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Abstract
Which temporal features that can characterize different brain states (i.e., consciousness or unconscious-

ness) is a fundamental question in the neuroscience of consciousness. Using resting-state functional

magnetic resonance imaging (rs-fMRI), we investigated the spatial patterns of two temporal features: the

long-range temporal correlations (LRTCs), measured by power-law exponent (PLE), and temporal variabil-

ity, measured by standard deviation (SD) during wakefulness and anesthetic-induced unconsciousness.

We found that both PLE and SD showed global reductions across thewhole brain during anesthetic state

comparing to wakefulness. Importantly, the relationship between PLE and SD was altered in anesthetic

state, in terms of a spatial “decoupling.” This decoupling was mainly driven by a spatial pattern alteration

of the PLE, rather than the SD, in the anesthetic state. Our results suggest differential physiological

grounds of PLE and SD and highlight the functional importance of the topographical organization of

LRTCs in maintaining an optimal spatiotemporal configuration of the neural dynamics during normal level

of consciousness. The central role of the spatial distribution of LRTCs, reflecting temporo-spatial nested-

ness, may support the recently introduced temporo-spatial theory of consciousness (TTC).
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1 | INTRODUCTION

The human brain exhibits a complex temporal organization (Buzs�aki &

Draguhn, 2004). Tremendous efforts have been made to reveal the

neural basis (He, 2014) and functional relevance (He, 2011; Huang

et al., 2015, 2016) of the brain’s temporal and spatial features through

resting-state functional magnetic resonance imaging (rs-fMRI). Several

rs-fMRI studies focused on the temporal variability that describes the

change in the amplitude of activity fluctuations (He, 2011; Huang et al.,

2014b; Tagliazucchi et al., 2013; Zou et al., 2008). Temporal variability

can be measured through either the time domain, by standard deviation

(SD) (Huang et al., 2014b,2016), or the frequency domain, through

amplitude of low-frequency fluctuations (ALFF) (Zou et al., 2008,

2010). The alteration in temporal variability has been observed in aging

(Garrett, Kovacevic, McIntosh, & Grady, 2010, 2011), unconscious state

(Huang et al., 2014a, 2014b, 2016; Lei, Wang, Yuan, & Chen, 2015;

Tagliazucchi et al., 2013, 2016), and psychiatric disorders (Martino

et al., 2016). Furthermore, temporal variability in two subfrequency

ranges, Slow-5 (0.01–0.027 Hz) and Slow-4 (0.027–0.073 Hz), revealed

distinct alterations in disorder of consciousness (Huang et al., 2014a)

and psychiatric disorders (Martino et al., 2016; Yu et al., 2014).

In addition to the temporal variability, another temporal feature,

long-range temporal correlations (LRTCs) has been introduced in fMRI

studies (He, Zempel, Snyder, & Raichle, 2010). The LRTCs implies the

temporal memory of brain activity in long time scales. Previous findings

demonstrated that the BOLD-fMRI signals follow a power-law distribu-

tion; therefore, it is scale-free or scale-invariant as expressed by P / 1=

fb (where P is the power, f is the frequency, and b is called the power-

law exponent (PLE)) (He, 2011). LRTCs can be measured in frequency

domain by the power relationships across different frequencies with

the power-law exponent (PLE), or in the time domain (Bullmore et al.,

2001) with the Hurst exponent (Hurst, 1951). Additionally, previous

findings demonstrated that LRTCs varied between brain networks (He,

2011) and modulated stimulus-evoked activity (Huang et al., 2016).

The degree of LRTCs was reported to be reduced during altered states

of consciousness such as during sleep and anesthesia (Tagliazucchi

et al., 2013, 2016). The hierarchy of LRTCs across different brain areas

reflects the temporo-spatial nestedness of brain activity, which has

been postulated as a core mechanism of consciousness in the recently

introduced temporo-spatial theory of consciousness (TTC) (Northoff &

Huang, 2017).

In addition to their temporal nature, temporal variability and LRTCs

show specific spatial organizations across regions with for instance the

default mode network exhibiting the highest values in both measures

(He, 2011; Tagliazucchi et al., 2013). Theoretically, they can be inde-

pendent of each other (Tagliazucchi et al., 2013), while empirically, a

positive correlation between LRTCs and temporal variability was

observed across regions in awake resting state (He, 2011). Temporal

variability and LRTCs yielded analogous alternations with reductions in

anesthetic-induced loss of consciousness (Huang et al., 2016; Taglia-

zucchi et al., 2016), but showed different patterns in sleep (Tagliazucchi

et al., 2013). However, whether these alternations lead to disruptions

in the spatial organizations of LRTCs and temporal variability remains

unknown. That is critical for the understanding of their neurophysiolog-

ical aspects, that is, whether they reveal similar aspects of functionality

for neural activity. In other words, to what extent they are anatomically

determined and/or relevant for the functional states, that is, level of

consciousness.

The question for the relationship between temporal variability and

LRTCs may carry major implications. If temporal variability and LRTCs

differ in representing distinct functional aspects of neural activity, their

relationship could change during different neural dynamic states, that

is, awake and anesthetic. Empirically, one could conceive different

models of the relationship between LRTCs (measured by PLE) and tem-

poral variability (measured by SD) as illustrated in Figure 1. If the PLE

and SD remain independent of each other (Figure 1a,b), it is expected

that they would not correlate with each other, that is, differences

noticed in one’s measure would not be accompanied by reciprocal dif-

ferences in the other’s measures (Figure 1a,b). Alternatively, PLE and

SD could correlate and thus be closely related with each other—such

correlation could either be positive or negative (Figure 1c,d). Moreover,

one would expect that if PLE and SD are closely related to and depend-

ent on each other as a general neuronal phenomenon, then their rela-

tionship would remain independent during different neural dynamic

states, that is, awake and anesthetic states.

