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Abstract
Performing voluntary movements involves many regions of the brain, but it is unknown how they

work together to plan and execute specific movements. We recorded high-resolution ultra-high-

field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotempo-

ral dynamics and the patterns of task-relevant information flow across the dorsal motor network

were investigated. We show that task-relevant information appears and decays earlier in the

higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the

results show that task-relevant information is encoded in general initially, and then selective goals

are subsequently encoded in specifics subregions across the network. Importantly, the patterns of

recurrent information flow across the network vary across different subregions depending on the

goal. Recurrent information flow was observed across all higher order areas of the dorsal motor

network in the subregions encoding for the current goal. In contrast, only the top–down informa-

tion flow from the supplementary motor cortex to the frontoparietal regions, with weakened

recurrent information flow between the frontoparietal regions and bottom–up information flow

from the frontoparietal regions to the supplementary cortex were observed in the subregions

encoding for the opposing goal. We conclude that selective motor goal encoding and execution

rely on goal-dependent differences in subregional recurrent information flow patterns across the

long-range dorsal motor network areas that exhibit graded functional specialization.
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1 | INTRODUCTION

The dorsal motor network—including the posterior parietal cortex

(PPC), the lateral prefrontal cortex (LPFC), the supplementary motor

cortex (SMC), and the primary motor cortex (M1)—has been implicated

in planning and execution of voluntary movements from human and

nonhuman primate studies. Specifically, the PPC and the LPFC (i.e., the

frontoparietal regions) have been implicated in movement planning (i.e.,

motor goal encoding) (Binkofski, et al., 1999; Bremmer, et al., 2001;

Connolly, Andersen, & Goodale, 2003; Medendorp, Goltz, Crawford, &

Vilis, 2005; Santucci, Kralik, Lebedev, & Nicolelis, 2005; Scherberger,

Jarvis, & Andersen, 2005; Siegel, Donner, & Engel, 2012; Siegel, Busch-

man, & Miller, 2015; Wang, 2008) and movement control (Archam-

bault, Caminiti, & Battaglia-Mayer, 2009; Gaveau, et al., 2014; Glover,

Miall, & Rushworth, 2005). On the other hand, the SMC has been

implicated in executive-control functions, such as, motor preparation

and error monitoring (Cunnington, Windischberger, Deecke, & Moser,

2002; Isoda and Hikosaka, 2007; Nachev, Rees, Parton, Kennard, &

Husain, 2005; Picard and Strick, 2001; Ridderinkhof, Ullsperger, Crone,

& Nieuwenhuis, 2004; Tanji and Shima, 1994; Ullsperger and von Cra-

mon, 2001).

However, little is known about how the long-range dorsal motor

network areas work together to plan and execute specific movements

(i.e., selective motor goals) in humans. For example, the predictive

activity of the most immanent reach movement observed in the intra-

parietal sulcus (IPS) neurons of the PPC (Batista and Andersen, 2001) is

consistent with the notion that the region is involved in motor goal

encoding and movement control. But, IPS neurons have been shown to

encode for multiple motor goals in parallel also (Baldauf, Cui, & Ander-

sen, 2008; Medendorp, Goltz, & Vilis, 2006; Wong, Fabiszak, Novikov,

Daw, & Pesaran, 2016), suggesting that although the region may con-

tribute to or even be necessary for the cognitive processes, the predic-

tive activity does not imply the sufficiency for or how the activity is

linked to the behavior. Similarly, what kinds of information are pro-

jected to and how they are utilized by the SMC for performing wide a

variety of cognitive functions (Nachev, Kennard, & Husain, 2008) can-

not be implied by the isolated epochs of activities during movement

preparation and control.

The hypotheses above are dissonant with the traditional view of

compartmental functional specialization, which posits that a specific

cortical area is largely responsible for a specific cognitive process or

behavior (Archambault, et al., 2009; Batista and Andersen, 2001; Gav-

eau, et al., 2014; Glover, et al., 2005). However, they are in line with

recent studies that suggest graded functional specializations of multiple

cortical regions subserve the cognitive processes involved in selective

voluntary movements (Siegel, et al., 2015; Singer, 2013; Wang, 2008).

Thus, investigating how the different areas of the dorsal motor network

and streams of cortical information coordinate coherently during move-

ment planning and execution is integral for forming a more holistic

model of how we choose to move.

Considering the notion of graded functional specializations with

the putatively implicated roles of the dorsal motor network areas, we

propose a novel model of motor goal encoding and execution in the

human dorsal motor network (Figure 1). This model posits that streams

of task-relevant information extracted early in the higher order sensory

cortices enter the frontoparietal regions (Siegel, et al., 2015), then flow

recurrently across the higher order areas of the dorsal motor network

(the PPC, the LPFC, and the SMC), allowing for further extraction, inte-

gration, and accumulation of task-relevant information (e.g., semantics

of cues, proprioceptive information about the effector position). Impor-

tantly, the patterns of recurrent information flow in different subre-

gions across the network vary depending on the goal, which allow the

SMC to prepare the dorsal motor network for selective movements by

iteratively facilitating the activity in a group of subregions (on subre-

gions), while inhibiting the activity in another group of subregions (off

subregions) in a goal-dependent manner. Such spatially dynamic pat-

terns of recurrent information flow give rise to predictive premove-

ment activity in a given group of subregions through a series of

positive and negative feedback loops, which in turn, allow for selective

motor goals to be encoded across the network. The SMC then feeds

the corresponding information forward to the M1 for execution. During

the movements, the varying patterns of subregional recurrent informa-

tion flow continues, allowing the higher order areas to collectively per-

form movement control by monitoring the accumulating information

and modulating the activities in the subregions across the network

accordingly.

We provide compelling evidence for the proposed model above by

demonstrating the coordination of coherent information flow across

the dorsal motor network areas during motor goal encoding and execu-

tion for the first time. Using the acquisition parameters that we have

optimized for high-spatiotemporal resolution cortical network func-

tional magnetic resonance imaging at 7 T (7T-fMRI) (Yoo, et al., 2017),

we recorded blood-oxygenation-level-dependent (BOLD) activity

across the dorsal motor network of nine participants during a cued

lower limb motor task. We identified the regions involved in movement

planning and execution, and the predictive subregions within the dorsal

motor network. Then, we compared the spatiotemporal dynamics of

information flow across the network and the information about each

experimental stage was decoded, after performing hemodynamic

FIGURE 1 Proposed basis of preferential predictive activity during
selective motor program planning. Sensory inputs enter into
various subregions in the frontoparietal regions at varying levels
depending on the current goal. The varying levels of input lead to a
cascade of information flow that ultimately facilitate the activity in
a given set of subregions while inhibiting that in another through
iterative recurrent loops. This process gives rise to predictive on
and off subregions or predictive regions for a given goal, and thus
leads to encoding of selective motor programs
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deconvolution to control for the confound of region-specific hemody-

namic response functions (HRFs).

We show that both on and off subregions in the PPC, the LPFC,

and the SMC all encode task-relevant information initially regardless of

the movement type, then a selective motor goal is encoded subse-

quently only in the on subregions. The spatiotemporal dynamics of

recurrent information flow differ across the on and off subregions of

the higher order areas depending on the goal. These results together

suggest that spatially dynamic recurrent information flow patterns

across the long-range dorsal motor network are crucial for selective

motor behavior and provide compelling evidence for the proposed

model.

2 | MATERIALS AND METHODS

2.1 | Participants

Nine neurologically normal right-footed volunteers (6 males and 3

females; mean6 standard deviation age: 25.4 6 3.27 years) partici-

pated in a single-session fMRI experiment. Each participant gave

informed consent prior to their participation. The data was anonymized

before the analyses. The University of Melbourne Human Ethics Com-

mittee approved this study (Ethics ID: 1340926.1).

