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Abstract
While several methodologies exist for quantifying gray and white matter properties in humans,

relatively little is known regarding the spatial organization and the intersubject variability of

cerebral vessels. To resolve this, we developed a fast, open-source processing algorithm using

advanced vessel segmentation schemes and iterative nonlinear registration to isolate, extract,

and quantify cerebral vessels in susceptibility weighting imaging (SWI) and time-of-flight angiog-

raphy (TOF-MRA) datasets acquired in a large cohort (n = 42) of healthy individuals. From this,

whole-brain venous and arterial probabilistic maps were generated along with the computation

of regional densities and diameters within regions based on popular anatomical and functional

atlases. The results show that cerebral vasculature is highly heterogeneous, displaying dispro-

portionally large vessel densities in brain areas such as the anterior and posterior cingulate,

cuneus, precuneus, parahippocampus, insula, and temporal gyri. On average, venous densities

were slightly higher and less variable across subjects than arterial. Moreover, regional variations

in both venous and arterial density were significantly correlated to cortical thickness (R = 0.42).

This publicly available new atlas of the human cerebrovascular system provides a first step

toward quantifying morphological changes in the diseased brain and serving as a potential

regression tool in fMRI analysis.
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1 | INTRODUCTION

The human brain consumes about 20% of the daily intake of oxygen

and glucose, which are supplied to the cortex via arteries, arterioles,

and capillaries and drained via the venous system and large sinuses

(Schmid, Barrett, Jenny, & Weber, 2017). It is well documented that

acute impairment of the cerebral arteries can cause collateral damage

(Ossenkoppele et al., 2015) and that venous atrophy may play an

important role in the early stages of a number of neurological disor-

ders (Gorelick, Counts, & Nyenhuis, 2016; Kaufman, Milstein,

Kaufman, & Milstein, 2013). Nevertheless, despite the existence of

many neuroimaging tools for segmenting and quantifying the brains

gray and white matter, relatively few publicly available methods exist

for the noninvasive investigation of cerebral vasculature. There are

several reasons why developing this is important: First, having the

ability to compare the vascular tree between healthy controls and

patient populations in an automated fashion (i.e., similar to a VBM

analysis [Ashburner & Friston, 2000]) would allow for a better quanti-

fication of normal variations in vessel density and diameter while

potentially localizing cerebrovascular defects. Second, both the timing

(Jahanian, Christen, Moseley, & Zaharchuk, 2018; Provencher, Bizeau,

Gilbert, Bérubé-Lauzière, & Whittingstall, 2018) and amplitude

(Vigneau-Roy, Bernier, Descoteaux, & Whittingstall, 2013) of func-

tional magnetic resonance imaging (fMRI) signals are influenced by

the underlying venous vasculature (Provencher et al., 2018;

Vigneau-Roy et al., 2013), thus making it difficult to correctly interpret
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the source (i.e., neuronal or vascular) of interarea or intersubject dif-

ferences (Jahanian et al., 2018; Kay et al., 2018; Roy et al., 2009). In

this respect, a freely available atlas highlighting such vascular hetero-

geneity might be useful for studies where such measures are missing.