In our study, we explored the relationship between PLE and SD in

awake state and general anesthesia using two different anesthetic

agents (propofol and sevoflurane), which display different molecular

mechanism but both modulate excitatory-inhibitory balance in general

(Franks, 2006; Hales & Lambert, 1991; Hemmings et al., 2005; Krasow-

ski & Harrison, 1999; Tomlin, Jenkins, Lieb, & Franks, 1998). We used

the propofol group (n514) as main results with the sevoflurane group

(n56) served for replication. We first found global reductions in both

PLE and SD during propofol-induced anesthetic state when compared

to the awake state. Furthermore, we observed lack of spatial correla-

tion (across brain regions) between SD and PLE in propofol-induced

anesthetic state which corresponds to the model in Figure 1a. While in

the awake state, a positive correlation of the two was observed, corre-

sponding to Figure 1c. Most importantly, we demonstrated that the

decoupling between PLE and SD was due to a disrupted spatial pattern

of PLE distribution with a preserved spatial pattern of SD distribution

in propofol-induced anesthetic state. These results highlight the func-

tional importance of the topographical organization of the temporal

structure, that is, LRTCs in our brain for maintaining an optimal spatio-

temporal configuration of the neural dynamics and potentially, a normal

level of consciousness.

2 | METHODS

2.1 | Subjects

Twenty subjects undergoing elective transsphenoidal approach for

resection of pituitary microadenoma were included in this study (male/

female: 11/9; age: 26–62 years). The pituitary microadenomas were

diagnosed by their size (<10 mm in diameter without sella expansion)

based on radiological examinations and plasma endocrinal indicators.
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These patients were classified as ASA (American Society of Anesthesi-

ologists) physical status I or II grade. They had no history of craniotomy,

cerebral neuropathy, or vital organ dysfunction. This study was

approved by the Ethics Committee of the Huashan Hospital, Fudan

University. Written informed consent was obtained from all subjects

before the study.

2.2 | Protocol

Fourteen subjects received intravenous propofol anesthesia and six sub-

jects received inhalational sevoflurane anesthesia.We defined the general

anesthesia state by behavioral measurements: no response to verbal com-

mand (“strongly squeeze my hand!”) corresponding to Ramsay score of

5–6 (Ramsay, Savege, Simpson, & Goodwin, 1974) and OAA/S score of 1

(Chernik et al., 1990). In addition, no subject reported any recall of the

events in the postoperative follow-up; therefore, all subjects were consid-

ered unconscious during anesthetic drug administration.

For the propofol group, we achieved a 3.0–5.0 lg/mL plasma con-

centration by using a target-controlled infusion (TCI) based on Marsh

model. After the patients lost response to a verbal command, remifen-

tanil (1.0 lg/kg) and succinylcholine (1 mg/kg) were administrated to

facilitate endotracheal intubation. We then maintained the TCI propo-

fol at a stable effect-site concentration (4.0 lg/mL) which reliably

induced an unconscious state in the subjects. For the sevoflurane

group, 8% sevoflurane in 100% oxygen was administered to the

patients, adjusting the gas flow to 6 L/min, combined with remifentanil

(1.0 lg/kg) and succinylcholine (1.0 mg/kg). This was maintained with

2.6% (1.3 MAC) ETsevo in 100% oxygen, and a fresh gas flow at 2.0 L/

min. The concentration of sevoflurane used was reported to success-

fully maintain a loss of consciousness in anesthetized patients (Katoh &

Ikeda, 1998). As there is a quick elimination of the analgesic remifenta-

nil and the depolarized neuromuscular relaxant succinylcholine from

plasma, the anesthetic effects on the brain are considered to be solely

pertaining to propofol and sevoflurane. During the anesthetic state,

subjects were given intermittent positive pressure ventilation, with tidal

volume at 8–10 mL/kg, respiratory rate at 10–12 beats per minute,

and PetCO2 (end tidal partial pressure of CO2) at 35–37 mmHg.

2.3 | fMRI data acquisition

Two 8 min resting-state runs, one in awake and one in anesthetic state,

were acquired using fMRI. The subjects were then asked to wear

FIGURE 1 Schematic illustration of two temporal features across brain regions: the LRTCs (measured by power-law exponent (PLE)) and
the temporal variability (measured by standard deviation (SD)) and their possible relationships. Left three columns represent the time course
from three different regions. The fourth column describes the power spectrum of the time courses in log scale. Dashed line indicates their
power in frequency and the solid line indicates the fitting line. The slope is defined as power-law exponent. The two right columns illustrate
the value of PLE and SD for each region. Four possible relationships are presented here: (a) SD is independent of PLE, distinct SD share a
same PLE. (b) Or conversely, distinct PLE share a same SD. (c) They positively correlate with each other: the higher PLE, the higher
variability. (d)They negatively correlate with each other [Color figure can be viewed at wileyonlinelibrary.com]

ZHANG ET AL. | 2037

http://wileyonlinelibrary.com


earplugs, take a comfortable supine position, and try to relax with their

eyes closed during the scanning session and were instructed to not

move their head during the MRI session. Eye-tracking during fMRI was

not available, but offline postscan recordings ensured that subjects

could comply with this instruction. The patients were instructed to try

not to concentrate on anything in particular. After the awake scans,

subjects were given the anesthetic agents in addition to full hydration

with hydroxyethyl starch to avoid hypotension. The resting-state fMRI

scans were acquired after anesthesia was maintained for at least 15

min which suggests anesthetic levels are stabilized. High-resolution

anatomical images were acquired in both states for each subject.

In this study, we used an intraoperative Siemens 3 T scanner (Sie-

mens MAGNETOM, Germany) with a standard head coil to acquire

gradient-echo EPI images of the whole brain (number of slice525, TR/

TE52,000/30 ms, slice thickness56 mm, field of view (FOV)5

192 mm, flip angle5908, image matrix: 643 64).

2.4 | fMRI data preprocessing

Preprocessing steps were implemented in Analysis of Functional Neu-

roImages (AFNI) software (Cox, 1996). We discarded the first six vol-

umes in each scanning using the AFNI command “3dTcat.” The

functional images from each scan were then slice-timing corrected (via

AFNI’s 3dTshift), aligned to the fifth volume using AFNI’s “3dvolreg,”

transformed into Talaraich space (Talairach & Tournoux, 1988) using

and resampled to 3 3 3 3 3 mm3 using AFNI’s “adwarp,” and then spa-

tially smoothed with a 6-mm full width at half maximum Gaussian blur

(AFNI’s “3dmerge”). Linear trends were removed from the scans. Six

head motion parameters were estimated and visually inspected. Head

motion was smaller than 62:5 mm translation or 62:5� rotation for all

subjects. Time series for six estimated parameters of head motion and

mean time series from the white matter (WM) and cerebrospinal fluid

(CSF) were regressed out from grey matter. To minimize partial volume

effects with gray matter, the WM and CSF masks were eroded by one

voxel (Chai, Castanon, Ongur, & Whitfield-Gabrieli, 2012).