2.2 | Image acquisition

All imaging was performed on a 7 T research scanner (Siemens Health-

care, Erlangen, Germany) with a 32-channel head-coil (Nova Medical

Inc., Wilmington MA, USA). Whole-brain high-resolution T1-weighted

anatomical images were acquired for each participant using

magnetization-prepared rapid gradient echo sequence (Siemens

Healthcare prototype research sequence; MP2RAGE (Marques, et al.,

2010); voxel volume (VV) 5 0.9 3 0.9 3 0.9 mm3; iPAT factor54;

TR54,900 ms; transmitter voltage (TX) 5 240 V). High-resolution

T�
2-weighted anatomical images were acquired to calculate susceptibil-

ity weighted image (SWI; axial 3D-GRE, echo time (TE)/repetition time

(TR)/acquisition time (TA) 5 15.3 ms/20 ms/8:42 min, flip angle

(FA) 5 138, GRAPPA factor53, matrix5768 3 600 3 120, VV50.3

3 0.3 3 1.2 mm3).

All fMRI images were acquired using 2D gradient echo-echo planar

imaging (GE-EPI) with multiband and parallel imaging acceleration (Sie-

mens Healthcare prototype research sequence) with the following

acquisition parameters: bandwidth51980 Hz/pixel; TE530 ms;

TR5500 ms; echo spacing50.67 ms; EPI factor5148; phase encod-

ing shift factor52; voxel volume51.5 3 1.5 3 1.5 mm3; in-plane field

of view (FOV) 5 224 3 224 mm2; FA5388, where T1 5 2,000 ms;

partial Fourier56/8; acquisition direction5A-P; multiband factor53;

GRAPPA factor53; number of slices521; slice FOV531.5 mm.

Although minimum TE was 15 ms, 30 ms was chosen based on previ-

ous studies where the physiological/thermal noise ratio (Triantafyllou

et al., 2005, figure 8b), t value and percent signal change (%SD) were

shown to peak at �30 ms (van der Zwaag et al., 2009, figure 3b,c,

respectively) and also to reduce the contribution of BOLD signals

arising from distant macrovascular veins (Geißler, et al., 2013; Kenner-

ley, Mayhew, Redgrave, & Berwick, 2010).

2.3 | fMRI experiment protocol

The participants engaged a cued ankle-dorsiflexion task. To minimize

head movements, participants’ legs were slightly raised onto a support

foam and strapped at the level of the mid-tibia. Participants followed

the instructions on the screen during the motor tasks (Figure 2a), which

were also verbally explained prior to scanning. Otherwise they were

asked to remain as still as possible. Before the task began, the words

“ARE YOU READY?” were presented for 30 s. A trial consisted of a

12 s-rest block with a flashing fixation cross (white to red; 1 Hz), fol-

lowed by a 3 s prompt block with a visual cue, either “LEFT ANKLE” or

“RIGHT ANKLE,” indicating which ankle was to be moved. Last, a 5 s

execution block was presented where the word “GO” appeared above

the persisting prompt cue. The prompt cue flashed at the rate of 1 Hz.

The two conditions, left ankle (LA) and right ankle (RA), were repeated

four times. The order of conditions was randomized once. All experi-

ments finished with 15 s of rest block. The flashing rate of the prompt

cue in the execution blocks served as a guide of movement speed. The

flashing of the fixation cross during the rest blocks served to control

for the spatial attention and color processing activity evoked by the

flashing during the execution blocks.

2.4 | Terminology

For a subregion that exhibits predictive BOLD activity during planning

of a given type of ankle movement (Section 2.6.1), the trial blocks of

the corresponding ankle movement planning are referred to as the on

trials, and the trial blocks of the opposite ankle movement planning are

referred to as the off trials (Figure 2b). For example, for the voxels

encompassing the subregions showing preferential BOLD activity for

left ankle movement planning over right ankle movement planning (i.e.,

predictive activity for left ankle movement), the LA trial blocks are the

on-trials, and the RA trial blocks are the off-trials, and vice versa. By

that effect, for a given trial block, the set of subregions exhibiting pre-

dictive BOLD activity for the corresponding ankle movement type are

referred to as the on subregion, while the set of subregions exhibiting

predictive BOLD activity for the opposite ankle movement type are

referred to as the off subregion. Ipso facto, the on subregion for a given

ankle movement type is the off subregion for the opposite ankle move-

ment type. For example, a set of subregions exhibiting predictive activ-

ity for left ankle movement is the left ankle on subregion and also the

right ankle off subregion, and vice versa (Figure 2b).

2.5 | fMRI analysis

The FMRIB’s Software Library’s (FSL v5.0.9) fMRI Expert Analysis Tool

(FEAT v6.00) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith,

2012) was used for functional analyses. All functional images were

motion corrected, high-pass filtered (0.01 Hz), and optimally skull-

stripped, but not smoothed. No slice-timing corrections were employed

given the fast TRs and the use of multiband acceleration.
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To delineate the voxels in regions corresponding to motor goal

encoding from motor goal execution, the prompt and execution blocks

were modeled separately for the multiple regression analyses. Further-

more, to preserve the close temporal differences between the regres-

sors, the boxcar functions were not convoluted but delayed by 4 s to

cater for the hemodynamic response delay (Cunnington, Windisch-

berger, Robinson, & Moser, 2006; Yoo, et al., 2017).

The Z score maps for the prompt blocks were contrasted against

baseline (i.e., prompt> rest). The Z score maps of left ankle (LA) and

right ankle (RA) execution blocks were contrasted against each other

(i.e., LA>RA and RA> LA), to isolate the putative contralateral activa-

tion of the M1 during unilateral limb movements and to avoid areas

that underlie higher order area cognitions that activated during both

conditions from being modelled (e.g., the SMC, the PPC, and the LPFC).

Significant activation was defined using a lower Z-score threshold of

2.3 (with p< .01 for significance testing; cluster-based correction).

These significant activation maps were masked with participant-

specific motor region of interest (mROI) masks to ensure fair compari-

sons of BOLD spatiotemporal dynamics within the dorsal motor net-

work across participants. The mROI masks for the PPC, the LPFC, the

SMC, and the M1 were created using FSL and Advanced Normalization

Tools (ANTs) (Avants, Tustison, & Song, 2011) in the following steps.

Probability maps of the M1, the SMC, the LPFC, and the PPC in

MNI space were each derived from the Harvard-Oxford cortical struc-

tural atlas (Desikan, et al., 2006). These maps were thresholded with a

lower limit of 25% to reduce the mask spilling into neighboring cortical

regions. The resulting images were each binarized to create an mROI

mask for each region. MNI_152_1 mm brain image was nonlinearly reg-

istered to participant’s SWI magnitude image using ANTs. Participants’

SWI were linearly registered to their functional images. Using the warp

and affine registration information acquired from the above steps, the

mROI masks in MNI space were registered nonlinearly to the SWI mag-

nitude space, then linearly to each of the EPI spaces at the individual

level using ANTs. In turn, four mROI masks were created for each par-

ticipant. The prompt> rest contrast was masked with the PPC, the

LPFC, and the SMC mROI masks, and the LA>RA and RA> LA con-

trasts were each masked with the M1 mROI mask.

A group-level analysis was also performed. First, a study-specific

template brain was created using the T1-weighted anatomical images

via ANTs. Second, the contrast of parameter estimates and the var-

iance maps from the individual-level analysis above were linearly regis-

tered into each subject’s T1-weighted anatomical space using

boundary-based registration. Third, the resulting images were nonli-

nearly registered into the study-specific template space using ANTs

using a mutual information cost function. Using the resulting images,

group-level statistical test was carried out in FSL. Significant activation

was defined using a lower Z-score threshold of 2.3 (with p< .05 for sig-

nificance testing; cluster-based correction).

