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Abstract
The neurophysiological underpinnings of the nonsocial symptoms of autism spectrum disorder

(ASD) which include sensory and perceptual atypicalities remain poorly understood. Well-known

accounts of less dominant top–down influences and more dominant bottom–up processes com-

pete to explain these characteristics. These accounts have been recently embedded in the popular

framework of predictive coding theory. To differentiate between competing accounts, we studied

altered information dynamics in ASD by quantifying predictable information in neural signals. Pre-

dictable information in neural signals measures the amount of stored information that is used for

the next time step of a neural process. Thus, predictable information limits the (prior) information

which might be available for other brain areas, for example, to build predictions for upcoming sen-

sory information. We studied predictable information in neural signals based on resting-state

magnetoencephalography (MEG) recordings of 19 ASD patients and 19 neurotypical controls aged

between 14 and 27 years. Using whole-brain beamformer source analysis, we found reduced pre-

dictable information in ASD patients across the whole brain, but in particular in posterior regions

of the default mode network. In these regions, epoch-by-epoch predictable information was

positively correlated with source power in the alpha and beta frequency range as well as autocor-

relation decay time. Predictable information in precuneus and cerebellum was negatively

associated with nonsocial symptom severity, indicating a relevance of the analysis of predictable

information for clinical research in ASD. Our findings are compatible with the assumption that use

or precision of prior knowledge is reduced in ASD patients.
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1 | INTRODUCTION

Autism spectrum disorder (ASD) is a developmental disorder with an

estimated prevalence of about one in 68 children (Christensen et al.,

2016). The disorder is characterized by deficits in social communication

together with restricted, repetitive, and stereotyped patterns of behav-

iors and interests as well as hypo- or hyper-reactivity to sensory input

(American Psychiatric Association, 2013). Despite the first descriptions

of the disorder by Kanner (1943) and Asperger (1944) dating back

more than 70 years, the neurophysiological mechanisms underlying the

symptoms of ASD have remained largely unknown. Historically, there

have been attempts to elicit specific core underlying cognitive mecha-

nisms. Theories such as the “Theory of Mind” hypothesis (Baron-

Cohen, Leslie, & Frith, 1985) assumed to underlie impaired social-

cognitive function or executive function impairments (Russell, 1997)

and the “weak central coherence” (Happ�e & Frith, 2006) assumed to

underlie stereotyped and repetitive behavior as well as sensory aspects.

Examples of sensory and perceptual atypicalities in ASD are decreased

susceptibility to visual illusions (Happ�e, 1996) as well as the superior

performance in perceptual tasks requiring a focus on local features

compared to global features (Joseph, Keehn, Connolly, Wolfe, & Horo-

witz, 2009; Plaisted, O’Riordan, & Baron-Cohen, 1998; Shah & Frith,

1983). Recent accounts of ASD further confirm these perceptual char-

acteristics as a key element toward a comprehensive theory of ASD

and propose to elucidate the nonsocial symptoms of the disorder

within the framework of predictive coding theory (Lawson, Rees, &

Friston, 2014; Pellicano & Burr, 2012). Predictive coding theory (Clark,

2013; Friston, 2005, 2010; Kiebel, Daunizeau, & Friston, 2008; Rao &

Ballard, 1999) suggests that perception is a process of hierarchical

probabilistic inference, in which the brain uses prior knowledge from

life-long experience for building internal predictions. These predictions

are combined with incoming sensory information to infer the state of

the outside world. A mismatch between top–down propagated predic-

tions and sensory evidence results in a bottom–up propagated predic-

tion error (PE). Influence on perception of the PE depends on so-called

precision weighting (Friston, 2009; Friston & Kiebel, 2009); that is, the

weight that is given to the PE compared to the prediction/prior

knowledge.

Predictive coding accounts of perception in ASD can be formalized

as changes in information processing in terms of a reduced influence of

prior knowledge (Pellicano & Burr, 2012), a relative imbalance of prior

knowledge and prediction error (Friston, Lawson, & Frith, 2013; Law-

son et al., 2014), or a mere overweighing of prediction error/sensory

input (Brock, 2012; Van de Cruys et al., 2014). To differentiate

between these accounts, altered information dynamics in ASD may be

assessed via the three fundamental component operations of informa-

tion processing, that is, information storage, transfer, and modification

(G�omez et al., 2014; Langton, 1990; Lizier, Prokopenko, & Zomaya,

2012; Wibral et al., 2015). In particular, quantifying information storage

in neural signals may be a useful tool for testing the hypothesis of

reduced use of prior knowledge in ASD (G�omez et al., 2014) as the use

of prior knowledge for predictions requires that (passively) stored infor-

mation is re-expressed in neural activity (active storage; see Zipser,

Kehoe, Littlewort, & Fuster, 1993 for a distinction between passive

and active storage). Information storage in neural processes is mirrored

by the fact that information from the past of a neural process predicts

a certain fraction of information in the future of this process (G�omez

et al., 2014; Wibral, Lizier, V€ogler, Priesemann, & Galuske, 2014). This

predictable information provides the upper bound of the information

potentially becoming useful as predictions for the brain.