2.5 | Power-law exponent (PLE) calculation

The fMRI signal time course from each voxel was analyzed for the

resting-state scan of each subject. The normalized spectrum of the

fMRI signal was computed using the Welch method (Welch, 1967). We

used the MATLAB function pwelch with its default parameters (Gruber,

1997; Stoica & Moses, 1997; Welch, 1967). This function estimated

the power spectral density of the input signal vector X using Welch’s

averaged modified periodogram method of spectral estimation. Time

series were divided into eight segments of equal lengths, each with

50% overlap. Each segment was windowed by a Hamming window

with the equivalent length as the segment. The power-law exponent

(PLE) for each voxel was calculated as the linear slope of power spec-

trum within 0.01–0.1 Hz under logarithmic scale. This frequency range,

which had been applied in previous studies on LRTCs (He, 2011;

Tagliazucchi et al., 2013), was chosen based on previous reports entail-

ing that low frequency fluctuations of the BOLD signal encoded the

most functionally relevant information (Biswal, Zerrin Yetkin, Haugh-

ton, & Hyde, 1995; Fox & Raichle, 2007; Huang et al., 2014a; Zhang &

Raichle, 2010).

2.6 | Goodness of fit

Given that the estimation of PLE involves a linear fit, it is important to

report whether the goodness of fit is altered across the two states.

Goodness of fit was measured as residuals (r) between data and the fit-

ting curve. Difference of r was tested by paired t test between awake

and anesthetic states (Tagliazucchi et al., 2013). No difference was

found for residuals (r) across two states, suggesting the two states are

at the same range for goodness of fit.

2.7 | Standard deviation (SD) of BOLD signal in

standard frequency (0.01–0.1 HZ) and two

subfrequencies (Slow-5: 0.01–0.027 HZ and Slow-4:

0.027–0.073 HZ)

The standard deviation (SD) of blood oxygenation level-dependent

(BOLD) signal describes the temporal variability of brain activity across

time within voxel (Garrett et al., 2010, 2011). To match the frequency

range of PLE, we calculated SD at the standard frequency range (0.01–

0.1 Hz) (Buzs�aki & Draguhn, 2004; Zuo et al., 2010). To test frequency

specificity, the SD of two subfrequencies ranges (Slow-5: 0.01–0.027

Hz and Slow-4: 0.027–0.073 Hz) were calculated.

2.8 | Global mean of PLE and SD in standard, Slow-5,

and Slow-4 frequency range

Mean value of PLE (mPLE) was calculated by averaging PLE across all

voxels within grey matter. The same calculation was performed on SD

(mSD). Paired t tests for global mean of PLE and SD were performed

(N514). To test frequency specificity, the mean SDs in Slow-5 and

Slow-4 bands were calculated and two-by-two ANOVA (factor: fre-

quency: Slow-5 vs Slow-4; factor state: awake, anesthesia) analysis was

performed to test statistical significance.

2.9 | Voxel-wise difference of whole-brain

PLE and SD

The PLE and SD were tested in paired t-tests respectively by AFNI’s

“3dttest11,” to determine the differences between awake (n514)

and anesthetic (n514) states. All t tests results were converted to

z-scores and mapped with a threshold at a P value< .01 after AlphaSim

correction in AFNI with a minimal cluster size of 50 voxels.

2.10 | Topographical similarity between PLE and SD

To examine whether the coupling between PLE and SD is state

dependent, we calculated the spatial correlation coefficients between

PLE and SD (across voxels in the gray matter) in awake and anesthetic

state separately. The individual correlation coefficient was transformed
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into Fishers’ Z, and group analysis (awake vs anesthetic states) was per-

formed using paired t test.

2.11 | Similarity of spatial pattern between

anesthetic and awake state

A voxel-based correlation between awake and anesthetic state was

performed on PLE and SD in gray matter for each subject. Individual

Pearson correlation value was transformed into Fisher’s Z. The resulted

spatial correlation coefficient was tested against zero using one sample

t test.

Additionally, to test the spatial similarity of SD in Slow-5 and Slow-

4 frequency ranges, voxel based correlation between SD in Slow-5 and

SD in Slow-4 was performed in awake and anesthetic state separately.

Paired t test was then performed to test the difference of spatial simi-

larity between states.

2.12 | Intersubject spatial correlation between

anesthetic and awake state for PLE and SD

To test whether the subjects share a similar or distinct spatial pattern

of PLE and SD in the anesthetic state, we performed intersubject spa-

tial correlation for PLE and SD in both awake and anesthetic state. The

correlation was performed across subjects for PLE and SD in awake

and anesthetic, respectively.

2.13 | Replicating in sevoflurane-induced

general anesthesia

For replication, we applied the same measurements on sevoflurane-

induced general anesthetic group (n56). The subject-based PLE and

SD were tested by paired t test. The voxel-based correlation between

PLE and SD in each state for each subject was calculated and paired t

test was performed. Finally, the spatial similarity for PLE and SD were

also calculated.

2.14 | Control analyses for global signal, gender, age,

and head motion on PLE and SD across state

To test the robustness of current findings, we examined the potential

effects of global signal regression, gender, age, and head motion. Spa-

tial difference maps of PLE and SD across states were compared before

and after global signal regression, and before and after gender and age

regressions.

For the issue of head motion effect, we first calculated frame-wise

Euclidean norm (square root of the sum squares) of the six-dimension

motion derivatives using AFNI program 1d_tool.py. The PLE and SD for

enorm time series were calculated with the identical procedure as cal-

culated for BOLD signal, and then paired t tests were performed. The

correlation between PLE and SD for head motion was calculated sepa-

rately. The subject-based correlation for PLE (SD) between BOLD sig-

nal and head motion was calculated. Finally, the group difference for

PLE and SD of BOLD signal was checked after regressing PLE and SD

of head motion.