Areas showing preferred premovement activity for one side of the

ankle movements over the other were identified by modeling the left

and right ankle prompt blocks separately, then contrasting them against

the baseline and against each other. Then, a group-level analysis was

performed on these contrasts. The exact same methods outlined above

were used.

2.5.1 | BOLD activation percent signal change calculation

and time-course extraction

First, we calculated the %DS in the following way. The BOLD time-

course from each voxel was extracted from the preprocessed images

using the FSL’s built-in command, fslmeants, at the individual level. The

data were normalized by dividing the signal intensity by the temporal

mean signal of the voxel at each time point. The normalized time-

course data were averaged across the significant voxels within each

mROI and trials using the masks created above. The time-courses of

voxels that significantly activated during the prompt blocks were

extracted from the PPC, the LPFC, and the SMC. The time-courses of

FIGURE 2 Proposed basis of preferential predictive activity, the behavioral task, and the dorsal motor network activation. (a) Cued ankle

dorsiflexion task. A fixation cross was presented for 12 s, followed by a 3 s visual prompt indicating which ankle was to be moved, then a
5 s visual prompt to cue the execution of ankle movements. The two conditions—left ankle (LA) and right ankle (RA)—were each repeated
four times. (b) Depiction of the terminology used in the current manuscript. For the subregions that activated during left ankle movement
planning, the time in which the LA trial-blocks were presented is referred to as the on-trials while the time in which the RA trial-blocks
were presented is referred to as the off-trials, and vice versa. Similarly, during the LA on-trials, the subregions that activated preferentially
during the left ankle movement planning are referred to as the on subregions while that activated preferentially during the right ankle
movement planning are referred to as the off subregions, and vice versa. Thus, LA on subregion is synonymous with RA off subregion and
vice versa

2638 | YOO ET AL.



voxels that significantly activated during the execution blocks were

extracted from the M1.

2.5.2 | Blind deconvolution of voxel-specific hemodynamic

response function

We controlled for confound of region-specific HRFs driving the poten-

tial differences in spatiotemporal dynamics of BOLD activation across

the dorsal motor network. We estimated the HRF of each voxel using

a blind approach, then deconvoluted the BOLD signal with the esti-

mated HRF as described in Wu et al., 2013 (Supporting Information,

Figure 2). In this method (Wu et al., 2013), the deconvolution is per-

formed as per David, et al. (2008). Assuming that the BOLD signal, b(t),

is a convolution of neural states, s(t), with an HRF, h(t):

b tð Þ5s tð Þ � h tð Þ1e tð Þ

where t is the time, � denotes the convolution, and e(t) is the white

noise in the measurement. However, in an absence of simultaneous

electrophysiological recordings, the blind-approach substitutes the s(t)

with a hypothetical model of neural states ŝ(t). A simple on/off model

(i.e., delta function) is used to estimate instances of neural events

across the BOLD signal time-series by identifying the time-points

where the BOLD activity exceeds a threshold in the positive direction.

A threshold of 1 standard deviation (SD) above the mean was used in

this study. Given the hemodynamic response delay, it is also assumed

that the BOLD signal lags behind the peak of neural activation by

j points. j is defined by searching all integer values from 0 to an

arbitrary maximum value (10 s in this instance) and choosing the

value that produces the least covariance of noise, e(t), defined as;

e5cov b tð Þ2ŝ tð Þ � h tð Þ½ �. This allows to fit h(t) according to ŝ(t) simply

using a double-gamma function by solving the initial equation above.

Then, approximated neural signal underlying the BOLD activity, ~s(t),

can be calculated using a Wiener filter according to the equation:

~s5d tð Þ � b tð Þ

Let H xð Þ, B xð Þ, E xð Þ, and D xð Þ be the Fourier transforms of h(t),

b(t), e(t), and d(t), respectively. Then

D xð Þ5 H� xð Þ
jH xð Þj21jE xð Þj2

where * denotes the complex conjugate. Then, the true neural states,

s(t), can be approximated as ~s(t) according to

~s tð Þ5FT21 D xð ÞB xð Þf g5FT21 H� xð ÞB xð Þ
jH xð Þj21jE xð Þj2

( )

where, FT21 is the inverse Fourier transform operator.

2.6 | Statistics

In any cases of multiple comparisons, the significance of the p values

was tested against the false-discovery rate (FDR) adjusted threshold

using the Benjamini–Hochberg procedure at Q50.05. For the tests

that have survived the FDR-adjusted threshold, the original p values

were reported in the text.

2.6.1 | Predictability testing of the preferential

premovement activity

We quantified the predictability of the premovement activity from the

voxels showing significant preferential activation to selective ankle

movements in each region. At the individual level, the %DS time-

courses were extracted from the voxels showing significant activation

during left and right prompt blocks within the PPC, the LPFC, and the

FIGURE 3 Regions of dorsal motor network activation during the cued lower limb motor task Regions of group-level activation overlaid
onto the study-specific template brain. Bilateral activation across the LPFC, the SMC, and the PPC was observed during the prompt blocks
and highly localized contralateral activation was observed in M1 during the execution blocks at both individual (Z > 2.3, p < .01; cluster-
wise correction) and group-level (Z > 2.3, p < .05; cluster-wise correction). The first four images from the left show the surface edges of
activation at various depths in an oblique direction. The right-most image shows opaque whole clusters of activation for each reign of inter-
est. The sagittal slice functional image in blue overlaid onto the T1-weighted anatomical image in the key panel shows the coverage
achieved with all 21 slices. The orange arrows point to the major sulci to aid identification major cortical sites of BOLD activation. The col-
ors of the activation cluster maps denote different areas of activation during prompt or execution blocks. See Supporting Information, Fig-
ure 1 for the individual-level activation maps for all participants [Color figure can be viewed at wileyonlinelibrary.com]
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SMC (contrasted against baseline). The data were averaged across vox-

els, then across left and right ankle trials separately, yielding an average

%DS time-course during on and off-trials (e.g., on and off-trials for left

ankle predicting voxels would be left and right ankle condition trials,

respectively, and vice versa). The average %DS values between 1 s and

7 s after the start of prompt block of on and off-trials were compared

across the participants within each region using Wilcoxon rank sum

tests. To provide further support, random combinations of 10 on and

off-trials were sampled across all participants’ voxel averaged data for

each region and condition. Then, all the on and off-trial data were com-

pared, without averaging across the trials, within each region and con-

dition using a Wilcoxon rank sum test. This process was permuted

10,000 times with no repeating combinations of trials. The average

percentage of significant predictive activity (i.e., on-trials>off-trials)

was calculated across permutations for each region and condition.

2.6.2 | Effective connectivity analysis: Multivariate granger

causality analysis (MVGC)

We investigated how the patterns of dynamic recurrent information

flow changed across the subregions of higher order dorsal motor net-

work areas. We subjected the voxel and trial averaged %DS time-

courses from the subregions showing nonpredictive and predictive pre-

movement activity to a Multivariate Granger Causality (MVGC) analysis

with The MVGC Multivariate Granger Causality Matlab® Toolbox (Bar-

nett and Seth, 2014). Data from the nonpredictive subregions were

averaged across all 8 trials. Data from the predictive subregions were

averaged across the on and off-trials separately across the two condi-

tions (i.e., 4 trials each for left and right ankle condition, thus, total of 8

trials each for on and off-trials). There were 3 variables (PPC, LPFC,

and SMC) and 9 observations (one for each subject). The sample rate

was set at 2 Hz (i.e., 500 ms) to match the TR used in fMRI acquisition.

Maximum model order was set at 10 as lags >5 s were not expected

between the regions considering that the delay between prompt and

go blocks were only 3 s. Granger’s F tests were calculated to compare

the G-causality between the regions. The actual model order was used

for statistical testing, which in this case was 7 volumes (3.5 s). This is

consistent with the current experimental design where the prompt

blocks were presented 3 s before the execution blocks. Significance

was defined at p< .05 with FDR multiple comparisons correction

(Q50.05).