In this study, we compared predictable information as measured

by the information-theoretic measure active information storage (Lizier

et al., 2012) for young patients diagnosed with ASD and neurotypical

controls based on neural signals reconstructed from resting-state mag-

netoencephalography (MEG) recordings.

We hypothesized that predictable information would be reduced

in patients with ASD and that reduced predictable information would

further be associated with severity in one or more of the symptom

domains in ASD.

2 | METHODS

2.1 | Participants

Nineteen male patients diagnosed with ASD according to ICD-10

(World Health Organization, 1992), that is, autism (F84.0), Asperger

Syndrome (F84.5), or atypical autism (F84.1) and nineteen male, neuro-

typical controls (NTC) aged 14–27 years participated in this study.

Exclusion criteria for both groups were an IQ below 70, history of or

current diagnosis of schizophrenia or bipolar disorder, current depres-

sive episode, severe anxiety disorder, tic disorder, illegal drug use, and

a chronic medical or neurological condition. All participants showed

normal or corrected to normal vision. Neurotypical individuals had to

score below the clinical cutoff of all first-order scales of the Youth Self

Report (YSR; Achenbach & Edelbrock, 1991; Deutsche Child Behavior

Checklist, 1998a) or Young Adult Self Report (YASR 18-30; Achenbach,

1990; Deutsche Child Behavior Checklist, 1998b). The ethics commit-

tee of the Medical Faculty of the University of Frankfurt approved the

experimental study. Participants and/or their parents gave written

informed consent before the experiment and received monetary

compensation.

ASD patients were recruited through the Department of Child and

Adolescent Psychiatry, Psychosomatics and Psychotherapy, University

Hospital Frankfurt, Goethe-University and via ASD-related websites.

NTC were recruited from local schools and by notices on the university

campus.

2.2 | Assessment instruments

2.2.1 | Assessment instruments across groups

In- and exclusion criteria were assessed using checklists as well as a

semi-standardized medical history interview. IQ was measured by the

Culture Fair Intelligence Test (CFT 20-R; Weiß, 2006). The German ver-

sion of the Youth Self Report (YSR) and the German version of the

Young Adult Self Report (YASR 18-30) were implemented to describe

severity of current psychopathology in both groups.
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The socio-economic status (SES) of the respective family was com-

puted based on the mean occupational status of both parents. The

occupational status ranged from 1 to 5 (15 unskilled worker;

55 highly skilled, leading position). Handedness was assessed accord-

ing to the Edinburgh Handedness Inventory scale (Oldfield, 1971), in

which positive values indicate right handedness and negative values

indicate left handedness.

2.2.2 | Autism-specific assessment instruments

Patients were diagnosed according to ICD-10 criteria (World Health

Organization, 1992), employing a semi-structured clinical interview, the

German version of the Autism Diagnostic Observation Schedule

(ADOS; Lord et al., 2000; see R€uhl, B€olte, Feineis-Matthews, &

Poustka, 2004 for the German version), and the Autism Diagnostic

Interview–Revised (ADI-R; Rutter, Couteur, & Lord, 2003; see B€olte,

R€uhl, Schm€otzer, & Poustka, 2006 for the German version) adminis-

tered by experienced clinicians (psychiatrists, clinical psychologists).

The ADOS is a direct observation measure, assessing social communi-

cation and stereotyped, restricted behaviour within a social interaction

situation. The ADI-R is a standardized interview for caregivers of autis-

tic individuals and encompasses the three domains of “social interac-

tion,” “communication,” and “restrictive, repetitive and stereotyped

behaviours and interests.” The ADI-R could not be obtained in five of

the ASD patients.

2.3 | Data acquisition

For each participant, magnetoencephalography (MEG) resting-state

recordings were obtained for 5 min each with eyes open (fixating) and

eyes closed, respectively. Only analysis of the data obtained from the

resting-state recordings with eyes closed will be reported in the main

manuscript (for results of the analysis of eyes-open recordings see Sup-

porting Information, Figure 1).