3 | RESULTS

3.1 | Global reduction of power-law exponent (PLE)

in anesthetic state

We estimated the PLE values for all gray matter voxels in the awake

and propofol-induced anesthetic state. A global reduction of PLE across

the whole brain was clearly seen in the anesthetic state when com-

pared with the awaken state (Figure 2a). This was further visualized by

plotting the normalized power spectrum averaged across the gray mat-

ter voxels, and averaged across subjects in awake (PLE50.73) and

anesthetic state (PLE 5 20.01) (Figure 2b). Paired sample t tests

showed that the global mean of PLE (mPLE) was significantly decreased

in propofol-induced anesthetic state (n514, t59.6, p52.8 3 1027,

Cohen’s d52.57) (Figure 2c). The reduction pattern of PLE were con-

sistent with previous findings reported during sleep (Lei et al., 2015;

Tagliazucchi et al., 2013) and anesthetic states (Tagliazucchi et al.,

2016). Goodness of fit was tested between two states and no signifi-

cant difference was found.

3.2 | Global reduction of SD in anesthetic state

A significant reduction of the SD was observed across widespread

regions in the propofol-induced anesthetic state (Figure 3a, top). The

mean SD of the entire brain was significantly reduced in the anesthetic

state comparing to the awake state (n514, t53.1, p5 .008, Cohen’s

d50.83) (Figure 3b).

3.3 | Decoupling of PLE and SD in anesthetic state

To test whether the relationship between PLE and SD is state-

dependent, we measured the correlation between PLE and SD in the

awake and propofol-induced anesthetic state. We observed a higher

correlation coefficient (fisher’s z50.27) between PLE and SD in the

awake state when compared to anesthetic state (fisher’s z520.01).

The paired t test between the two states confirmed the decoupling

between PLE and SD (n514, t55.07, p5 .0002, Cohen’s d51.36) in

the anesthetic state (Figure 4c), which suggested that the relationship

between PLE and SD was state-dependent.

3.4 | Spatial similarity of PLE and SD in awake and

anesthetic state

The lack of correlation between PLE and SD in the anesthetic state

may correspond to an altered spatial pattern of both measures in the

two states, that is, awake and anesthetic. To test this hypothesis, we

quantitatively examined the similarity of spatial pattern for PLE/SD

between awake and anesthetic states across grey matter voxels.

Results indicated a distinct spatial pattern of PLE with lack of cor-

relation in PLE’s spatial distribution between awake and anesthetic

state (one sample t test against 0: n514, t50.97, p5 .35, Cohen’s

d50.26) (Figure 4a,d), while the spatial structure was more preserved

for SD (Figure 4b). Spatial correlation of SD between awake and
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anesthetic states was fairly high (one sample t test: n514, t514.5,

p52.1 3 1029, Cohen’s d53.87) (Figure 4d).

Taken together, the spatial correlations observed indicate a differ-

ent pattern of spatial structure reduction between PLE and SD. This

suggested that the altered spatial pattern in PLE in the awake and

anesthetic states accounted for the decoupling between PLE and SD in

the anesthetic state.

3.5 | Intersubject spatial correlation of PLE and SD

The altered spatial pattern of PLE in the anesthetic state can lead to an

“anesthetic spatial pattern” which differs from the awake state or a ran-

dom spatial pattern which means a stable “anesthetic spatial pattern”

does not existed. To test these two possibilities, we performed an

intersubject spatial correlation of PLE and SD in the awake and anes-

thetic state (Figure 5).

We found that the spatial pattern of SD was less affected by the

state when compared with the spatial pattern of PLE. The intersubject

spatial pattern of SD in the awake state (SDawake corr. SDawake) was the

most stable (mean of fisher’s z: z50.43) and was slightly reduced in

the anesthetic state (SDanesthetic corr. SDanesthetic: z50.37). Additionally,

spatial correlation of SD between the anesthetic and awake states

revealed a correlation (SDAnesthetic corr. SDAwake: z50.38) similar to the

correlation seen in the anesthetic state. These results revealed that a

similar spatial pattern of SD was shared across subjects in both awake

and anesthetic states.

In contrast, the intersubject PLE spatial pattern was disrupted in

the anesthetic state. The spatial correlation of PLE was much higher in

the awake state (PLEawake corr. PLEawake: z50.28) when compared to

the anesthetic state (PLEanesthetic corr. PLEanesthetic: z50.06). The

results suggested a random spatial pattern of PLE in the anesthetic

state.

3.6 | Frequency specificity of Slow-5 and Slow-4

The reduced PLE and SD values observed in the anesthetic state could

suggest more reduction of SD in low frequencies than high frequencies,

which was often described as frequency specificity of SD in previous

studies (Han et al., 2011; Huang et al., 2014b,2016). The frequency

specificity of SD was investigated during loss of consciousness (Huang

FIGURE 2 The global PLE reduction in propofol-induced anesthetic state. (a) Spatial maps of PLE in awake (top) and anesthetic (middle)
state. Voxel-wise group comparison of the PLE showed significant decrease in whole brain (threshold at p<0.01) (bottom). (b) Normalized
power spectrum of resting-state brain activity within the grey matter across subjects (mean: deep color line; 61 SD: light color range).
Slow-5 is defined as 0.01–0.027 Hz and Slow-4 is defined as 0.027–0.073 Hz. The power-law exponent (PLE), b, was defined as the slope
of a linear regression of log-power on log-frequency corresponding to the straight-line regime. (c) Group comparison of PLE mean value
(mPLE) showed significant reduction during anesthetic state [Color figure can be viewed at wileyonlinelibrary.com]
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et al., 2014b,2016) and psychiatric disorders (Han et al., 2011; Yu et al.,

2014). However, whether that is the relationship between frequency

bands or the specificity frequency correlates more with the state

remains unknown. For this purpose, we investigated the spatial pattern

of two subfrequencies within the standard frequency, that is, the Slow-

5 (0.01–0.027 Hz) and Slow-4 (0.027–0.078 Hz), which was widely

used in previous studies (Han et al., 2011; Zuo et al., 2010).