2.6.3 | Comparing the spatiotemporal dynamics of BOLD

activation

Given the preferential nature of the predictive subregions and the sub-

stantial overlap between the predictive and the nonpredictive regions,

the data from the significant voxels encompassing the nonpredictive

subregions and the M1 were used for this analysis to avoid the poten-

tial bias-effects of overlapping voxels. To investigate the spatiotempo-

ral dynamics of activation through the dorsal motor network, we

compared the BOLD activation time-courses across the mROIs. The

latency to reach 50%, 80%, and 100% peak %DS, and latency to decline

to 80% and 50% peak %DS for each mROI were compared against

each other across participants using Wilcoxon rank-sum tests.

To further provide support of varying temporal dynamics across

the identified regions, a series of Wilcoxon rank-sum tests were con-

ducted on each time-point of the voxel and trial mean %DS from the

significant voxels within each mROI. A 1.5 s sliding window was used

to compare the %DS against baseline (i.e., stationary 6 s window in the

rest blocks). Then, the resulting p value time-course was inverted by

subtracting the value from 1 (i.e., 1 2 p). Finally, the 1 2 p curve was

cross-correlated to the BOLD %DS time-course after averaging across

voxels and trials. The correlation coefficient (r) between the 1 2 p and

BOLD-activation curve and the delay (i.e., latency to reach peak r)

within each region was compared across the regions.

2.6.4 | Comparing the spatiotemporal dynamics of task-

relevant information flow

We quantified whether the observed spatiotemporal dynamics of

BOLD activation onset and offset implied direction of information

flows between regions of the dorsal motor network by subjecting %DS

time-courses to a cross-correlation analysis. The voxel and trial aver-

aged %DS time-course from each mROI were cross-correlated against

each other within a window between 1 s and 11 s from the start of the

prompt block. There were 6 contrasts: PPC versus LPFC, PPC versus

SMC, PPC versus M1, SMC versus M1, LPFC versus M1, and LPFC

versus SMC. Wilcoxon rank-sum tests were carried out to compare the

time to reach peak cross-correlation (i.e., delay) across the contrast.

The three statistical tests above were performed using the nondecon-

voluted data also to provide support that the observed effects were

not potentially driven by the deconvolution process.

2.6.5 | Linear classification of spatiotemporal dynamics of

BOLD activation

To investigate whether task-relevant information is reflected by the

BOLD activity, the deconvoluted BOLD percent signal change (%DS)

time-course was subjected to a linear classifier commonly used in

brain–computer interfaces.

For each contrast, the %DS time-courses from all significant voxels

within each mROI were subjected to linear classification using linear

discriminant analysis via custom script written in MATLAB (MathWorks

Inc., Natick MA, version R2015b) at the individual level. Data from

each voxel was trained and decoded using all time points with a

500 ms-shifting-window, against an average %DS value across a sta-

tionary 4 s window in the middle of the rest period (i.e., 11–16 s after

start of prompt blocks). At each time-point, the classifier was trained

with the data points from all but one trial, within the moving window

defined as “1” (i.e., active) and the stationary window in rest period as

“0” (i.e., baseline). The classifier then decoded whether the data from

the remaining trial was either “1” or “0.” This was validated by a leave-

one-out cross-validation method, whereby each comparison was per-

mutated by the number of trials of a given block, with no repeats. This

process was repeated as the window shifted across time and voxels.

We further quantified whether task-relevant information rose at

the same time as the BOLD activation. The decoding performance

time-course was averaged across significant voxels within each mROI

and trials. Then, a series of cross-correlation analyses were carried out

2640 | YOO ET AL.



between the voxel and trial-averaged decoding performance and the

%DS time-course.

3 | RESULTS

3.1 | Regions of the dorsal motor network activate

during planned lower limb movements

For all participants, the PPC (mean volume of activation

(VV) 6 standard error (SE) across participants; 3692 6 1041 mm3), the

LPFC (430 6 73 mm3), and the SMC (913 6 119 mm3) activated bilat-

erally during the prompt blocks at the individual-level (nonpredictive

premovement activity; Z>2.3, p< .01; multiple regression with

cluster-wise correction; Supporting Information, Figure 1). Bilateral acti-

vations in the PPC (VV52,600 mm3), the LPFC (228 mm3), and the

SMC (1,282 mm3) were also observed at the group-level (Z>2.3,

p< .05; cluster-wise correction; Figure 3). Visual inspection suggested

that the activations were observed in the bilateral superior parietal

lobule (SPL) and intraparietal sulcus (IPS; especially in the medial bank;

mIPS) in the PPC; pre-supplementary motor area (pre-SMA) and sup-

plementary motor area (SMA) in the SMC; and the premotor cortex

(PMC) in the LPFC. At both individual and group levels, the dorsome-

dial M1 activated contralaterally during the execution blocks of each

ankle condition (average VV across the M1 at the individual and group

levels; 668 6 73 mm3 (Supporting Information, Figure 1) and

1759 mm3; Figure 3).

3.2 | Selective motor goals are encoded in distinct

subregions in distributed cortical regions

Next, we investigated what kinds of task-relevant information flowed

across different subregions (e.g., on and off subregions) of the higher

order dorsal motor network areas to investigate how selective motor

goals are encoded. Areas activating during selective ankle movement

planning were identified by modeling the left and right ankle prompt

blocks separately for the fMRI analysis. Significant group-level activa-

tions were observed only when the left or right ankle prompt blocks

were contrasted over the baseline but not against each other, suggest-

ing that any potential predictive activity was preferential, where a given

subregion activated during planning of both ankle movements, but acti-

vated to a greater extent during planning of a specific ankle movement

type. Group-level activations during the left ankle prompt blocks were

observed in bilateral pre-SMA, contralateral SMA-proper, contralateral

PMC, and bilateral mIPS (Figure 4a). The same pattern of premovement

activity was observed during the right ankle prompt blocks, except

bilateral activations were observed in the PMC (Figure 4b).

We then quantified the predictability of the premovement activity

in each sub-region of the higher order areas. At the individual level, the

BOLD %DS time courses were extracted from the voxels showing sig-

nificant activations during left and right prompt blocks separately,

within the PPC, the LPFC, and the SMC. Furthermore, to control for

the confound of region-specific hemodynamic response functions

potentially driving the observed spatiotemporal dynamics of BOLD

activation and information flow, the HRF of each voxel was estimated

and then used to deconvolute the signal (Supporting Information, Fig-

ure 2) (Wu, et al., 2013).

Averaging across voxels and trials, revealed predictive premove-

ment activities in subregions of the PPC, the LPFC, and the SMC. The

%DS values during the prompt blocks of the on trials were significantly

greater than those of the off trials in the left ankle on subregions (Sec-

tion 2.4): in the PPC (mean %DS 6 SE% across participants for on-

trials>off-trials; 0.10 6 0.00% > 0.06 6 0.01%; p5 .0001); the LPFC

(0.10 6 0.01%>0.06 6 0.01%; p5 .0001); and the SMC (0.10 6

0.00% > 0.076 0.01%; p< .0001). The same was observed in the right

ankle on subregions: in the PPC (0.10 6 0.00% > 0.05 6 0.01%);

the LPFC (0.10 6 0.01% > 0.05 6 0.01%); and the SMC

(0.10 6 0.00% > 0.7 6 0.01%; all p< .0001; Figure 4c). To further vali-

date the predictability of the preferential premovement activity, we

compared the %DS of randomly sampled on and off trials across all par-

ticipants. On average, predictive activity for the left and right ankle

movements were observed 94.7 6 0.2% (mean 6 SE%) and

97.5 6 0.2% of the time in the PPC; 73.8 6 0.4% and 88.0 6 0.3% of

the time in the LPFC; and 91.3 6 0.3% and 87.2 6 0.3% of the time in

the SMC, respectively (Wilcoxon rank sum tests; all p� .0443). These

results, along with the nonpredictive premovement activity identified in

the earlier section, show that task-relevant information is initially

encoded in parallel across different subregions of the higher order dor-

sal motor network areas, then selective motor goals are subsequently

encoded in the on subregions (Figure 4c).