Noninvasive imaging techniques such as time-of-flight magnetic res-

onance angiography (ToF-MRA) and susceptibility weighting imaging

(SWI) also referred to as high-resolution venous venography have the

potential to permit visualization of the large arteries and veins, respec-

tively, on a single-subject basis. ToF-MRA (with venous saturation) is

based on the flow and movement of protons in the blood through the

imaging plane. To measure the flow, the signal in the slice below the one

that is imaged is saturated with rapid RF pulses which suppress back-

ground or stationary tissues, whereas fresh-moving blood entering the

slice after the RF pulse will retain its signal intensity and create contrast

between blood and background tissue, highlighting arterial vessels with a

contrast that decreases with the flow (Muhs et al., 2007). SWI, on the

other hand, exploits the differences in phase changes between venous

blood (i.e., deoxyhemoglobin) and surrounding cerebral tissues, highlight-

ing the venous vessels (Reichenbach & Haacke, 2001) uniformly across

the brain. Both ToF-MRA and SWI are routinely used in clinical applica-

tions, though rarely used when interpreting fMRI results. Some of this

has to do with the fact that a major difficulty in the successful extraction

of the vasculature from either SWI or ToF lies in the density of the corti-

cal arterial and venous network, which varies considerably in branching,

size, surrounding tissues, and curvature across subjects (Duvernoy,

Delon, & Vannson, 1981). The cortical vasculature is, therefore, a highly

difficult system to model. Although single-subject depiction and labeling

of the vasculature is possible, very few vascular atlas from SWI or ToF

exists in the literature (Nowinski et al., 2011), and group-based quantifi-

cations of both veins and arteries are rare. Although some efforts have

been made to assess the probability of finding major arteries from group-

based ToF-MRA acquisitions (Dunas et al., 2017; Nils Daniel Forkert

et al., 2012; Viviani, 2016), no study to our knowledge has combined

both arterial and venous vessels into a single, freely available atlas. The

main conclusions from these previous studies are that (1) no general pro-

cess currently exists to validate those results other than comparing the

major known vessels qualitatively to data from other fields (angiography,

neurosurgery, neuroradiology, etc.) and (2) that registration often fails to

properly align the vessel trees at smaller branches and thus necessitates

many subjects (or samples) to minimize misregistration steps. This could,

at least in part, explain the low number of probabilistic atlases of brain

arteries (Dufour et al., 2011; Nils Daniel Forkert et al., 2012) and veins

(N. D. Forkert et al., 2013; Ward et al., 2018).

As the need for dedicated tools to assess cerebral vasculature is

growing, our goal was to construct the first whole-brain probabilistic

vascular density atlases for both human cerebral arteries (using

ToF-MRA) and veins (using SWI) in the same group of participants.

The main objectives were threefold: (1) The development of two algo-

rithms, the multi-scale Frangi diffusive filter (MSFDF), based on vessel

recognition, centerline, and diameter extraction and the recursive vas-

cular registration refinement (ReVaR), an iterative nonlinear registra-

tion to extract the vessels of 42 participants and minimize their high

intersubject variability. (2) The quantification of the voxel-wise proba-

bilistic maps of veins and arteries. (3) The regionwise quantification of

vascular densities and diameters within commonly used anatomical

and functional atlases. The resulting algorithms and probabilistic maps

in MNI space, part of the Braincharter package, will be freely available

for public use at https://github.com/braincharter/vasculature.

2 | MATERIALS AND METHODS

2.1 | Participants and data acquisition

Approval for this study was obtained from the Centre Hospitalier Univer-

sitaire de Sherbrooke ethics committee. All participants provided written

informed consent and all experiments were conducted according to the

principles expressed in the Declaration of Helsinki. Participants were an

average of 22 (20–31) years old (n = 42). Anthropometric data were all

within the normal range. MRI data were acquired using a 3 T Philips

Scanner, where noise-reduction headphones and head cushions were

used to minimize motion artifacts. Each MRI session started with an ana-

tomical T1-weighted 1 mm isotropic MPRAGE (TR/TE 7.8/3.54 ms)

acquisition, followed by a whole-brain multi-band ToF angiography

acquisition (200 × 200 × 120 FOV, TR/TE 23/3.6 ms, voxel size of

0.625 × 0.625 × 1.3 mm) using a venous inflow suppression (saturation

band placed on the upstream side of each slice to avoid contaminating

the signal through venous inflows) and a high-resolution multi-echo SWI

sequence (230 × 230 × 160 FOV, TR 28 ms, TE 6.9/12.6/18.3/24.0 ms,

voxel size of 0.6 × 0.6 × 1.2 mm) to visualize cerebral arteries and veins,

respectively.

2.2 | Anatomical MRI processing

As the T1 images acquired on a 3 T scanner are prone to magnetic

field biases that deform and artificially increase the gray-level con-

trasts locally, a bias correction was first applied using ITK N4 bias cor-

rection (Tustison et al., 2010). Using the mindboggle-OASIS template

(Klein & Tourville, 2012), the T1 images were skull-stripped and

denoised using an edge-preservative, nonlocal mean spatial denoising

algorithm carried out using ANTs (Avants et al., 2011). The registra-

tion to the MNI space using a nonlinear SyN registration was then

done using ANTs, which was also used to extract the cortical thick-

ness for each voxel of the gray matter as well as the gray matter,

white matter, and CSF classification for each voxel of the brain.

2.3 | SWI and ToF preprocessing

For each subject, both ToF and SWI were preprocessed using an in-

house approach, MSFDF, with each step described here (Figure 1):

(i) The original ToF and SWI were denoised using a non-local mean

denoising approach (Avants et al., 2011; Bernier, Chamberland,

Houde, Descoteaux, & Whittingstall, 2014) to enhance image quality.