We first applied a two-by-two ANOVA (factor frequency: Slow-5

vs Slow-4; factor state: awake, anesthesia) and confirmed the state

related frequency specificity. The main effects of the state and

frequency as well as the interaction effect were observed

(Fstate 5 17.09, p5 .001, Ffrequency 5 111, p56.8 3 10211,

Fstate*frequency 5 18.9, p5 .00019) (Figure 6c), suggesting that the SD of

Slow-5 was reduced more in the anesthetic state when compared with

the SD of Slow-4. Additionally, the correlation between the difference

of PLE (DPLE as defined in above session) and difference of SD

(DSlow-5 and DSlow-4) revealed that reduction of PLE correlated more

with the reduction of SD in Slow-5 when compared with Slow-4

(n514, t510.2, p51.4 3 1027, Cohen’s d53.6) (Figure 6d).

However, the voxel-wise correlations of SD between Slow-5 and

Slow-4 were still high in both awake and anesthetic state (Figure 6a,b,

e). Paired t test revealed no difference in voxel-wise correlation

between awake and anesthetic state, suggesting a similar spatial

pattern between Slow-5 and Slow-4 independent of states.

3.7 | Replication in sevoflurane-induced general

anesthesia

To determine whether the above observations by propofol anesthesia

can be generalized to other anesthetics, we applied the same measure-

ments in an additional sevoflurane-induced anesthetic group (n56).

Similar to the results in the propofol-induced anesthetic group, global

reduction of PLE and SD were observed (PLE: n56, t52.8, p5 .036,

Cohen’s d51.16; SD: n56, t57.1, p5 .0009, Cohen’s d52.9). As

seen in the propofol group, we observed a tendency of decoupling

between PLE and SD in the sevoflurane-induced anesthetic group,

albeit did not reach statistical significance due to limited number of

subjects (n56, t51.45, p5 .2, Cohen’s d50.59). More importantly,

similar to propofol-induced anesthetic state, the spatial structure of

PLE was disrupted (n56, t51.88, p5 .11, Cohen’s d50.77) whereas

the spatial structure of SD remained intact (n56, t513.5,

p53.9 3 1025, Cohen’s d55.53).

3.8 | The effects of global signal, gender, age and head

motion on PLE and SD across states

We first checked whether the effects of gender, age, and global signal

would affect the spatial pattern of PLE and SD. This was achieved by

comparing the spatial significant maps before and after gender, age,

and global signal regression. The spatial maps of PLE (Supporting

FIGURE 3 Reduced SD in propofol-induced anesthetic state. (a) Spatial maps of SD in awake (top) and anesthetic (middle) state. Voxel-
wise group comparison of the SD showed significant decrease in wide-spread brain regions (threshold at p< .01) (bottom). (b) Group com-
parison of mean of SD (mSD) [Color figure can be viewed at wileyonlinelibrary.com]
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Information, Figure s1) and SD (Supporting Information, Figure s2)

were largely identical before and after regression, respectively.

Another concern was the head motion, which may affect the PLE

and SD calculations for BOLD signals. We thereby calculated the PLE

and SD for the head motion Euclidean norm time series. Comparing to

anesthetic state, the PLE of head motion was larger in awake state

(t54.2, p5 .001), but the SD of head motion showed no difference

(t51.3, p5 .22). The correlations between PLE and SD for head

motion in awake and anesthetic state showed opposite patterns, with a

positive correlation in awake state (r5 .53, p5 .051) and a negative

correlation in anesthetic state (r52.24, p5 .41). No correlation was

observed between BOLD signal and head motion in PLE or SD in

awake state (PLE: r5 .02, p5 .95; SD: r5 .26, p5 .37), whereas signifi-

cant correlations of those were seen in anesthetic state (PLE: r5 .51,

p5 .06; SD: r5 .68, p5 .007). Finally, after regressing out the PLE and

SD of head motion, the PLE and SD of BOLD signal remained

significant different for awake vs. anesthetic states (PLE: t52.36,

p5 .035; SD: t52.45, p5 .029). Together, these results made it rather

unlikely that our main findings were due to head motion.

4 | DISCUSSION

We investigated the LRTCs and temporal variability by resting-state

fMRI in subjects during both awake and anesthetic states. Our results

demonstrate that (a) both LRTCs (as indexed by PLE) and temporal vari-

ability (as measured by SD) displayed a global decrease across the

whole brain in anesthetic state, which is consistent with previous

observations (Huang et al., 2016; Tagliazucchi et al., 2016); (b) PLE and

SD decoupled from each other in the anesthetic state; (c) PLE spatial

pattern no longer correlated between awake and anesthetic states,

while positive correlation was preserved for SD. Our results suggest

FIGURE 4 Spatial pattern across awake and propofol-induced anesthetic state for PLE and SD. Values were ranked and converted into
four percentage bins (indicated by color bar) to visualize spatial pattern of PLE and SD. (a) Spatial maps of PLE in awake (top) and anesthetic
(bottom). (b) Spatial maps of SD in awake (top) and anesthetic (bottom). (c) Comparison of correlation between PLE and SD in awake and
anesthetic state revealed the PLE and SD decoupled in anesthetic state. The correlation was calculated for each subject first with Fisher’s Z
transformation, and performed in group level with paired t test. (d) Whole-brain voxel-based correlation between awake and anesthetic for
PLE, SD. The results of spatial correlations indicated the spatial pattern of PLE was more disrupted in anesthetic state when compared to
the spatial patterns of SD. *p< .05, **p< .01, ***p< .005 [Color figure can be viewed at wileyonlinelibrary.com]
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that PLE and SD have different physiological grounds with specifically

scale-free activity (as measured by PLE), which indexes temporo-spatial

nestedness (Northoff & Huang, 2017), showing special relevance for

maintaining level of consciousness.

4.1 | Role of PLE and SD in anesthesia and

consciousness

Our findings show for the first time differential roles of PLE and SD for

the level/state of consciousness. First and foremost, the loss of con-

sciousness observed in the anesthetic state seems to be characterized by

the reduction in both PLE and SD measures which is in accordance with

previous results (Tagliazucchi et al., 2016). Our findings extend previous

findings by showing that the spatial pattern of specifically PLE changes

during anesthetic states, whereas that is not the case in SD (Figure 7).