3.3 | Goal-dependent differences in the pattern of

recurrent information flow across the dorsal motor

network allow for selective motor goal encoding

To investigate how selective motor goals are encoded, we quantified

the patterns of directional information flow across the subregions of

the higher order dorsal motor network areas. The %DS time-courses

from the subregions were subjected to an effective connectivity analy-

sis. We took a Multivariate Granger Causality approach (Barnett and

Seth, 2014) to test whether the past BOLD activity in a given region, X,

contained information that could help predict the future BOLD activity

another region, Y (i.e., activity in the X Granger-causes Y), while con-

trolling for multiple comparisons (FDR-adjusted). Thus, G-causal rela-

tionships allowed for quantifying the direction of information flow.

Averaging across the significant voxels and trials, recurrent G-

causal relationships were revealed between the PPC and the LPFC (i.e.,

frontoparietal regions), and between the SMC and the frontoparietal

regions in the subregions showing nonpredictive premovement activity

(all p� .0017; Figure 5a). In the subregions showing predictive pre-

movement activity (i.e., on subregions), the same pattern of G-causal

relationships was observed in the on subregions; however, the recur-

rent G-causal relationship between the frontoparietal regions was

weaker, while that between the frontoparietal regions and the SMC

remained strong (all p� .0058; Figure 5b). Critically, in the off subre-

gions, the bottom–up G-causal relationships to the SMC became

weaker, while the top–down G-causal relationships from the SMC to
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the frontoparietal regions remained strong, and that between the fron-

toparietal regions was no longer observed (all p� .0400; Figure 5c).

The exact Granger’s F test values and the corresponding p values can

be found in Table 1.

These results show that the patterns of recurrent information flow

differed across the subregions depending on the current goal. Taken

together with the result that the predictive activities were observed

across all higher order areas and that they were preferential and not

FIGURE 4 Predictive activity in the subregions of higher order dorsal motor network areas. Premovement activity predicting the side of
ankle movements was observed in subregions of the PPC, LPFC, and SMC at the group level. Modeling the left and right ankle prompt
blocks separately revealed similar, yet different pattern of BOLD activation in the PPC, LPFC, and SMC. (a) Significant activations during the
left ankle prompt blocks were observed in the bilateral pre-SMC, contralateral SMC proper, contralateral PMC, and bilateral mIPS. (b) The
same pattern of activation was observed for right ankle prompt blocks except there was a bilateral PMC activation. (c) The plots on the left
show the participant, voxel, and trial averaged region-specific %DS time-courses from the voxels showing predictive activity for left (solid
lines) and right (dashed lines) ankle movements, during prompt blocks of on and off trials (left and right column, respectively). The plot on
the right shows the average predictability of the premovement activity in each region (all p� .0443; FDR adjusted). All shading depicts
standard error across participants [Color figure can be viewed at wileyonlinelibrary.com]
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selective, the observed patterns are consistent with our model that

suggests the subregional differences in information flow patterns may

provide the basis for encoding of specific motor goal via positive and

negative feedback loops between the higher order regions (Figures 1a

and 3d; see Section 2.2).

3.4 | Task-relevant information appears and decays

earlier in the higher order areas than in the M1 during

encoding and execution selective motor goals

We then investigated when the task-relevant information appeared

and decayed throughout the dorsal motor network by comparing the

timing of the BOLD activation onset and offset. Task-relevant informa-

tion appeared and decayed significantly earlier in the higher order areas

than in the M1. Averaging across significant voxels and trials revealed

significantly shorter latency to peak %DS from the start of the prompt

block in the PPC and the LPFC (average latency 6 standard error (SE);

3.7 6 0.2 s and 3.8 6 0.5 s) compared to the SMC (4.9 6 0.4s; Wil-

coxon rank-sum test p values against the PPC and the LPFC, respec-

tively; p5 .0274 and 0.0291) and the M1 (7.3 6 0.4 s; p< .00001 and

p 5 .0007). Further, the latency to peak %DS was significantly longer in

the M1 than the SMC (p 5 .0026). Consistently, the latency to reach

50% and 80% of peak %DS were also longer in the M1 (4.260.1s and

5.560.3s; all p< .0001) compared to the PPC (2.0 6 0.1 s and

2.6 6 0.1 s), the LPFC (2.2 6 0.1 s and 2.8 6 0.2 s, and the SMC

(2.460.2 s and 2.960.2 s; Figure 6a).

Latency to decline 80% and 50% of peak %DS from the start of

prompt block was significantly longer in the SMC (7.2 6 0.4 s and

8.0 6 0.4 s) than in the PPC (5.1 6 0.2 s and 6.3 6 0.3 s; p5 .0004

and p5 .0042). Latency to decline 80% of peak %DS was also signifi-

cantly longer in the SMC than in the PPC (5.1 6 0.6 s; p5 .0145). The

same effect was trending at 50% of peak %DS (LPFC: 6.4 6 0.6;

FIGURE 5 Spatially dynamic goal-dependent patterns of recurrent information flow across the dorsal motor network subregions. The pat-
tern of recurrent information flow differed across on and off subregions depending on the current goal. Averaging across the significant
voxels and trials, (a) recurrent G-causal relationships were revealed between the PPC and the LPFC, and the SMC and these frontoparietal
regions in the subregions showing nonpredictive premovement activity (all p� .0017). (b) In the subregions showing predictive premovement
activity, the same pattern of G-causal relationships was observed in the on subregions; however, the recurrent G-causal relationship
between the frontoparietal regions was weaker, while that between the frontoparietal regions and the SMC was the same (all p� .0058). (c)
Critically, in the off subregions, the bottom–up G-causal relationships to the SMC became weaker compared to the on subregions, while the
top–down G-causal relationships from the SMC to the frontoparietal regions remained strong, and the recurrent G-causal relationships
between the frontoparietal regions was no longer observed (all p� .0400). The curves below, plot the voxel, trial and participant averaged
%DS of each region. The up-right blue and red bars denote the start of prompt and execution blocks, respectively. The schematic brains and
the lines correspond to the major sulci of the brain labeled on the schematic of the Granger-causality directions. (d) A schematic of potential
mechanisms underlying goal-dependent subregional recurrent information flow pattern differences in the predictive regions only, according
to the proposed model, an example of right ankle movements [Color figure can be viewed at wileyonlinelibrary.com]
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p5 .0515); however, when replacing an outlier (participant 3) of 10 s

from the LPFC latency values (6 SD away from mean) with the mean,

revealed a significantly longer latency in the SMC than the LPFC (p 5

.0065). The BOLD activity also sustained longer in the M1 compared

to all other regions (1060.2 s and 8.760.4 s; all p� .0202). These

results further suggest that task-relevant information may rise and

decay slightly earlier in the frontoparietal regions than in the SMC (Fig-

ure 6c,d).

To further demonstrate the spatiotemporal dynamic differences of

BOLD activation across regions, Wilcoxon rank-sum tests were con-

ducted at each time-point with a 1.5 s sliding-window against a station-

ary 6 s window in the rest blocks. The p values of Wilcoxon rank-sum

tests should decrease while %DS increases during the experimental

blocks as the %DS values move further away from the rest block %DS

value. Then, the time-course of inverse p values (i.e., 1 2 p) should

cross-correlate with that of %DS without delay. Consistently, averaging

across significant voxels and trials revealed significant cross-

correlations between the time-courses of the inverse p values and %DS

in each region with no significant delay (Figure 6b; all R�0.7 6 0.0,

p�0.0208; all r peaked within 1 SD from 0).