The acquisition of the MEG data was performed in line with the

guidelines for “good practice” of MEG recordings (Gross et al., 2012). A

whole-head system (Omega 2005; VSM MedTech, Port Coquitlam, BC,

Canada) with 275 axial gradiometers was used to record the MEG sig-

nals. Signals were recorded continuously at a sampling rate of 1,200 Hz

in a synthetic third-order gradiometer configuration and filtered online

with fourth-order Butterworth filters with a 300 Hz low pass and a 0.1

Hz high pass (Data Acquisition Software Version 5.4.0, VSM MedTech,

BC, Canada). During the complete recording participants’ head position

relative to the gradiometer array was localized via three head localiza-

tion coils that were placed on the nasion and 1 cm anterior of the

tragus of each ear. To detect artifacts, the horizontal and vertical elec-

trooculogram (EOG) and the electrocardiogram (ECG) were recorded

via six electrodes. These were placed distal to the outer canthi of both

eyes to record horizontal eye movements, above and below the right

eye to record blinks and vertical eye movements and below both collar-

bones to record the ECG. The impedance of each electrode was kept

below 15 kX, as measured with an electrode impedance meter (Astro-

Med Electrode Impedance Meter, Model F-EZM5, Grass Technologies,

Natus Neurology Inc., Warwick RI).

Structural MR images were obtained with a 3 T Siemens Allegra or

Trio scanner (Siemens Medical Solutions) using a standard T1 sequence

(3D MPRAGE sequence, 176 slices, 1 3 1 3 1 mm voxel size). Before

acquisition of the structural images, vitamin E pills were placed at the

former positions of the MEG head localization coils to enable co-

registration of MEG data and structural MR images.

2.4 | MEG data analysis

2.4.1 | Preprocessing

MEG data analysis was performed with MATLAB (MATLAB 2012; The

MathWorks) and the open source MATLAB toolbox FieldTrip (Oosten-

veld, Fries, Maris, & Schoffelen, 2011). During preprocessing, the con-

tinuous recordings of five minutes were split into data epochs of 1 s

each. Line noise was removed using a discrete Fourier transform filter

at 50, 100, and 150 Hz. Further, FieldTrip artifact-rejection routines

were used to automatically reject epochs containing muscle or sensor

jump artifacts. For further cleaning of the data, independent compo-

nent analysis (ICA; Makeig, Bell, Jung, & Sejnowski, 1996) was per-

formed using the extended infomax (runica) algorithm implemented in

fieldtrip/EEGLAB. ICs displaying a strong correlation with EOG and

ECG channels were removed from the data. Additionally, data were vis-

ually inspected for residual artefacts.

To minimize movement-related inaccuracies, the mean head posi-

tion in the resting state datasets was calculated for each participant

and only epochs in which the head position did not deviate more than

5 mm from the mean head position were considered for analysis.

2.4.2 | Source grid creation

To perform MEG source analysis with individual head models, individ-

ual source grids were created by transforming the structural MR image

for each participant to a T1 MNI template (http://www.fil.ion.ucl.ac.uk/

spm). This way an individual transformation matrix was obtained for

each participant. Next, the inverse of each participants’ transformation

matrix was used to warp a regular dipole grid from MNI space to physi-

cal (participant) space (based on T1 template, spacing 15 mm, resulting

in 478 grid locations inside the brain). Using this approach, every brain

area was located at the same grid point for all participants allowing cal-

culation of multi-participant statistics. A realistic single shell forward

model (Nolte, 2003) was used to compute the lead-fields for each grid

location.

2.4.3 | Source time course reconstruction

To enable a whole-brain analysis of active information storage (AIS),

we reconstructed the source time courses for all 478 source grid loca-

tions inside the brain. Whole-brain source time course reconstruction

was performed using a time-domain beamformer filter (linear con-

strained minimum variance, LCMV; Van Veen, Van Drongelen, Yucht-

man, & Suzuki, 1997) applied on MEG sensor data filtered broadly with

8 Hz high pass and 150 Hz low pass. For each of the 478 source grid

location three orthogonal filters in x, y, and z direction were computed

and the sensor data were projected through the LCMV filters. From

the resulting three time courses per location via singular value
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decomposition, the time course in direction of the dominant dipole ori-

entation was obtained and used for calculation of AIS.

2.4.4 | Analysis of active information storage (AIS)

AIS describes how much of the information in the next time step of a

process is predictable from its immediate past embedded (time-series)

state (Lizier et al., 2012). High AIS values indicate that a signal is both

rich in information and predictable at the same time. Detailed definition

of AIS is given in Lizier et al. (2012) (methods part) and Wibral et al.