(ii) A Bayesian Gaussian mixture with Dirichlet process was used

(Pedregosa et al., 2011) to obtain a binary classification of voxels (ves-

sels vs nonvessels). This image-intensity thresholding approach pro-

vides a coarse preselection of candidate voxels associated to

vasculature. (iii) This map was further refined by only retaining voxels

exhibiting tubular geometry (i.e., vessels) by combining multiple Frangi

scores (Bizeau et al., 2018; Frangi, Niessen, Vincken, & Viergever,

1998), which were obtained using different smoothing on the images
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(10 scales, from 0.5 to 3.0 of Gaussian FWHM), from which the maxi-

mum score was retained. This multiscale scheme allowed the extrac-

tion of vessels over different sizes. After combination, 10 iterations of

a vessel enhancement diffusion (VED) filter were sequentially applied

to further smooth the combined scale images (Enquobahrie, Ibanez,

Bullitt, & Aylward, 2007; Manniesing, Viergever, & Niessen, 2006).

(iv) This image was intensity-normalized and thresholded (50%) to

obtain both whole-brain arterial and venous maps. (v) To compute the

diameters, a thinning algorithm was employed to compute the center-

line of the vessels while (vi) the ridge distance was extracted inside

the vessel tree. (vii) The ridge distances were finally masked with the

centerlines to obtain a measure of diameter at each voxel. To put all

vessel-related maps in a stereotaxic space, a nonlinear registration

between the original non-skull-stripped SWI-ToF and T1 was applied.

The T1 was then nonlinearly aligned to the MNI T1 0.5 mm space

(Avants et al., 2011), and both transformations were concatenated

and applied to all ToF and SWI vessel maps. As multiecho SWI is

prone to the appearance of arteries in later echoes, which could

impact our analysis, we also computed the intersection between ToF

and SWI images and removed these voxels from the SWI venous tree.

Finally, we used the GM, WM and CSF classification (using ANTs) and

computed the vascular density of each tissue type using a ratio

between the voxels identified as a vessel and the total number of

voxel per tissue type.

However, vessel configuration greatly varies between subjects

(Ghanavati, Lerch, & Sled, 2014), thus an additional registration step

involving both the vessel trees and the original image was applied on

all the images to build a proper template. Here we developed the

recursive vascular registration (ReVaR) refinement, an iterative back-

projection scheme involving 5 iterations of non-linear registration. At

FIGURE 1 Illustration of our vessels segmentation pipeline. The extraction of small vessels (~1 mm) necessitates a complex pipeline of image

processing due to inconsistencies in signal-to-noise ratio and intensity leveling across regions of the brain. (a–g) Each step of the segmentation
and diameter extraction explained in the Methods section is shown here. Green: manual thresholding of a ToF and SWI image from a single
subject. Orange: vessels extracted using our multiscale Frangi diffusion filter (MSFDF) pipeline on the same ToF
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each step, the algorithm uses a combination of the subject vasculature

to the previous iteration's updated mean of all subject vasculature

(weight: 90%) and their T1 image to the MNI T1 to prevent hard

deformations of the cortex (weight: 10%). From these, the vessel

maps are then averaged and filtered using the previously defined VED

filter. To obtain the probability maps, the mean of the thresholded-

normalized vascular map was then computed (step [iv]) which resulted

in voxel-based venous and arterial density maps, a 1–100 scale of ves-

sel probability per voxel in the MNI 0.5 mm space (see Figure 2 [top]

for single-subject and atlas 3D reconstruction of venous and arterial

trees).

2.4 | Anatomical and functional atlases

Aside from voxelwise estimates, regional vascular densities were also

investigated using different atlases. Four well-established atlases were

selected from the literature, two functional and two anatomical par-

cellations. For the structure-based atlases, Freesurfer (Fischl et al.,

2004) aparc-aseg parcellation based on 42 ispsilateral regions of the

gray matter formed from a label-propagation algorithm and the

Harvard-Oxford probabilistic atlas covering 48 cortical areas and cur-

rently used by FSL (Desikan et al., 2006) were investigated. For the

function-based atlases, the bootstrap analysis of stable clusters

(BASC) parcellation (Bellec, 2013; Bellec, Rosa-Neto, Lyttelton,

Benali, & Evans, 2010), a compilation of multi-scale bootstrapped

k-mean formed regions from 43 resting-state fMRI (here the

64 regions BASC parcellation) and the multisubject dictionary learned

probabilistic atlas (MSDL) covering well-known resting-state networks

(39 distinct regions) were used. For all these atlases, Nilearn

(Abraham, Dohmatob, Thirion, Samaras, & Varoquaux, 2014) was used

to extract the venous and arterial densities and diameters of all sub-

jects for each region. In each atlas, for each region, mean venous den-

sity (regional mean of venous maps obtained at step [iv]), mean

arterial density (regional mean of arterial maps obtained at step (iv)),

mean venous diameter (the regional nonzero mean of venous maps

obtained at step [vii]), mean arterial diameter (the regional nonzero

mean of venous maps obtained at step (vii)), and mean cortical thick-

ness (regional mean) are reported.