3.5 | Task-relevant information feeds forward from

the higher order areas to the M1

We further investigated whether the observed pattern of activity onset

and offset implied spatiotemporal dynamics of information flow

through the dorsal motor network. The %DS time-courses from the sig-

nificant voxels were subjected to a cross-correlation analysis, which

allowed us to measure the delays in correlated activity flowing from

one area to the next.

The results show that the task-relevant information feeds forward

from the higher order areas to the M1. Averaging across voxels and tri-

als, revealed strong cross-correlations of the BOLD activation time-

courses between all regions (participant mean cross-correlation

(R) 6 SE; all R�0.9 6 0.01, all p� .0023; Figure 7a,b). Significant

delays (time-point of peak R) were observed between the M1 and the

PPC (p5 .0001), the LPFC (p5 .0048), and the SMC (p5 .0003). Impor-

tantly, the delays from the PPC and the LPFC to the M1 (average

delay 6 SE; 2.6 6 0.3 s and 2.2 6 0.3 s, respectively) were significantly

longer than the delays to the SMC (0.3 6 0.1 s and 0.4 6 0.2 s, Wil-

coxon rank-sum test p5 .00001 and p5 .0004). The delays from the

SMC to the M1 (1.5 6 0.2 s) were also significantly longer than the

delays from the PPC (p5 .0005) and the LPFC to the SMC (p5 .0040).

Last, the delays from the PPC to the M1 were significantly longer than

the delays from the SMC to the M1 (p5 .0053; Figure 7c). These

results further suggest that the task-relevant information may flow

sequentially from the frontoparietal regions to the SMC, consistent

with the spatiotemporal dynamics of task-relevant information appear-

ance shown in the previous section

3.6 | Task-relevant information is embedded in BOLD

signal time-course

Last, to demonstrate that the spatiotemporal dynamics of BOLD activa-

tion infers spatiotemporal dynamics of information flow, we investi-

gated whether task-relevant information was embedded in the BOLD

signal. The information about the stages of the experiment was

decoded from the BOLD signal within each region, by subjecting the

significant voxels’ %DS time-courses to a linear classifier. At each time-

point, the classifier was trained using the data from all but one trial and

the data from the remaining trial was decoded against a stationary 4 s

window in the middle of rest block (i.e., average %DS between 14 s

and 18 s after the start of prompt blocks). For each comparison, leave-

one-out cross-validation method was used with no repeats.

Maximum decoding performance of each trial, averaged across tri-

als, and participants were 97% 6 1%, 97% 6 1%, 91% 6 3%,

78% 6 3%, and 93% 6 2% for the right M1 (corresponding to LA), left

M1 (corresponding to RA), the PPC, the LPFC, and the SMC, respec-

tively (Figure 8a, bottom row). Furthermore, averaging across voxels

and trials revealed significant cross-correlations between the time-

courses of decoding performance and %DS with no delay within each

region (Figure 8b; Correlation coefficient (R) 6 SE; 0.9 6 0.01

(p5 .0009), 0.9 6 0.02 (p5 .0009), 0.8 6 0.02 (p5 .0096), 0.7 6 0.04

(p5 .0358), and 0.9 6 0.02 (p5 .0009); all R peaked within 2 SD from

0). These results show that task-relevant information can be inferred

from HRF-controlled BOLD signal, and importantly, that it appears and

decays with the same spatiotemporal dynamics as the %DS time-course.

4 | DISCUSSION

We systematically show how the human dorsal motor network areas

coherently encode and execute selective motor programs for the

first time. The results provide compelling evidence for our proposed

model, which hypothesizes that selective motor goal encoding and

execution rely on goal-dependent subregional differences in recurrent

information flow patterns across the long-range dorsal motor network

areas exhibiting graded functional specializations. The voxel-wise HRF

deconvolution and consistent results across numerous measures of

TABLE 1 F and p values for Granger’s F tests conducted during
MVGC analysis

PPC LPFC SMC

Non-predictive (F value, p value)

PPC 0.10, .0003*** 0.10, .0002***
LPFC 0.09, .0008*** 0.08, .0017***
SMC 0.16, <.0001*** 0.14, <.0001***

On subregion (F value, p value)

PPC 0.07, .0058** 0.11, .0001***
LPFC 0.05, .0400* 0.08, .0011***
SMC 0.12, <.0001*** 0.14, <.0001***

Off subregion (F value, p value)

PPC 0.05, .0574 0.06, .0255**
LPFC 0.03, .3296 0.06, .0267**
SMC 0.18, <.0001*** 0.10, .0003***

The values represent G-causal relationships from regions in the rows to
columns.
*<0.0400; **<0.0200; ***<0.0020.
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spatiotemporal dynamics of information flow provide further support

for the proposed model.

As our model posits, the results show that the task-relevant infor-

mation begin to accumulate across diffuse subregions of dorsal motor

network areas, as evident from the initial rise in BOLD activity in

both on and off subregions in the PPC, the LPFC, and the SMC.

Then, a given motor goal is subsequently encoded in a specific set of

subregions across the network yielding predictive premovement activ-

ity, where the activity continued to increase only in the on subregions

of the current goal while that in the off subregions declined. The initial

information accumulating in both the on and off subregions may reflect

encoding of shared information between the two goals. High degree of

similarity between the two motor goals and the visual stimuli presented

in each condition is consistent with the notion above.

Importantly, our results show for the first time that the pattern

of recurrent information flow across the network varies across the sub-

regions in a goal-dependent manner, which may explain how the on and

off subregions emerge, and thus, how selective motor goals are encoded.

FIGURE 6 Sequential appearance of task-relevant information from the higher order regions of the dorsal motor network to the M1.
Movement information rose and decayed earlier in the higher order regions of the dorsal motor network than in the M1. It decayed in the
frontoparietal regions soon after it appeared in the SMC while it persisted throughout movements in the SMC. The frontoparietal regions
had the shortest latency values followed by SMC then M1 (all p� .0291). (a) Left figures show the average latency to reach 50% (top), 80%
(middle), and 100% (bottom) maximum %DS from the start of the prompt block across the cortical regions. Right figures show the p values
of Wilcoxon rank-sum tests comparing the latency values across participants. (b) The participant, voxel, and trial average of %DS time-
course (left) and time-course of inverse p values (i.e., 1 2 p) of Wilcoxon rank-sum tests at each time point with a sliding 1.5 s window
against a stationary 6 s window in rest blocks (right). Significant cross-correlations with no delay were observed between %DS and 1 2 p
within each region (all R�0.7, p� .0358; all R peaked within 1 SD from 0). (c) Left plots show average time-course of %DS from significant
voxels. Each row represents one cortical region. The last row shows the time-courses of all regions. Right plots show the average %DS nor-
malized to its relative minimum and maximum values to highlight the temporal dynamic differences across the regions. (d) A schematic rep-
resentation of potential flow movement plan and execution, as represented by the latencies. The blue and red bars in (a) and (c) indicate the
start and duration of prompt and execution blocks, respectively. The shading in (a) and (b) depict standard errors and error bars in (c) depict
standard deviations across participants [Color figure can be viewed at wileyonlinelibrary.com]
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The recurrent information flow in the on sub-regions sustained across all

higher order areas of the dorsal motor network during the on-trials (Fig-

ure 5b). On the other hand, in the off subregions, the bottom–up infor-

mation flow to the SMC became weaker while the top–down

information flow from the SMC to the frontoparietal regions remained

strong, and the recurrent information flow between the frontoparietal

regions were no longer observed (Figure 5c). These results suggest that

the SMC monitors the accumulating information and modulates the activ-

ity across the higher order areas to encode selective motor goals, where

it facilitates the activity in the on subregions and inhibits the activity in

the off subregions according to the current goal in an iterative manner.

