurement of PD
and T2*. (e) The increased population of neurites could also be explained by a model where the neurites morphology is unchanged, but
occupy a larger volume fraction overall. In this model, the neuropil space is increased, which could be for example a result of increased
space between minicolumn core, that is columns of dense cells soma. Assuming the NODDI intra-cellular volume fraction correctly estimates
the space occupied by neurites, this model would lead to increased ICVF, which is not observed in our data. However, the NODDI model
still needs validation in the cortex and in pathology, and assuming that ICVF truly represents neurites is risky [Color figure can be viewed at
wileyonlinelibrary.com]
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3.4.5 | Diffusion models applicability in the cortex

Some studies have found that MK outperformed other diffusion met-

rics, such as MD and FA, as a measure of microstructural complexity,

especially in white matter (Gao et al., 2012; Helpern et al., 2011;

Umesh Rudrapatna et al., 2014; Zhu et al., 2015). While this increased

sensitivity was the main reason to include MK in our study to begin

with, our results showed that MK was less sensitive to detect changes

in this case, and that MD was instead the most affected parameter.

Furthermore, the suggested increased density of fiber populations in

the SYN1Q555x group would suggest an increased complexity that

should be expected to result in an increase in MK and ICVF. Therefore,

our results do not seem to corroborate the proposed model in this

regard. However, one should keep in mind that diffusion in the cortex

is a very complex function of several physical and physiological param-

eters, and that unambiguously asserting specific causal relationships

between tissue properties and MR diffusion parameters is very chal-

lenging. Thus, the suggested increase in fiber density remains a specu-

lative and simplistic model at this point, and it is possible that other

processes could in part explain our results. For example, changes in

compartments permeability, cell shape or cell population sizes, could

affect the diffusion measures in a non-trivial manner, affecting MD/

ISOVF more than MK/ICVF in this particular situation. Another inter-

esting possibility is that MK/ICVF could be mostly representative of

myelinated axons (Fukutomi et al., 2018), thus suggesting an increase

only in unmyelinated dendrites density in the SYN1Q555x population. It

is also plausible that the behavior of MK/ICVF differs between the

gray matter and the white matter, and thus that its interpretation may

not be directly transferable from what is known in the white matter to

the gray matter, where its properties are not as well established. For

example, Falangola et al. (2008) have studied the patterns of MK, MD,

and FA changes with age (from age 13 to 85 years) in the prefrontal

cortex. They have found that mean MK values increased with age in

the GM, while it decreased with age in the WM. The MK increase with

age in GM was also observed in our data, as shown in Figure 12. There-

fore, it appears that in GM, MK might not be entirely representative of

neurites complexity, as it is not likely to increase with age, but on the

contrary probably slightly decreases (Hof & Morrison, 2004; Pannese,

2011; Petralia, Mattson, & Yao, 2014).

Given the increasingly diverse amount of biophysical model to

explain diffusion signal, one may question the effect of choosing one

particular model over another, as such a choice may possibly be a con-

founding factor in the results obtained. While we are aware that the

validity of NODDI is still debated, given its limitation due to the various

assumptions underpinning the model (fixed diffusivities, impermeable

neurites, tortuosity model), we chose to still include it in our study for

several reasons. First, while the interpretation of its metrics cannot be

taken for granted, it has been shown to be sensitive to detect micro-

structural changes, even in gray matter (e.g., Granberg et al., 2017;

Kamagata et al., 2017; Nazeri et al., 2017). Secondly, the inclusion of a

larger number of metrics is desirable in the NPC framework, as it serves

to increase the overall sensitivity, even given the redundancy between

both diffusion models. Finally, we believe that adding our results to the

growing pool of literature might serve for future studies especially

looking to resolve these models’ validity in the cortex. As such, our

results on across-cortex parametric correlation represents an interest-

ing starting point that might trigger additional research.

As a further validation to exclude the choice of diffusion model as

a confounding factor, we applied the recently proposed “multi compart-

ment microscopic diffusion model” by Kaden et al. (2016). This model

relaxes some of the constraints imposed in the NODDI model, and

allows the estimation of the intrinsic diffusivity (Dint) and intra-neurite

volume fraction (Vint). Using this model, we found results that are

essentially the same as with DKI or NODDI (see Supporting Informa-

tion). Thus, it appears that, at least in the present study, the choice of a

particular diffusion model does not alter the observations significantly,

and that the main conclusions of our study remain unchanged.

We must nonetheless warn the reader with regards to the inter-

pretation of the results presented in this study. While we chose to

include a biophysical model of the diffusion signal with the objective of

aiming for increased specificity, the lack of a thorough validation of

these models implies that their interpretation remains speculative. The

proposed model we tentatively put forward thus remains hypothetical

at this point, and should not be regarded as a definitive conclusion, but

only as one plausible possibility. One should not however use these

results as a conclusive validation of any biophysical model of diffusion

signal, be it NODDI or any other model.

4 | CONCLUSION

We investigated the impacts of the SYN1Q555x mutation on cortical

microstructure using DKI, NODDI, T1, T2*, and PD mapping. Using a

surface-based analysis approach, we observed alterations in 13 muta-

tion carriers relative to 13 age- and sex-matched controls in a predomi-

nantly right hemispheric network. In summary, the altered regions were

found to have some general characteristics: MD/ISOVF significantly

decreased, FA significantly increased, no changes in ICVF, OD, and MK

variables across regions, T1 increased but not significantly, T2*

decreased but not significantly, and PD significantly decreased.

In conclusion, this study is the first to use diffusion imaging and

quantitative multiparametric mapping successfully in a surface-based

approach to detect cortical anomalies in a group of subjects with a

well-defined genotype, linked to language impairments, epilepsy and

ASD. Microstructural alterations were found in several regions usually

involved in oral and written language as well as dyslexia. The most sig-

nificant changes in these regions were lowered MD and increased FA

in SYN1Q555x subjects, suggesting an increase in neuropil density or vol-

ume fraction.

Although the results are difficult to generalize to a wider popula-

tion, this study shows that surface-based diffusion MRI can effectively

be used to characterize subtle cortical pathology not detectable other-

wise, even when only a relatively small group of subjects is available.

We hope the unique results we presented here will encourage more

research groups to use this promising method.
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