3 | RESULTS

3.1 | Voxelwise intersubject variability and arterial/
venous diameters

The voxel-based probability maps for veins and arteries are shown in

Figure 2 (here, 100% indicates the voxel was classified as a vessel in

all 42 subjects). On average, the spatial overlap of voxels identified as

being both venous and arterial was 11.27 � 3.06%, and located near

the edges of the largest arteries (i.e., basilar and posterior cerebral

arteries) indicating that image SNR was sufficient to reliably separate

the two vessel types. The voxels overlapping the arteries in the

venous trees were removed and omitted from the analysis. As

expected, the main arterial (communicating arteries) and venous

(transversal, superior, and inferior sagittal sinuses) structures were

identified in the vast majority of subjects while the smaller vessels

were more variable across subjects (Figure 2). The figure also shows

that the intersubject probability tends to decrease along with the

diameter further in the vessel tree. To quantify this, the Pearson cor-

relation between X and Y was computed using all voxels located on a

single-subject vascular tree (Figure 3 top), which were then regrouped

into 1,000 regions using a k-mean algorithm for simplification

(Figure 3 bottom). Indeed, vessel diameter was significantly correlated

to its probability score both at the voxel- and clustered level (veins:

R = 0.46; arteries: R = 0.52, p < .001). This suggests that smaller ves-

sels are more structurally variable than larger ones.

3.2 | Regional arterial/venous densities and cortical
thickness

A thresholded (top 10%) venous and arterial density map overlaid on

four atlases is shown in Figures 4 and 5, respectively. The complete

spatial distributions involved in the study are shown for each atlas in

Supporting Information, Figures S1–S4. Arterial density varied across

regions, with the densest areas located in the visual, lateral and frontal

areas, which is in agreement with the locations of the large known

arteries (communicating arteries). Similarly, the spatial distribution of

venous density coincided with the functional and anatomical atlases

(Figure 5). The highest venous densities were located near central

areas of the frontal, parietal, and visual areas for both atlases, follow-

ing the largest sinuses (transversal, superior, and inferior sagittal

sinuses). Note how both venous and arterial densities were highest

near the insula and anterior cingulate. Indeed, regional variations in

venous density was highly correlated to arterial density (Figure 6, R:

[0.54, 0.62, 0.69, 0.75], all p < .001). The mean densities, diameters,

and cortical thicknesses for the most vascularized regions of each

atlas are reported in Table 1.

The GM, WM, and CSF classification of each voxel of the vascular

trees are reported on Figure 7, where most of the vasculature (85%–

90%) was classified as GM or CSF (mean of all subjects: arteries: GM =

46.4% � 1.5%, WM = 15.1% � 2.1%, CSF = 39.1% � 4.1%; veins:

GM = 42.8% � 0.9%, WM = 9.9% � 2.5%, CSF = 47.0% � 4.3%). The

vascular density of each tissue type is also shown, where the proportion

of voxels per tissue type was greater in the CSF than for GM and WM

(arteries: GM = 3.6% � 1.6%; WM = 2.1% � 0.6%; CSF = 8.3% � 1.5%;

veins: GM = 7.0% � 2.3%; WM = 2.3% � 1.8%; CSF = 47% � 4%).

Regional variations in average cortical thickness positively corre-

lated with venous density in all atlases (Figure 8, R = [.30, .35, .44,

.59], p = [.036, .001, .003, <.001]). The arteries were also significantly

correlated to cortical thickness in all atlases but the BASC064 func-

tional atlas (see Supporting Information, Figures S5–S8, R = [.29, .36,

.38], p = [.042, .012, .005]).

4 | DISCUSSION

Despite the numerous tools for the quantification of gray matter and

white matter properties in humans, it remains challenging to study the

spatial organization and variability of cerebral vessels and assess their

impact on brain function. Therefore, the main goal of this study was
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to create a probabilistic whole-brain atlas of human cerebral architec-

ture of both cerebral veins and arteries based on three main novel

approaches: First, the development of the MSFDF approach for seg-

menting vessels and the ReVaR tuning to successfully align cerebral

vessels from SWI and ToF-MRA acquisitions for group-based compar-

ison which resulted in a voxel-based probabilistic atlas of veins and

arteries. Second, the extraction of vessel statistics such as density and

diameter and their comparison to each other as well as to measures of

cortical thickness in regions defined in four widely used atlases (ana-

tomically and functionally defined) which showed that certain brain

areas are disproportionality more vascularized than others and that

vascular density is significantly correlated to cortical thickness

throughout the brain. Third, the analysis of how vessel diameter

directly influences inter-subject variability in vessel segmentation and

registration indicated that smaller vessels are spatially more variable

than larger ones. Taken together, we believe that these novel findings,

including the now publicly available voxel-wise and region-wise maps

of the vascularization in the Braincharter package on https://github.

com/braincharter/vasculature, will improve research into the role of

brain vasculature in neuroanatomical and functional studies.