The PLE characterizes the relationship between different time-

scales of brain regions, a critical local feature that describes the rele-

vance of the temporal hierarchy of different timescales for integrating

information (Chaudhuri, Knoblauch, Gariel, Kennedy, & Wang, 2015).

Due to their higher PLE indexing stronger power in slow frequencies,

the prefrontal and other association cortices generate slower dynamics

when compared with primary sensory cortex (Chaudhuri et al., 2015;

Hasson, Yang, Vallines, Heeger, & Rubin, 2008). Hence, the spatial

organization of various cortical regions and networks can be character-

ized by different timescales which amounts to a hierarchy of timescales

(Chaudhuri et al., 2015; Murray et al., 2014).

We here extended previous results by showing the hierarchical

timescales are not only defined by their anatomic structure, but altered

across states (Figures 4d and 5). The disrupted spatial organization of

PLE during the anesthetic state may correspond to disruption in infor-

mation integration across different time scales, which leads to the

breakdown of information processing in unconscious state. In other

words, the PLE and its spatial pattern refer to what is described as

“nestedness,” that is, temporo-spatial nestedness that may serve as

neural predisposition of consciousness (Northoff, 2013; Northoff &

Heiss, 2015).

Taken together, our findings demonstrate for the first time that

such hierarchy of time scales and their spatial relationship across the

various cortical regions is crucially important for the level/state of con-

sciousness. In the awake state, we observed a close spatial coupling

(across brain regions) between the temporal structure (as indexed by

PLE) and temporal variability (as indexed by SD). Our correlation find-

ings in both intra- and intersubject results demonstrate that such

temporo-spatial coupling is central for the state/level of consciousness

as the spatial distribution of temporal hierarchy (as indexed by voxel-

based correlation of PLE) is lost in anesthesia.

The timescales of the brain activity can also be described by SD in

slow and fast frequencies. We therefore tested the spatial similarity of

SD of Slow-5 and Slow-4 (Figure 6). Despite the fact that Slow-5 pro-

vides a significantly larger contribution to PLE than Slow-4 (Figure 2b),

the change in PLE’s spatial pattern during anesthetic state was not

accompanied by the changes in the relationship between Slow-5 and

Slow-4. This suggests that instead of having a major role for a single

frequency band, it is the temporal structure itself, that is, the organiza-

tion of neural activity as indexed in PLE, that is central for the level/

state of consciousness.

Our results thus support differential roles of temporal variability

and nestedness in level/state of consciousness. A certain level of tem-

poral nestedness may provide the structure which—as suggested by

our data—are central for maintaining the level/state of consciousness.

In contrast, temporal variability itself may take on a different role as its

spatial structure was preserved during anesthesia. Tentatively, one may

hypothesize that temporal nestedness provides a necessary condition

of possible consciousness, that is, a neural predisposition of conscious-

ness (NPC: Northoff, 2013; Northoff & Huang, 2017), which is medi-

ated by the brain’s spontaneous activity. Whereas temporal variability

may rather be a sufficient neural condition, a neural correlate of con-

sciousness (NCC) (Crick & Koch, 2003). However, to show that, one

may need to investigate task-evoked activity which we did not do in

this study. Future studies may therefore combine the measurement of

resting state activity PLE with temporal variability during task-evoked

activity.

4.2 | Beyond drug-specific effects: Reduction of

LRTCs and temporal variability in the anesthetic state

We observed that the anesthetic state correlated with a global reduc-

tion of PLE as well as of SD. This is consistent with a recent study on

propofol-induced anesthetic state (Tagliazucchi et al., 2016). We thus

confirm previous results and extend the existing evidence by demon-

strating similar global reductions in both propofol-induced and

sevoflurane-induced loss of consciousness. Therefore, we suggest that

FIGURE 5 Intersubject spatial correlation between PLE and SD in
both awake and propofol-induced anesthetic states. The spatial
correlation was calculated by voxel-based correlation between each
subject’s PLE and SD. Each row and column represent one subject.
The intersubject spatial correlation revealed that the spatial pattern
of PLE in anesthetic state was disrupted across subjects, while the
spatial pattern of SD was relatively similar across subjects in differ-
ent conscious states [Color figure can be viewed at wileyonlineli-
brary.com]
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reduction in PLE and SD is not a drug-specific effect but is rather

related to the modulation of state of consciousness through a common

underlying yet unclear physiological mechanism.

Given that both propofol and sevoflurane modulate the excitatory-

inhibitory balance across the whole brain (Franks, 2006; Hales & Lam-

bert, 1991; Hemmings et al., 2005; Krasowski & Harrison, 1999; Tomlin

et al., 1998), we suggest that the excitatory-inhibitory balance may play

an essential role in determining the PLE values. In line with our study, a

neural modeling study reports the important role of excitatory-

inhibitory balance in modulating the timescales of firing rate (Chaudhuri

et al., 2015). However, given the different origins of signals across

modalities, further studies are warranted for revealing the direct rela-

tionship between excitatory-inhibitory balance for fMRI signal through

both empirical and theoretical approaches.

4.3 | Methodological issues

As simultaneous recording for other physiological signal like the cardiac

and respiration rates was not performed in this study, we cannot

FIGURE 6 Spatial pattern across awake and propofol-induced anesthetic state for PLE and SD in Slow-5 (a) and Slow-4 (b). Values were ranked and
converted into four percentage bins (indicated by color bar) to visualize spatial pattern of SD in Slow-5 and Slow-4. (c) ANOVA analysis revealed mean
effects of state and frequency, as well as its interaction effect, which confirmed a frequency specificity of SD. (d) Correlation between the difference
of PLE (DPLE) and the difference of SD (DSD) in Slow-5 (DSlow-5) and Slow-4 (DSlow-4). The reduction of PLE correlated more with reduction of
Slow-5. (e) Correlation between SD in Slow-5 and Slow-4 in awake and anesthetic state. The high correlation coefficients and no difference between
awake and anesthetic state suggested a state independent relationship between Slow-5 and Slow-4. *p< .05, **p< .01, ***P< .005 [Color figure can
be viewed at wileyonlinelibrary.com]

FIGURE 7 Schematic illustrations of how the PLE and SD reduced
in anesthetic. In awake state, regions with higher SD reveal higher
PLE. SD reduces with pattern unchanged while PLE reduces and
becomes homogeneous across the whole brain [Color figure can be
viewed at wileyonlinelibrary.com]
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exclude the potential influence of these signals on LRTCs and temporal

variability measures. Nevertheless, a study investigating neuronal

mechanisms of propofol-induced anesthesia reports that reduction of

LRTCs and temporal variability are unlikely to be due to these physio-

logical signals (Tagliazucchi et al., 2016).