(2014) (see also G�omez et al., 2014 and Brodski-Guerniero et al., 2017

for applications on MEG data).

To determine the history dimension and optimal embedding delay

parameter for AIS computation, the Ragwitz criterion (Ragwitz & Kantz,

2002) as implemented in the TRENTOOL toolbox (Lindner, Vicente,

Priesemann, & Wibral, 2011) was used for each participant and each of

the source locations separately. As differences in history dimension

may induce a bias on the estimated values, we chose the history

dimension of 6 over all participants and source locations for computa-

tion of AIS. This means that 6 samples were chosen, spaced at an

embedding delay interval that was individually determined per partici-

pant based on that participant’s signal autocorrelation decay time and

the optimization via the Ragwitz criterion (see Supporting Information,

Table 1 for the distribution of embedding delays across participants).

No significant correlation between embedding delay and mean AIS was

found (Spearman’s rho52.17, p5 .29; Pearson’s r52.22, p5 .2, see

Supporting Information, Figure 2). This indicates that the resulting AIS

values are not sensitive to the choice of the embedding delay. Also no

significant difference in embedding delay between the ASD and NTC

group was observed (Wilcoxon ranked sum test p5 .14).

AIS was computed with 4 nearest neighbors (recommended by

Kraskov, St€ogbauer, & Grassberger, 2004) in the joint embedding space

using the Kraskov–Stoegbauer–Grassberger estimator (Kraskov et al.,

2004) (algorithm 1), as implemented in the open source Java Informa-

tion Dynamics Toolkit (Lizier, 2014). Data points from all epochs and

time points were accumulated (for each source location and participant)

for the computation of distributions underlying the AIS analysis. As a

different number of data points may induce a bias in the estimation,

AIS was computed on embedded data only up to the minimal number

of data points over participants (number of data points entering the

analysis: 149987).

Each sample from an epoch and a time point was assigned a local

AIS (LAIS) value based on the overall distribution (assuming stationarity,

see Lizier et al., 2012). Later the LAIS estimates for individual data

points were averaged across time for each epoch of one sec to obtain

the AIS value for that epoch, source location, and participant.

2.4.5 | Statistical analysis on AIS

For investigation of the mean difference in AIS between ASD patients

and NTC, for each participant, the AIS values were also averaged over

all epochs and over all 478 source locations and a Wilcoxon rank sum

test was performed to test for AIS differences between groups. To

examine a potential correlation of AIS and age, Pearson’s r and Spear-

man’s rho were calculated for each group separately.

For finding the specific source locations at which AIS values dif-

fered between groups, an independent samples permutation t test was

performed across all potential source locations over the whole brain.

To account for multiple comparisons across the 478 source locations, a

cluster-based correction method (Maris & Oostenveld, 2007) was used.

Clusters were defined as adjacent grid points whose t values exceeded

a critical threshold corresponding to an uncorrected alpha level of 0.05.

For these clusters we defined cluster values as the sum of t values in a

particular cluster. Cluster values were tested against the distribution of

cluster values obtained from 5,000 permuted data sets. Significance

was assessed based on an alpha value of 0.05. For the significant clus-

ters, the brain areas showing (local) peaks in the t map were reported.

For these locations, we also calculated Spearman’s and Pearson’s corre-

lations of AIS with age.

To assess the relationship of AIS values and ADI-R ratings of

symptom severity (B€olte et al., 2006), linear regression analysis with

AIS (mean over epochs) as response variable and the ADI-R algorithm

scores as the predictor variable were calculated for all 478 brain loca-

tions. To account for multiple comparisons across brain locations, a

cluster-based correction method was performed on the t values of the

beta coefficients (t5 beta/standard error). Cluster significance was

assessed in the same way as for the independent sample t statistic

described above (5,000 permutations, alpha 0.05). Linear regression

analysis was performed separately for each of the three ADI-R domains

“communication” (ADI-com), “social interactions” (ADI-soc), and

“restrictive, repetitive and stereotyped behaviours and interests” (ADI-

rit). Please note that ADI-R scores were available for 14 of the 19 ASD

patients only, and thus this part of the analysis is based on a smaller

sample size than the rest.

2.4.6 | Correlation analysis of AIS and beamformer

reconstructed source power/autocorrelation decay time

We further investigated the relationship of AIS and spectral power in

individual epochs using Spearman’s correlations. The frequency bands

for correlation analysis were determined based on the averaged and

normalized spectrum (by multiplication with frequency to account for

the 1/f shape of the non-normalized spectrum) of the peak sources

showing significant differences in AIS between groups. The spectrum

was calculated from the reconstructed source time courses using a

multitaper approach (Percival & Walden, 1993) with 2 Slepian tapers

(Slepian, 1978) for a frequency interval from 8 to 150 Hz in 2 Hz steps.