FIGURE 2 Venous and arterial probabilistic mapping. (a,b) The figure illustrates on both a 3d view (top) and a 10 mm MIP projection (bottom)

how our (b) recursive vascular registration refinement (ReVaR), involving an iterative back-projection scheme involving 5 iterations of nonlinear
registration, performed compared to (a) using a standard nonlinear registration. The coloration represents for each voxel the probability of finding
a vessel at that location. The zoom section illustrates the alignment of the vessels of two single subjects, with and without our approach [Color
figure can be viewed at wileyonlinelibrary.com]
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4.1 | Voxelwise venous and arterial probability maps

Our voxel-wise probabilistic maps of the cerebral vasculature

(Figure 2) highlight the spatial consistency of the major arterial and

venous structures across subjects. On average, intersubject variability

decreased with increasing vessel diameter (Figure 3) where vessels

with diameters >�2.5 mm tended to be most stable across subjects.

This is in line with another study which examined cerebral veins in

10 subjects and reported high intersubject probabilities near the major

veins, including in the superior sagittal sinus, dural sinuses, straight

sinus, and internal cerebral veins (Ward et al., 2018). Notably, this

relationship was also observed in arteries (Figure 3, R = [.46, .52],

all p < .001).

Moreover, to the best of our knowledge, no group-based probabi-

listic venous atlas with a relatively large number of healthy subjects

(more than 10) exists in the literature (Nils Daniel Forkert et al., 2012),

making ours the first publicly available. Our segmentation results are

similar to the probabilistic map of vasculature based on 10 subjects

(Ward et al., 2018) and a deterministic map of large vein atlases,

showing clearly the transversal, superior, and inferior sagittal sinuses

among others (Kiliç & Akakin, 2008) (Figure 2, yellow arrows). Overall,

our results show that, using our 7-steps MSFDF processing algorithm

based on vessel extraction and ReVaR's iterative nonlinear registration

refinement, subjects were co-aligned better and more thoroughly and

we were able to obtain more precise co-registrations to overcome the

higher intersubject variability in small vessels, as indicated by our

increased probability scores.

While others have previously computed voxel-based arterial atlases

with results similar to ours, those atlases do not include venous data. In

one study, Dunas et al. (2017) produced a labeled probability atlas of

arteries using more than 100 older participants' 4D flow MRI angiogra-

phy scans. They mainly focused on the labeling of large arteries since

they used an intensity thresholding method to extract the vasculature

(Dunås et al., 2016). Similarly, in another study, Viviani et al. (Viviani,

2016) constructed a ToF-based atlas from 38 ToF-MRA acquisitions and

reported inter-subject probabilities of �80% in the largest arterial struc-

tures using an affine co-registration, which rapidly decreased in smaller

arteries along the vessel tree. In our case, we do not, at this time, label

FIGURE 3 Voxelwise intersubject probabilities versus diameters. Based on the voxels along one single-subject venous and arterial centerlines of

their vessel trees, the relation between vessel diameter and the voxelwise group-based venous and arterial intersubject probabilities are shown
here. (a,b) Each dot represents a voxel along the centerline of the vascular tree, whereas the regression line and the 95% interval of confidence of
the linear fit (shaded areas) are computed separately for each type of vasculature and are represented in yellow (p < .0001). The histogram of
their distribution is also shown above and on the right of the graph. (c,d) For simplification and a better illustration of the relation, we regrouped
the voxels in 1,000 classes of equal size using k-mean clustering, with the standard deviation represented on each dot by a line
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our arteries as done elsewhere (Dunas et al., 2017), but our method

(MSFDF) allows to extract smaller vessels (see Figure 1, left vs right). Ulti-

mately, these could be labeled, similar to the work of Dunas et al., into

well-known arteries based by group-based segmentation or with the help

of a single-subject deterministic atlas or segmentation (Bizeau et al.,

2018). Finally, Forkert et al. (2012) created an arterial atlas based on

700 subjects with an affine co-registration of vessels extracted from

high-resolution ToF-MRA and reported a 60% occurrence for the bilat-

eral carotid arteries and inter-subject probabilities of up to 40% for the

bilateral proximal middle cerebral artery and basilar artery. In contrast,

we observed much higher probabilities across the brain (probabilities of

up to 100%, Figure 2), even in smaller vessels, with a similar number of

acquisitions (42 subjects) (probability of up to 70% in smaller vessels,

Figure 3). These differences could be explained by our ReVaR approach,

which improves the co-localization of the subject's vascular tree.