Another limitation is the frequency range used to investigate the

LRTCs and the temporal variability. LRTCs implies scale free, therefore

a frequency range above 0.1 Hz would also worth investigating. In this

study, we choose to investigate LRTCs and temporal variability within

the 0.01–0.1 Hz range, given that the neural function has been exten-

sively investigated within this range. Also, neural signal below 0.1 Hz

fitted better to power-law function as revealed by previous fMRI stud-

ies (He, 2011), which indicates less artificial noise within this range.

Furthermore, the practical concern of the frequency of respiration,

which operating at a frequency above 0.1 Hz is another reason for

which we limit our investigation to frequencies below 0.1 Hz.

5 | CONCLUSIONS

We here investigate state-dependent alteration of LRTCs and temporal

variability and their relationship during awake and anesthetic states.

Our results reveal a global reduction of both LRTCs and temporal vari-

ability in the anesthetic state. Additionally, to our knowledge, this is the

first report of a state-dependent relationship between LRTCs and tem-

poral variability. Both variables correlate with each other in the awake

state, whereas that is no longer the case in anesthetic state as evi-

denced by the divergence of their spatial patterns. Taken together, our

results suggest that PLE and SD are different and, at least in part, inde-

pendent measures which is in line with their underlying theoretical

mathematical models. Moreover, our results hint upon a special rele-

vance of spatiotemporal structure, that is, temporo-spatial nestedness

as indexed by scale-free activity, for the level/state of consciousness.

Our data thus support the recent hypothesis of temporo-spatial nest-

edness being a core mechanism of consciousness, that is, a neural pre-

disposition of consciousness (NPC) as suggested in the temporo-spatial

theory of consciousness (Northoff & Huang, 2017).

ACKNOWLEDGMENTS

We thank Binke Yuan for suggestions on data analyses. This

research was supported by the Medical Guidance Supporting Project

from Shanghai Municipal Science and Technology Committee (to Jun

Zhang, No. 17411961400), the EJLB-Michael Smith Foundation, the

Canada Institute of Health Research (CIHR), the Hope of Depression

Foundation (HDRF), and the Start-up Research Grant in Hangzhou

Normal University (to Georg Northoff). We declare no conflict of

interest for all authors.

ORCID

Jianfeng Zhang http://orcid.org/0000-0002-3591-3219

Zirui Huang http://orcid.org/0000-0002-5949-0206

Jinsong Wu http://orcid.org/0000-0001-7854-9798

Pengmin Qin http://orcid.org/0000-0002-3569-6365

REFERENCES

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Func-

tional connectivity in the motor cortex of resting human brain using

echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.

Bullmore, E., Long, C., Suckling, J., Fadili, J., Calvert, G., Zelaya, F., . . .

Brammer, M. (2001). Colored noise and computational inference in

neurophysiological (fMRI) time series analysis: Resampling methods in

time and wavelet domains. Human Brain Mapping, 12, 61–78.

Buzs�aki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical net-

works. Science (New York, N.Y.), 304, 1926–1929.

Chai, X. J., Castanon, A. N., Ongur, D., & Whitfield-Gabrieli, S. (2012).

Anticorrelations in resting state networks without global signal

regression. NeuroImage, 59, 1420–1428.

Chaudhuri, R., Knoblauch, K., Gariel, M. A., Kennedy, H., & Wang, X. J.

(2015). A large-scale circuit mechanism for hierarchical dynamical

processing in the primate cortex. Neuron, 88, 419–431.

Chernik, D. A., Gillings, D., Laine, H., Hendler, J., Silver, J. M., Davidson,

A. B., . . . Siegel, J. L. (1990). Validity and reliability of the Observer’s
Assessment of Alertness/Sedation Scale: Study with intravenous mid-

azolam. Journal of Clinical Psychopharmacology, 10, 244–251.

Cox, R. W. (1996). AFNI: Software for analysis and visualization of func-

tional magnetic resonance neuroimages. Computers and Biomedical

Research, 29, 162–173.

Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neu-

roscience, 6, 119–126.

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain

activity observed with functional magnetic resonance imaging. Nature

Reviews Neuroscience, 8, 700–711.

Franks, N. P. (2006). Molecular targets underlying general anaesthesia.

British Journal of Pharmacology, 147(Suppl 1), S72–S81.

Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2010).

Blood oxygen level-dependent signal variability is more than just

noise. Journal of Neuroscience, 30, 4914–4921.

Garrett, D. D., Kovacevic, N., McIntosh, A. R., & Grady, C. L. (2011). The

importance of being variable. Journal of Neuroscience, 31, 4496–4503.

Gruber, M. H. J. (1997). Statistical digital signal processing and modeling.

Technometrics, 39, 335–336.

Hales, T. G., & Lambert, J. J. (1991). The actions of propofol on inhibitory

amino acid receptors of bovine adrenomedullary chromaffin cells and

rodent central neurones. British Journal of Pharmacology, 104, 619–628.

Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., . . . Jia, J. (2011). Fre-

quency-dependent changes in the amplitude of low-frequency fluctu-

ations in amnestic mild cognitive impairment: A resting-state fMRI

study. NeuroImage, 55, 287–295.

Hasson, U., Yang, E., Vallines, I., Heeger, D. J., & Rubin, N. (2008). A hier-

archy of temporal receptive windows in human cortex. Journal of

Neuroscience, 28, 2539–2550.

He, B. J. (2011). Scale-free properties of the functional magnetic reso-

nance imaging signal during rest and task. Journal of Neuroscience, 31,

13786–13795.

He, B. J. (2014). Scale-free brain activity: Past, present, and future.

Trends in Cognitive Sciences, 18, 480–487.

He, B. J., Zempel, J. M., Snyder, A. Z., & Raichle, M. E. (2010). The tem-

poral structures and functional significance of scale-free brain activ-

ity. Neuron, 66, 353–369.