The averaged spectrum over sources, participants and epochs revealed

three frequency bands: 8–14 Hz (alpha); 14–36 Hz (beta); and 36–150

Hz (gamma). Epoch-by-epoch power in these frequency bands was

used for calculation of the Spearman’s correlation with epoch-by-

epoch AIS. For each participant Spearman’s rho was computed for cor-

relation of the epoch-by-epoch power (median over coefficients in

each of the predefined frequency bands) with the epoch-by-epoch AIS.

Correlation analysis was additionally performed for epoch-by-epoch

AIS and a more traditional measure of time series analysis, autocorrelation

decay time (ACT). ACT was computed as the lag at which the autocorre-

lation function for each epoch of the reconstructed source time course

decayed below the fraction of 1/e of its center peak.
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To test the significance of the correlation of epoch-by-epoch AIS

and epoch-by-epoch power or ACT, for each participant the epochs

were randomly permuted 5,000 times and correlation was re-

calculated for the permuted data sets. For each participant, an original

correlation value more extreme than 99.9998% (threshold Bonferroni

adjusted for the 38 3 3 3 3 multiple comparisons) of the correlation

values obtained for the permuted data sets was considered to be sig-

nificant. At the second level, a binomial test was used to assess

whether the number of participants showing significant correlations

could be explained by chance. The median correlation values over par-

ticipants and their significance based on the binomial test are reported.

2.4.7 | Complexity analysis

As the AIS in a signal is a function of the average information contained

in that signal (i.e., entropy; Shannon, 2001) as well as how this is self-

related over time lags, we also quantified the differential entropy

(Cover & Thomas, 2012) at the brain locations showing significantly

decreased AIS for patients.

Thereby we aimed to investigate whether decreased AIS in ASD

was also associated with decreased (differential) entropy values. Differ-

ential entropy was calculated from the continuous signals using the

Kozachenko–Leonenko estimator (Kozachenko & Leonenko, 1987) as

implemented in the Java Information Dynamic Toolkit (Lizier, 2014). To

avoid a bias for the estimation of entropy based on a differential

amount of epochs, the minimal number of 127 epochs was used for

entropy estimation of all participants. A Wilcoxon rank sum test was

used to access the differences in differential entropy between the ASD

patients and the NTC group.

2.4.8 | Statistical analysis using Bayesian statistics

As nonsignificant effects were found for the difference in entropies

between groups as well as for the correlation of AIS values and age, we

additionally report Bayes factors (BF; Jeffreys, 1998) to clarify these find-

ings. BFs allow direct quantification of the weight of evidence in favor of

the null or the alternative hypothesis (Dienes, 2014)—a measure that can-

not be obtained just by failing to reject the null hypothesis in a frequent-

ist approach. BFs were computed with the BayesFactor package (Morey,

Rouder, Jamil, & Morey, 2015) in R (R Core Team, 2016). Default

(medium width) prior settings for linear regression were used (Jeffrey–

Zellner–Siow mixture of g-priors; Rouder & Morey, 2012; see also Liang,

Paulo, Molina, Clyde, & Berger, 2008, Section 2.1), not favoring the null

or alternative hypothesis in advance. For equal priors for the alternative

and the null hypothesis a BF of, for example, 3 indicates that the poste-

rior odds are 3:1 in favor of the alternative hypothesis, that is, that the

alternative hypothesis is three times more probable than the null hypoth-

esis given the data and the prior probabilities of both hypotheses.

Three types of BF comparisons were performed in this study:

1. For average AIS (over the whole brain) as a response variable, we

compared BFs for a linear regression with age as a predictor vari-

able, with a linear regression with group (i.e., ASD or NTC) as a

predictor variable.

2. For AIS in difference areas (mean over the brain areas showing a

significant difference in AIS between the NTC and the ASD group)

as a response variable, we compared BFs for a linear regression

with age and group as predictor variables with a linear regression

including only group as a predictor variable. Note that here the

factor group was included in the “null model” as the brain areas

were pre-selected based on a group comparison in the independ-

ent samples t test.

3. For differential entropy as the response variable, we compared

BFs for a linear regression with group as predictor variable with a

linear regression “null model” including the intercept only.