The spatiotemporal dynamics of the task-relevant information rising and

decaying slightly earlier in the frontoparietal regions compared to the

SMC are consistent with the notions above. Furthermore, early frontopa-

rietal activation during movement planning has been previously reported

in a non-human-primate study that simultaneously measured spiking

activity across the cortical motor network regions (Siegel, et al., 2015).

Considering the notions above, along with the current experimen-

tal design, provides further insights into how the higher order areas of

the dorsal motor network may also collectively, but not individually,

engage in movement control using the same principles as above. The

current task demanded a constant perception of visual cues to initiate,

perform, and terminate selective ankle dorsiflexions. Furthermore, the

same prompt cue was presented in both the prompt and execution

blocks (Figure 2a). If indeed the subregions of the frontoparietal regions

specialize in movement monitoring and control (Archambault, et al., 2009;

Gaveau, et al., 2014; Glover, et al., 2005), then the activity in these

regions should have persisted throughout the movements. Instead, the

activity in the frontoparietal regions subsided, while it sustained in the

SMC throughout the movements, highlighting the graded nature of the

regions’ functional specializations during voluntary movements.

These results suggest that a series of feedback loops between the

on and off subregions of the higher order areas iteratively allow the

SMC to modulate the activity across the network to encode and con-

trol selective motor goals according to the accumulating information in

the frontoparietal regions. Specifically, we propose that at the macro-

scopic level, there are positive feedback loops between the on subre-

gions across the higher order areas and negative feedback loops

between the on and off subregions, and that the level of inputs from

the higher order sensory cortices to each subregion vary depending on

the goal. For example, relatively more task-relevant information specific

to the current goal are extracted compared to the information that are

specific to, or shared with another goal, in turn, the level of input to

the on subregions becomes greater than the off subregions over time.

Then, the positive feedback loop allows the activity to build-up in the

FIGURE 7 Cross-correlation of BOLD activation time-courses
across various regions after blind-HRF deconvolution. Task-
relevant information flowed sequentially from the higher order
regions to the M1. Averaging across significant voxels and trials
revealed significant cross-correlations of %DS time-courses across
all regions (all R�0.960.0, all p� .0023). Wilcoxon rank-sum tests
revealed significant cross-correlation delays between regions from
the PPC and the LPFC to the M1, and the SMC to the M1 (all
p� .0048; FDR corrected at Q50.05). Of note, the delays from
the PPC and the LPFC to the M1 were significantly longer than the
delays to the SMC (all p� .0004). The delays from the SMC to the
M1 were significantly longer than the delays from the PPC and the
LPFC to the SMC (p� .0040). Furthermore, the delays from the
SMC to the M1 were significantly longer than the delays from the

PPC to the M1 (p5 .0053). (a) Each box shows the participant
average cross-correlations between the voxel and trial averaged
%DS time-courses in various cortical regions (i.e., contrasts) with
different delay periods. (b) The average %DS time-course within
the window of time that was used for cross-correlation calculations
(nonmasked window). (c) The left figure shows the participant aver-
age delay to reach maximum cross-correlation coefficient for each
contrast. The error bars depict standard errors in delays across par-
ticipants. The markers correspond to the contrasts shown in (a).
The right figure shows the p values of pairwise Wilcoxon rank-sum
tests comparing delay values between the contrasts across partici-
pants, after FDR correction at Q50.05

FIGURE 8 Decoding performance of fMRI-based linear classifica-
tion after blind-HRF-deconvolution. Task-relevant information
could be inferred from the BOLD activity, and importantly, it
appeared and decayed with the same spatiotemporal dynamics as
per BOLD activation. Averaging across significant voxels and trials,
decoding performance increased with BOLD activity within each
region, where strong cross-correlations were observed between
the time-courses of decoding performance and %DS with no delay
(all R�0.7, p� .0358; all R peaked within 2 SD from 0). (a) Voxel,
trial, and participant average %DS (top row) and decoding perform-
ance (bottom row) time-course in the PPC, the LPFC, and the SMC
(left to right) overlaid on top of that of the M1. The faded curves
plot the average %DS time-courses during the opposing trials in the
same M1. The shading indicates the standard error across partici-
pants for each corresponding measure. The blue and red up-right
lines represent the start of prompt and execution blocks, respec-
tively. (b) Participant average peak cross-correlation values

between %DS and decoding performance time-courses. Error bars
indicate standard errors across participants [Color figure can be
viewed at wileyonlinelibrary.com]
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on subregions, while the negative feedback loop centered around the

SMC iteratively inhibits the activity in the off subregions (Figures 1 and

5d). The initial rise in off subregion activity followed by the subsequent

decay supports the notions above.

Consistently, previous studies have shown that task-relevant infor-

mation is first extracted in the higher order sensory cortices before they

are projected forward (Siegel, et al., 2015), providing the basis for varying

levels of subregional inputs that depend on the goal. The SMC, especially

the pre-SMA, has been repeatedly shown to be involved in tasks that

require executive-control functions in humans (Picard and Strick, 1996,

2001). Robust activation in the human pre-SMA is often observed during

tasks that require inhibition of task-irrelevant and/or conflicting informa-

tion (i.e., Eriksen flanker task and Stroop-task) (Nachev, et al., 2005; Rid-

derinkhof, et al., 2004; Ullsperger and von Cramon, 2001). Lesion studies

further provide compelling evidence of the human SMC’s involvement in

the executive-control function role, where a localized SMC damage has

partly or specifically led to negative motor dysfunctions, such as motor

neglect and gait apraxia (Della Sala, Francescani, & Spinnler, 2002; Krai-

nik, et al., 2001). Previous non-human-primate studies also show consist-

ent results, where excitatory microstimulation of the pre-SMA reduced

erroneous responses when they had to inhibit the current motor goal to

switch the saccade direction (Isoda and Hikosaka, 2007).

Notably, in the current task, the same cue persisted across the

prompt and execution blocks to induce a change in the context of the

same sensory information—from being necessary to unnecessary to

complete the task. Thus, the SMC may guide its modulatory activity

based not only on the semantics of the task-relevant information but

also on the context of the information. If the latter was the case, it is

likely that the inhibitory modulation would no longer be observed

when new task-relevant information arises, and additional motor plan-

ning is required (e.g., active navigation). Consistently, the frontoparietal

neural activity in non-human-primates have been shown to sustain

when additional information regarding the task becomes available dur-

ing movements (Baldauf, et al., 2008; Siegel, et al., 2015) and a subset

of pre-SMA neurons have been shown to respond selectively when

new motor goals had to be encoded according to similar visual stimuli

consisting of different patterns of the same elements (Tanji and Shima,

1994). Furthermore, SMC damage in humans has been implicated in

positive motor dysfunctions, such as, the alien hand syndrome (Della

Sala, Marchetti, & Spinnler, 1991; Feinberg, Schindler, Flanagan, &

Haber, 1992) and nonintentional utilization behaviour (Boccardi, Della

Sala, Motto, & Spinnler, 2002; Sumner, et al., 2007), showcasing the

potential consequences of disturbances in context monitoring and the

lack of task-irrelevant sensory information inhibition.