Hemmings, H. C., Jr., Akabas, M. H., Goldstein, P. A., Trudell, J. R., Orser,

B. A., & Harrison, N. L. (2005). Emerging molecular mechanisms of

general anesthetic action. Trends in Pharmacological Sciences, 26(10),

503.

ZHANG ET AL. | 2045

http://orcid.org/0000-0002-3591-3219
http://orcid.org/0000-0002-5949-0206
http://orcid.org/0000-0001-7854-9798
http://orcid.org/0000-0002-3569-6365


Huang, Z., Dai, R., Wu, X., Yang, Z., Liu, D., Hu, J., . . . Northoff, G.

(2014a). The self and its resting state in consciousness: An investiga-

tion of the vegetative state. Human Brain Mapping, 35, 1997–2008.

Huang, Z., Wang, Z., Zhang, J., Dai, R., Wu, J., Li, Y., . . . Northoff, G.

(2014b). Altered temporal variance and neural synchronization of

spontaneous brain activity in anesthesia. Human Brain Mapping, 35,

5368–5378.

Huang, Z., Zhang, J., Longtin, A., Dumont, G., Duncan, N. W., Pokorny, J.,

. . . Weng, X. (2015). Is there a nonadditive interaction between spon-

taneous and evoked activity? Phase-dependence and its relation to

the temporal structure of scale-free brain activity. Cerebral Cortex,

bhv288.

Huang, Z., Zhang, J., Wu, J., Qin, P., Wu, X., Wang, Z., . . . Northoff, G.

(2016). Decoupled temporal variability and signal synchronization of

spontaneous brain activity in loss of consciousness: An fMRI study in

anesthesia. NeuroImage, 124, 693–703.

Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transac-

tions of the American Society of Civil Engineers, 116, 770–808.

Katoh, T., & Ikeda, K. (1998). The effects of fentanyl on sevoflurane

requirements for loss of consciousness and skin incision. Anesthesiol-

ogy, 88, 18–24.

Krasowski, M. D., & Harrison, N. L. (1999). General anaesthetic actions

on ligand-gated ion channels. Cellular and Molecular Life Sciences, 55,

1278–1303.

Lei, X., Wang, Y., Yuan, H., & Chen, A. (2015). Brain scale-free properties

in awake rest and NREM sleep: A simultaneous EEG/fMRI study.

Brain Topography, 28, 292–304.

Martino, M., Magioncalda, P., Huang, Z., Conio, B., Piaggio, N., Duncan,

N. W., . . . Northoff, G. (2016). Contrasting variability patterns in the

default mode and sensorimotor networks balance in bipolar depres-

sion and mania. Proceedings of the National Academy of Sciences of

the United States of America, 113, 4824–4829.

Murray, J. D., Bernacchia, A., Freedman, D. J., Romo, R., Wallis, J. D., Cai,

X., . . . Lee, D. (2014). A hierarchy of intrinsic timescales across pri-

mate cortex. Nature Neuroscience, 17, 1661–1663.

Northoff, G. (2013). Unlocking the brain: Volume 2: Consciousness. Oxford

University Press.

Northoff, G., & Heiss, W.-D. (2015). Why is the distinction between neu-

ral predispositions, prerequisites, and correlates of the level of con-

sciousness clinically relevant? Stroke, 46, 1147–1151.

Northoff, G., & Huang, Z. (2017). How do the brain’s time and space

mediate consciousness and its different dimensions? Temporo-spatial

theory of consciousness (TTC). Neuroscience & Biobehavioral Reviews,

80, 630–645.

Ramsay, M. A., Savege, T. M., Simpson, B. R., & Goodwin, R. (1974). Con-

trolled sedation with alphaxalone-alphadolone. British Medical Journal,

2, 656–659.

Stoica, P., & Moses, R. L. (1997). Introduction to spectral analysis. Prentice

Hall Upper Saddle River.

Tagliazucchi, E., Chialvo, D. R., Siniatchkin, M., Amico, E., Brichant, J. F.,

Bonhomme, V., . . . Laureys, S. (2016). Large-scale signatures of

unconsciousness are consistent with a departure from critical dynam-

ics. Journal of the Royal Society, Interface, 13, 20151027.

Tagliazucchi, E., von Wegner, F., Morzelewski, A., Brodbeck, V., Jahnke,

K., & Laufs, H. (2013). Breakdown of long-range temporal depend-

ence in default mode and attention networks during deep sleep. Pro-

ceedings of the National Academy of Sciences of the United States of

America, 110, 15419–15424.

Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the

human brain. 3-Dimensional proportional system: an approach to cer-

ebral imaging.

Tomlin, S. L., Jenkins, A., Lieb, W. R., & Franks, N. P. (1998). Stereoselec-

tive effects of etomidate optical isomers on gamma-aminobutyric

acid type A receptors and animals. Anesthesiology, 88, 708–717.

Welch, P. D. (1967). The use of fast Fourier transform for the estimation

of power spectra: A method based on time averaging over short,

modified periodograms. IEEE Transactions on Audio and Electroacous-

tics, 15, 70–73.

Yu, R., Chien, Y. L., Wang, H. L. S., Liu, C. M., Liu, C. C., Hwang, T. J., . . .

Tseng, W. Y. I. (2014). Frequency-specific alternations in the ampli-

tude of low-frequency fluctuations in schizophrenia. Human Brain

Mapping, 35, 627–637.

Zhang, D., & Raichle, M. E. (2010). Disease and the brain’s dark energy.

Nature Reviews. Neurology, 6, 15–28.

Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., . . .

Zang, Y. F. (2008). An improved approach to detection of amplitude

of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional

ALFF. Journal of Neuroscience Methods, 172, 137–141.

Zuo, X. N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D.

F., . . . Milham, M. P. (2010). The oscillating brain: Complex and reli-

able. NeuroImage, 49, 1432–1445.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Zhang J, Huang Z, Chen Y, et al. Break-

down in the temporal and spatial organization of spontaneous

brain activity during general anesthesia. Hum Brain Mapp.

2018;39:2035–2046. https://doi.org/10.1002/hbm.23984

2046 | ZHANG ET AL.

https://doi.org/10.1002/hbm.23984