4.2 | Regionwise atlas-based venous and arterial
density maps

As voxel-wise group-based analysis relies heavily on proper registra-

tion, and thus low intersubject variability, additional vascular analysis

was conducted on several different brain parcellations. The quantifica-

tion of specific brain areas are highly dependent on their parcellation

scheme (Arslan et al., 2017; Thirion, Varoquaux, Dohmatob, & Poline,

2014; Yao, Hu, Xie, Moore, & Zheng, 2015). In fact, the definition of

regions based on tissue type (such as gray or white matter) or func-

tional areas is the key factor in studying their properties for both

structural and functional data. As the choice of parcellation can influ-

ence the outcome of the statistical analysis (Bernier, Croteau, Castel-

lano, Cunnane, & Whittingstall, 2017), differences in the atlases'

statistical analysis were expected, especially between functional and

anatomical ones. However, all analysis conducted in each parcellation

FIGURE 4 Atlas regions with highest venous densities (top 10%). On two different MNI coordinates (squares, above & below), we show the

(column left) labels of the template where each brain region is color-coded randomly, and (column right) the regions with the highest venous
densities (top 10%) are color-coded by their mean value of density. Each row represents a different atlas [Color figure can be viewed at
wileyonlinelibrary.com]
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yielded similar results. It can be safely concluded that our results are

independent of parcellation type.

Looking at the vessels penetrating the cortex, a strong and consis-

tent correlation was found between venous and arterial densities across

atlases (Figure 6), with the anterior and posterior cingulate, cuneus, pre-

cuneus, parahippocampus, insula, and temporal gyri being more vascular-

ized (top 10%, from 10% to 18% for veins and 6.5% to 17% for arteries).

Interestingly, some of these regions (i.e., parahippocampal, insular, and

temporal areas) were found to exhibit the most variability in fMRI con-

nectivity strength (Chamberland et al., 2017; Mueller et al., 2013). In

addition, Eklund, Nichols, and Knutsson (2016) reported the posterior

cingulate as being the brain area most susceptible to false positives, and

it is exactly this area that we find as also among the most heavily vascu-

larized. As it stands, it is unclear how vasculature is related to these fMRI

findings, though including this as regressor might be an important appli-

cation for our atlases. More specifically, one approach might consist of

correcting regional or subject differences in fMRI signal amplitude and/or

latency according to their vascular density (Provencher et al., 2018).

Unexpectedly, a strong and positive relationship was observed

between venous density and cortical thickness (Figure 8). To ensure

that the difference in resolution between our vascular data and the T1

images (0.6 × 1.2 mm vs 1 × 1 mm) did not impact our analysis, we

also computed the cortical thickness relationship with venous density

using T1 images resampled to 0.6 × 1.2 mm, but this did not signifi-

cantly change the results (veins vs cortical thickness; before: R = .30,

.44, .35, .59; after: R = .31, .42, .35, .59; not shown in the results).

Two possible interpretations can be drawn from this relation: (1) A

larger supply of blood is needed where the gray matter is thickest to

properly feed the region with nutriments and, consequently, drain it

back to the heart. This is in agreement with a study in mice showing

that brain regions with high vascular density also have high cell counts

(Tsai et al., 2009). However, this is based on the assumption that

FIGURE 5 Atlas regions with highest arterial densities (top 10%). On two different MNI coordinates (squares, above & below), we show the

(column left) labels of the template where each brain region is color-coded randomly, and (column right) the regions with the highest arterial
densities (top 10%) are color-coded by their mean value of density. Each row represents a different atlas [Color figure can be viewed at
wileyonlinelibrary.com]
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cortical thickness is a reliable marker of neuronal packing density,

which is yet to be confirmed (Kanai & Rees, 2011). (2) A recent study

showed that increased CBV (via vessel vasodilation) induces an over-

estimation of cortical thickness and gray matter volume due to

changes in T1 tissue values (Tardif et al., 2017). It is therefore possible

that brain areas with inherently large vessels (or with a high density of

small vessels), and hence high CBV, affect the T1-weighted intensity

of nearby gray matter voxels, leading to an overestimation of thick-

ness. This would be in line previous other studies that recommend the

use of T2 (Helms, Kallenberg, & Dechent, 2006) or FLAIR images com-

bined with T1 images to ensure a better classification of gray-matter

tissue and venous vessels at the edge of the brain (Viviani, 2016;

Viviani et al., 2017). In addition, other studies have investigated the

potential misclassification of vessels as gray matter (Helms et al.,

2006; Viviani et al., 2017). Our results are in line with this and demon-

strate the potential vascular confound in cortical thickness measure-

ments and thus open the possibility of using SWI data in conjunction

with T1 images to improve cortical thickness estimates. Importantly, it

also reinforces the importance of taking vascular structure into

account when interpreting cortical thickness, for example, in neurode-

generative pathologies that are related to vascular impairments.