2.4.9 | Control analyses

Owing to the finding of a strong positive correlation of epoch-by-

epoch AIS and epoch-by-epoch alpha power as well as ACT, we con-

ducted several control analyses to demonstrate that the AIS measure

provides additional information which is not provided by these two

more traditional measures.

First, we calculated a correlation of the t-value map based on the

AIS contrast and the t-value map based on the alpha power or ACT

contrast (see also Brodski-Guerniero et al., 2017 for a similar analysis).

For all t-value maps, the independent samples t-metric ASD versus

NTC was computed for all 478 source locations within the brain on the

respective values (AIS, ACT, alpha power) averaged over all epochs.

Then, we repeated the statistical group analysis performed for AIS

also for alpha power and ACT:

For investigation of the mean difference between ASD patients

and NTC for each participant, alpha power/ACT values were averaged

over all epochs and over all 478 source locations and a Wilcoxon rank

sum test was performed to test for differences between groups. To

find the specific source locations at which alpha power/ACT values dif-

fered between groups, an independent samples permutation t test was

performed across all potential source locations over the whole brain.

To account for multiple comparisons across the 478 source locations, a

cluster-based correction method (Maris & Oostenveld, 2007) was used.

Clusters were defined as adjacent grid points whose t values exceeded

a critical threshold corresponding to an uncorrected alpha level of 0.05.

Cluster significance was assessed in the same way as described for AIS

statistical analysis.

Finally, we also conducted BF analysis on mean values (averaged

over all 478 source locations) to exclude the possibility that alpha power

and ACT might be more strongly associated with group differences than

AIS. To this end, we compared BFs using a linear regression with AIS,

alpha power or ACT as the response variable and group as predictor vari-

able with a linear regression “null model” including the intercept only.

3 | RESULTS

3.1 | Group characteristics

Nineteen patients diagnoses with ASD and 19 neurotypical controls

(NTC) participated in the experiment. The patients were diagnosed
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with either high functioning autism (n512), Asperger (n56), or atypi-

cal autism (n51). Eight of the participants in the ASD group received

medication (23 Risperidon, 33 psychostimulant, 23 SSRI, 13 Risperi-

don, psychostimulant, and SSRI). Main characteristics for both groups

are summarized in Table 1.

NTC and ASD were well matched with regard to IQ (p5 .861),

handedness (p5 .388), and socio-economic status (SES) (p5 .097). The

ASD group was younger than the NTC group (p5 .041), so age was

controlled for during analysis. As expected from the in- and exclusion

criteria, several first- and second-order scales of the Y(A)SR (t values)

differed between groups.

3.2 | Analysis of average predictable information

Comparison of average predictable information as measured by active

information storage (AIS) between the ASD and NTC group revealed

a significantly reduced mean AIS for the ASD group (Wilcoxon rank

sum test, p5 .031; median6 SD: ASD 2.0260.08; NTC 2.0860.06;

Figure 1).

To exclude the possibility that group differences in average pre-

dictable information were related to age differences between partici-

pants, a correlation analysis between AIS and age was performed for

each group. No significant correlation with age was found for any of

the groups (ASD Spearman’s correlation rho5 .36, p5 .135; Pearson’s

correlation r5 .19, p5 .428; n519; NTC Spearman’s correlation

rho5 .06, p5 .815; Pearson’s correlation r5 .15, p5 .530, n519). To

further clarify these nonsignificant results, we also calculated the ratio

of Bayes Factors for a linear regression with average AIS as a response

variable and group (i.e., ASD or NTC) as a predictor variable and a linear

regression with the same response variable and age as a predictor vari-

able. The resulting Bayes Factor ratio of 3.15 indicated that the

observed average AIS values were over three times more likely to

occur when group was considered the predictor than when age was

considered the predictor. In other words, the calculated Bayes Factor

ratio indicated that group was a better predictor on average AIS than

age. Thus, it is unlikely that the observed group differences on average

AIS were based on age differences only.

TABLE 1 Summary of group characteristics

ASD
(mean6 SD)

NTC
(mean6 SD)

Statistics (Wilcoxon
rank sum test)