The observed pattern of diffuse BOLD activity is also consistent

with our model which posits that further task-relevant information is

extracted once it enters the frontoparietal regions from the higher

order sensory cortices, and the recurrent information flow iteratively

allows for integration and encoding of motor goals. Significant BOLD

activations were observed in the SPL and IPS (in particular, the mIPS) in

the PPC, and the PMC in the LPFC during the prompt blocks. The SPL,

especially the left, is involved in processing of spatial configuration of

one’s own body parts (Felician, et al., 2004; Guariglia, Piccardi, Puglisi

Allegra, & Traballesi, 2002). The early SPL activation is thus likely to

reflect the extraction of proprioceptive information necessary for the

motor planning of isolated effector movements. The IPS is involved in

motor planning (Connolly, Goodale, Menon, & Munoz, 2002; Connolly,

et al., 2003), storing spatial working memory (Mackey, Devinsky, Doyle,

Golfinos, & Curtis, 2016), and goal-encoding (Baldauf, et al., 2008;

Medendorp, et al., 2006). The PMC has also been implicated in motor

goal encoding (Binkofski, et al., 1999; Bremmer, et al., 2001) and goal

encoding (Pesaran, Nelson, & Andersen, 2006), and multimodal infor-

mation integration (Hoshi and Tanji, 2000). Furthermore, inferior PMC

has been implicated in language processing (Binder, et al., 1997; Pol-

drack, et al., 1999) and the lateral PMC has been specifically implicated

in integration of motor-target and body-part information in both

humans (Medendorp, et al., 2005) and nonhuman primates (Hoshi and

Tanji, 2000). Consistently, somatosensory/proprioceptive information

from the SPL (Jones and Powell, 1970; Pandya and Kuypers, 1969) and

visuospatial information from the IPS (Johnson, Ferraina, & Caminiti,

1993; Tanne, Boussaoud, Boyer-Zeller, & Rouiller, 1995) both converge

in the PMd. As per our model posits and the current results suggest,

previous studies have alluded that this frontoparietal interaction could

be necessary for the accumulation of sensory information for a suffi-

cient motor goal to be encoded, highlighting importance of graded

functional specialization (Siegel, et al., 2012, 2015; Wang, 2008).

An interesting extension of the current work may be to investigate

how the constituent movements of an encoded motor goal, namely the

motor programs (Klapp, 1995; Wright, Black, Immink, Brueckner, &

Magnuson, 2004), are represented within the framework of the pro-

posed model. This study demonstrates how specific motor goals, as a

whole, are encoded; but it does not show how the qualitative facets of

the goals are distributed across the network. Combining the current

protocol used, along with dissociative transient disruption methods

(e.g., transcranial magnetic stimulation), may potentially provide some

insights into the question raised above. For example, considering the cur-

rent model and results, predictive activity rising either early in the fronto-

parietal regions or the immediately prior to the movement execution in

the SMC may, in part, reflect the specific motor programs. Poizner et al.

(2012) have shown that transient disruptions to the IPS or the arm region

of the M1, but not SMC, during a pantomime task (mimicking the motion

for slicing) resulted in accuracy and timing deficits in healthy individuals.

Interestingly, only in instances of the IPS disruption, the participants

reported that they were aware of the motor goal at hand. However, they

could not control the effector to perform the movements as desired.

Thus, it seems that when the IPS is disrupted, the abstract concept of the

motor goal remains intact as whole, however, the underlying motor pro-

grams to explicitly perform the movement are affected, suggesting that

the IPS may specifically contribute to the process of representing the

motor programs (albeit not exhaustively).

4.1 | Caveats

Given the relatively small sample size of this study, a potential concern

is the generalizability of the proposed model. However, all the results

were significant and robustly support the proposed model, and as
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described above, they were consistent with many previous human and

animal studies that demonstrated the putative roles of the dorsal motor

network regions during movement planning and execution. Further-

more, we took measures to reduce the likelihood of reducing false posi-

tive results, by using a more stringent p value threshold during

individual-level fMRI analysis, extracting the BOLD signals in native

space, correcting for multiple comparisons, and providing multiple

measures of cortical information flow.

In particular, given that the major goal of this study was to investi-

gate the temporal dynamics of cortical information flow, we controlled

for the potential differences in HRFs across the dorsal motor network

areas. Inter-regional differences in HRFs are critical when it comes to

spatiotemporal dynamic analysis and Granger causality analysis. This is

because both analyses are based on temporal precedence, and hetero-

geneous HRFs can essentially render the observed temporal differen-

ces irrelevant. In other words, neural activity occurring earlier in area A

than area B can be observed first in BOLD activity of area B than A

(Friston, 2009). Thus, heterogeneous HRFs are often used as the crux

of the argument against using Granger causality analysis on fMRI data,

with the seminal study by David et al. (2008) being presented as empir-

ical evidence.

Indeed, the study by David et al. shows how heterogeneous HRFs

can affect the results of causality analyses, using a multimodal

approach in a well-established absence epilepsy mouse model that is

presented in the form of spontaneous spike-and-wave discharges origi-

nating from the somatosensory cortex. However, the authors also dem-

onstrate that the issue of heterogeneous HRFs can be controlled for

through the removal of the hemodynamic effects from the BOLD sig-

nals using deconvolution methods. The authors performed simultane-

ous cranial electrocorticography (EEG) and fMRI, and intracranial

electrocorticography (iEEG) in regions of strong BOLD activation during

absence epilepsy. Using the simultaneous EEG-fMRI recordings,

regional-specific HRFs were estimated then used to deconvolute the

BOLD signal for removal of hemodynamic effects. The results revealed

heterogeneous HRFs in each region of strong BOLD activation during

the epilepsy—the somatosensory cortex, the thalamus, and the stria-

tum. Consistently, the origins of absence epilepsy (i.e., the somatosen-

sory cortex) could be correctly estimated from the BOLD signal time-

series extracted from these areas using Granger-causality analysis, only

when the signals were deconvoluted with the estimated region-specific

HRFs. The authors validate the results by demonstrating that the origin

of the absence epilepsy was identified as the somatosensory cortex by

performing Granger causality analysis with the iEEG signals from the

same regions.

However, simultaneous EEG-fMRI recordings require expensive,

specialized equipment, and remain unavailable in most sites. Thus, in

this body of work, we performed hemodynamic deconvolution on the

BOLD signal as per David et al., however, using a blind approach (Wu,

et al., 2013) to control for the confound of heterogeneous HRFs driv-

ing the observed spatiotemporal dynamics and the direction of G-

causal relationships (Section 2). This model requires forming a hypo-

thetical model of neural states to solve for the HRF term in the hemo-

dynamic convolution equation. All points of positive BOLD signal

deviation above an arbitrary threshold (1 SD) from the mean are

treated as an event of neural activity, which could capture the hidden

neural states during the task, as well as rest. A simple double-gamma

function is used to convolute the hypothetical neural states to form

the model. Importantly, the HRF delay term is optimized for each voxel,

thus, a wide range of potential variance in HRFs is captured across the

brain. This allows for estimation of voxel-specific HRF, and approxima-

tion of the neural states underlying the observed BOLD signal through

deconvolution as per David et al.’s study. In addition, subjecting the

nondeconvoluted BOLD signals to exactly the same activation onset

and offset latency (Supporting Information, Figure 4), cross-correlation

analysis (Supporting Information, Figure 5), and decoding performance

(Supporting Information, Figure 3) analysis revealed consistent results,

suggesting that the observed effects were not driven by the region-

specific HRF differences or the deconvolution process, but indeed by

the different stages of motor goal planning and execution.

5 | CONCLUSION

This study shows for the first time, how the human dorsal motor net-

work coherently plans and executes selective movement goals, in turn,

providing compelling evidence for our proposed model of movement

planning and execution. Our model proposes that early extraction of

task-relevant information in the higher order sensory cortices allows

for goal-dependent variances in input levels between the on and off

subregions of the dorsal motor network. Then, through spatially

dynamic goal-dependent subregional patterns of positive and negative

feedback loops between the SMC and the frontoparietal areas, the

SMC can monitor the accumulating information downstream and facili-

tate the activity in the on subregion while inhibiting that in the off sub-

region according to the goal. This iterative process allows the areas of

the dorsal-motor network to collectively encode selective goals and

perform movement monitoring and control. Consequently, we con-

clude that the selective motor goal encoding and execution rely on

goal-dependent differences in subregional recurrent information flow

patterns across the long-range dorsal motor network areas that exhibit

graded functional specialization.
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