Finally, we observed a higher density of veins compared to arter-

ies (Figures 4–6), regardless of the atlas used. For all regions across

atlases, the regional density of arteries was more than a half compared

to the density of veins. Although this is in line with previous studies

which report a higher proportion of veins compared to arteries in

humans by factors ranging from 1.33 (Blakemore & Jennett, 2001) to

2.5 � 0.5 (Blinder et al., 2013; Nguyen, Nishimura, Fetcho, Iadecola, &

Schaffer, 2011; Shih et al., 2012), other studies concluded the oppo-

site: the proportion of arteries was higher than veins in humans

(Duvernoy et al., 1981) and primates (Guibert, Fonta, & Plouraboué,

2010; Weber, Keller, Reichold, & Logothetis, 2008). Although our

results seem to coincide with the first group (more veins than arter-

ies), it is still unclear whether these findings are due to inherent

FIGURE 6 Arterial versus venous density. The venous and arterial densities of all regions are corresponded across regions. Each dot represents a

region of each atlas, whereas the regression line and the 95% interval of confidence of the linear fit (shaded areas) are computed separately for
each atlas
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differences in the biological vasculature or technical limitations (the

nature of the SWI and ToF-MRA sequences): More specifically, SWI

sensitivity is globally the same across the brain at all time points

(Haacke et al., 2007), whereas the ToF-MRA signal drops progres-

sively in its initial intensity as the velocity progressively decreases

throughout the vascular system (Ishimaru et al., 2007). The latter

could affect arterial extraction in the cortex, resulting in artificially

lower artery count. We are also limited to a venous and arterial diame-

ter of 0.6 mm, which excludes the brain's venules, arterioles, and capil-

laries. Nevertheless, as the venous and arterial densities are strongly

correlated, this is likely not a major issue for our conclusion, that is,

venous and arterial brain densities co-vary regionally.

4.3 | Application to partial volume correction or
voxel-based morphometry

Some analyses would benefit from having a probabilistic atlas of

the vasculature. Aside from complementing the extraction of corti-

cal thickness as mentioned before, partial volume correction (PVC)

could be applied based on the vasculature. Typically, tissue-

probability maps of gray (GM) and white matter (WM) are often

used for PVC in positron emission tomography (PET) studies, where

experimental data are adjusted by the proportion of GM or WM

(Dukart & Bertolino, 2014; Harri, Mika, Jussi, Nevalainen, & Jarmo,

2007; Oakes et al., 2007). PVC has been used, mainly, to overcome

TABLE 1 Summary of cortical regions with the highest vascular densities per atlas (top 10%)

Atlas Region Venous density (%) Arterial density (%) Venous diameter Arterial diameter Cortical thickness

BASC064 Posterior cingulate/cuneus 14.9 � 5.11 12.71 � 2.65 1.03 � 0.15 1.61 � 0.15 2.42 � 0.12

Anterior cingulate 12.8 � 3.94 10.55 � 2.03 0.87 � 0.28 1.36 � 0.22 3.88 � 0.31

Parahippocampal gyrus 10.81 � 3.62 8.30 � 1.60 0.86 � 0.28 1.14 � 0.22 2.41 � 0.19

Temporal gyrus 10.42 � 3.71 9.64 � 1.44 0.84 � 0.26 0.99 � 0.15 2.04 � 0.27

Occipital/lingual gyrus 13.73 � 4.17 5.07 � 1.59 0.77 � 0.22 0.65 � 0.13 1.85 � 0.11

Freesurfer Posterior cingulate/cuneus 12.01 � 2.18 6.32 � 1.71 0.88 � 0.26 1.12 � 0.22 2.99 � 0.26

Anterior cingulate 10.21 � 3.51 7.05 � 1.34 0.73 � 0.26 1.36 � 0.19 3.88 � 0.38

Parahippocampal gyrus 11.12 � 3.74 6.27 � 1.60 0.93 � 0.30 1.14 � 0.22 2.91 � 0.24