IQ 109.4 (616.4) 109.6 (618.6) p5 .861

Age 18.7 years (63.4) 21.6 years (63.8) p5 .041

Handedness 69.5 (647.5) 65.5 (651.6) p5 .388

SES 3.3 (61.03) 3.9 (60.79) p5 .097

Y(A)SR SR 61.6 (611.9) 51.9 (63.3) p5 .006

Y(A)SR KB 57.3 (610.3) 52.6 (64.3) p5 .169

Y(A)SR ADP 57.4 (69.5) 51.5 (62.5) p5 .036

Y(A)SR SP 59.7 (613.6) 52.8 (66.2) p5 .06

Y(A)SR SZ 60.3 (610.9) 50.4 (61.8) p5 .0005

Y(A)SR AP 59.6 (610.7) 52.3 (63.4) p5 .013

Y(A)SR AV 53.6 (65.8) 51.7 (63.5) p5 .153

Y(A)SR DV 53.3 (64.7) 52.4 (63.9) p5 .577

Y(A)SR INT 57.1 (613.1) 47.2 (66.5) p5 .019

Y(A)SR EXT 49.8 (67.7) 45.7 (68.5) p5 .156

Note. Abbreviations: ADP5 anxious/depressed; AP5 attention problems; AV5 aggressive behavior; DV5delinquent behavior; EXT5 externalizing;
INT5 internalizing; KB5 somatic complaints; SES5 socio-economic status; SP5 social problems; SR5withdrawn; SZ5 thought problems.

FIGURE 1 Comparison of average AIS between groups. Each
boxplot shows the distribution of averaged AIS values for all
participants within the ASD or NTC group, respectively (n
ASD519, n NTC519). These values have been obtained by
averaging AIS for all 478 sources inside the brain for each
participant. Horizontal dotted lines mark the median of each group.
The asterisk indicates a significant difference in average AIS
between groups (Wilcoxon rank sum test p5 .03)
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3.3 | Whole-brain analysis of predictable information

Spatially resolved comparison of AIS between the ASD and NTC group

at the MEG source level revealed a significant group difference in pos-

terior cingulate cortex (PCC), supramarginal gyrus (SMG), and precu-

neus (Prec) (Figure 2a). At these areas, AIS was significantly reduced for

ASD compared to NTC (Figure 2b).

To exclude age-related effects, again correlations with age as well

as Bayes Factor comparisons were performed. No significant correla-

tion was found for AIS (averaged over the three sources) and age for

any of the groups (ASD Spearman’s correlation rho52.04, p5 .873;

Pearson’s correlation r5 .312, p5 .19; n519; NTC Spearman’s corre-

lation rho5 .16, p5 .499; Pearson’s correlation r5 .02, p5 .927,

n519). Further, Bayes Factors were computed based on a linear

regression with AIS as response variable and group as a predictor vari-

able, and a linear regression with the same response variable and group

as well as age as predictors. Please note that here the factor group was

included in both models, as the brain areas had been pre-selected

based on the group comparison. The resulting Bayes Factor ratio of

3.25 indicated that the observed AIS values were over than three times

more likely to occur with group as a predictor than with group as well

as age as predictors. This means that a model with group as the only

predictor predicted the AIS values better than when age was included

as an additional predictor. Thus, similar to the global AIS effect, group

differences in AIS at the identified specific sources were not likely to

be driven by differential age.

3.4 | Complexity analysis

To study whether lower AIS in ASD might be associated with

decreased signal complexity, we also computed a measure of entropy

in PCC, SMG, and Prec. None of these areas showed significant differ-

ences in entropy between groups (Wilcoxon rank sum test, PCC

p5 .599, SMG p5 .350, Prec p5 .884, Figure 3). Additionally, a Bayes

factor of 0.34 for a linear regression with entropy (averaged over the

three brain areas) as response variable and group as predictor variable

indicated that the present entropy values were 2.94 times more likely

to be observed in case of the validity of the null hypothesis, that is,

when group is not a proper predictor for entropy. This suggests that

there was no difference in entropy between groups and thus differen-

ces in AIS for these source locations were not likely to be based on dif-

ferences in signal complexity in these areas.

3.5 | Correlation of predictable information and

power/autocorrelation decay time in individual epochs

To study the relation of AIS and more traditional analysis measures like

spectral power and autocorrelation decay time (ACT) over individual

epochs in PCC, SMG, and Prec, we correlated single epoch AIS values

with the power in different frequency bands as well as with ACT during

the same epochs (Table 2). Correlation analysis revealed a strong posi-

tive correlation with power in the alpha band, a moderate positive

FIGURE 2 Statistical comparison of AIS between groups at the
MEG source level. Left: Results of whole-brain independent samples
permutation t-metric contrasting the ASD and NTC group (n
ASD519, n NTC519, t values masked by p< .05, cluster correc-
tion). Peak brain locations are highlighted with white circles. For
each brain location, MNI coordinates are shown at the top. An exem-
plary brain slice is shown for each brain location; z values are dis-
played below each brain slice. Right: Illustration of the distribution of
AIS values for each brain location and for the ASD and NTC group,
respectively. Dotted horizontal lines mark the median of each group.
PCC5 posterior cingulate cortex; SMG5 supramarginal gyrus; Pre-
c5 precuneus [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Post-hoc complexity analysis. Boxplots illustrate the
distribution of entropy values across participants. Entropies are
displayed as z scores across all estimates for both groups. Dotted
horizontal lines mark the median of each group. n. s.5not
significant based on Wilcoxon rank sum test. PCC5 posterior
cingulate cortex; SMG5 supramarginal gyrus; Prec5Precuneus
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correlation with power in the beta band as well as a strong positive

correlation with ACT.