Temporal gyrus 12.15 � 2.73 12.11 � 2.77 0.90 � 0.26 1.44 � 0.26 3.24 � 0.48

Occipital/lingual gyrus 9.95 � 3.32 6.01 � 1.33 0.77 � 0.22 0.76 � 0.23 0.85 � 0.11

Harvard-Oxford Posterior cingulate/cuneus 10.02 � 4.14 4.34 � 2.08 0.75 � 0.28 0.65 � 0.13 1.96 � 0.26

Anterior cingulate 10.75 � 3.47 14.01 � 2.29 0.67 � 0.22 1.29 � 0.22 3.01 � 0.25

Parahippocampal gyrus 12.02 � 3.89 14.76 � 2.41 0.90 � 0.30 1.48 � 0.22 3.14 � 0.33

Temporal gyrus 12.61 � 4.59 11.33 � 1.44 0.88 � 0.32 0.90 � 0.13 1.57 � 0.30

Culmen/lingual gyrus 12.90 � 4.38 6.01 � 1.31 0.86 � 0.28 0.86 � 0.15 2.34 � 0.11

MSDL Posterior cingulate/cingulate 15.80 � 3.52 5.32 � 1.14 1.14 � 0.37 1.05 � 0.24 4.52 � 0.26

Anterior cingulate 15.17 � 5.11 9.61 � 1.66 1.18 � 0.43 1.16 � 0.26 4.31 � 0.66

Cingulate 14.71 � 5.97 10.34 � 2.00 1.12 � 0.43 1.18 � 0.32 3.97 � 0.65

Temporal gyrus/insula 14.73 � 4.78 10.41 � 1.80 1.12 � 0.49 1.33 � 0.34 5.13 � 0.75

Lingual gyrus 17.66 � 4.87 5.75 � 1.25 1.31 � 0.49 0.99 � 0.26 3.44 � 0.65

FIGURE 7 Arterial versus venous classification and density per tissue type. For each subject, each voxel classified as a vessel was classified as

gray matter, white matter, or CSF according to the ANTs three-tissues type classification. The left histogram illustrates the ratio of the vascular
tree's voxels classified as their corresponding tissue location, while the right histogram shows the vascular density of each tissue type (ratio of
vascular voxels vs nonvascular voxels in all the brain for each tissue type). The variations between subjects are illustrated as standard deviations
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spatial resolution limitations of PET acquisitions, based on the

hypothesis that for voxel- or region-based analysis, quantitative

assessments may result in significant bias in their estimates due to

PVC. Using an approach familiar to that already implemented for

GM/WM corrections, PVC techniques could be considered for cor-

rection of vascular confounds. Surprisingly, however, vascular

structure is rarely considered when interpreting region- or group-

based PET. The quantification of glucose metabolism using a fluor-

odesoxyglucose (FDG) tracer is based on kinetic models which

include a blood volume correction factor (vb), often set to a global

constant (or even 0 or no correction) (Alf, Martić-Kehl, Schibli, &

Krämer, 2013; Bernier et al., 2017). By fixing the vb parameters

using vascular probability maps instead, the extracted glucose

uptake may be more specific and less variable between subjects. In

addition, vascular maps could be used to localize vascular con-

founds in different patient groups (i.e., as for VBM analysis).

Last, it is expected that subsequent studies using high-field sys-

tems (i.e., 7 T-MRI) will yield more information on smaller vessels

(arterioles and venules) which were likely missed in this 3 T study due

to the relatively low spatial resolution (0.6 mm). Deep-learning algo-

rithms also show promising results in retinal vessel segmentation

(Chen, 2017), and might be of interest if translated to SWI and ToF

images to further improve the segmentation process. Ultimately,

another avenue for potential improvement would be to use these

probabilistic atlases as priors in the vessel segmentation step, similar

to using tissue-type or spatial priors to reduce false positives and

obtain smoother results (Beriault, Xiao, Collins, & Pike, 2015).

5 | CONCLUSION

Based on noninvasive imaging, we are the first to show how both the

density and size of veins and arteries vary proportionally, and that

FIGURE 8 Cortical thickness versus venous density. The cortical thickness and venous density of each region are corresponded across all atlases.

Each dot represents a region of an atlas, whereas the regression line and the 95% interval of confidence of the linear fit (shaded areas) are
computed separately
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cortical thickness seems to partially follow this relationship. Four func-

tionally and anatomically defined atlases were created in this study,

and their region- and voxel-based probabilistic maps of vascular den-

sity are freely available for fundamental and clinical studies using

vascular-based measurements (https://github.com/braincharter/

vasculature). This study highlights the importance of including vessel-

ness in functional measurements, and therefore, suggests the use of

our maps for PVC as it is already done for partial gray-matter

correction.
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