3.6 | Comparison of AIS analysis with more traditional

analysis methods

While we found a strong positive correlation of epoch-by-epoch alpha

power/ACT and predictable information, the contrast map (t values for

all source grid points obtained from independent sample t metric; ASD

vs NTC) based on the mean alpha power over epochs did not correlate

with the epoch-mean AIS contrast map (Spearman’s rho5 .02, p5 .66;

Pearson’s r5 .01, p5 .88; Figure 4). The corresponding contrast map

based on mean ACT, showed a (weak) negative correlation with the

mean AIS contrast map (Spearman’s rho52.29, p< .01, Pearson’s

r52.3, p< .01; Figure 4).

We also repeated the group comparison which we performed for

AIS for alpha power and ACT, following the same pipeline and statisti-

cal thresholds as for AIS: For the spatial-average values (averaged over

all sources over the whole brain), no significant differences between

the ASD and NTC group were found neither for alpha power (median

alpha ASD: 9.4 3 1028; median alpha NTC: 7.5 3 1028, Wilcoxon

ranked sum test, p5 .21), nor ACT (median ACT ASD: 8.1, median ACT

NTC: 7.3, Wilcoxon ranked sum test, p5 .1). In addition, for the whole-

brain contrast of ASD and NTC, no significant clusters were found for

the independent samples permutation t test, neither for alpha power

nor ACT (cluster correction, p> .07).

Last, Bayes factor analysis revealed a Bayes factor of 3.2 for a lin-

ear regression with (averaged) AIS as a response variable and group as

predictor variable, compared to a null model, indicating that group

properly predicts the AIS values. For a linear regression with group as a

predictor variable and (averaged) alpha power as a response variable

we found a Bayes factor of 0.39 and for (averaged) ACT as response

variable we found a Bayes factor of 0.92, indicating that group is less

likely to be a proper predictor for these two measures. In other words,

group membership is most cleanly expressed in AIS values.

The closer link between mean AIS and group, compared to mean

ACT and group, but also the strong correlation of ACT and AIS at the

single epoch level may be explained by the fact that ACT is a linear

measure of how long information is maintained in a signal, while AIS is

a measure of how much information is maintained in a signal for the

history length considered (which was related to the ACT here). Thus,

TABLE 2 Correlation of epoch-by-epoch AIS values and power/
ACT in PCC, SMG, and Prec

PCC SMG Prec

8–14 Hz (alpha) rho5 .69* rho5 .71* rho5 .74*

14–36 Hz (beta) rho5 .35* rho5 .35* rho5 .40*

36–150 Hz (gamma) rho52.13 rho52.13 rho52.12

ACT (autocorrelation
decay time)

rho5 .89* rho5 .46* rho5 .67*

*Significant correlation, based on binomial test.

FIGURE 4 Correlation of AIS contrast maps and ACT/alpha source power contrast maps. (a) Illustration of the t value maps of the independent
samples t-metric for the ASD versus NTC contrast (n538, no correction) on the cortical surface. (b) Scatter plots of the relationship of the ACT/
alpha power contrast and the AIS contrast. Each dot represents a source location within the brain. Spearman and Pearson correlation values on top
of each plot (n5478). Linear regression lines are included in gray (solid) [Color figure can be viewed at wileyonlinelibrary.com]
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ACT is a lossy nonlinear transform of the more informative AIS

measure.

Summing up these findings, while single epoch AIS values were

strongly linked to single epoch alpha power and single epoch ACT,

analysis of mean AIS showed that this novel measure provides addi-

tional information not directly provided by a simple spectral analysis or

an analysis of ACT (Brodski-Guerniero et al., 2017; G�omez et al., 2014;

Wollstadt et al., 2017).

3.7 | Correlation of predictable information and ADI-R

scores

To further assess whether predictable information relates to autistic

traits, we performed a whole-brain linear regression analysis of AIS and

the three ADI-R algorithm scores for the ASD group (n514 as ADI-R

scores were not available for all of the patients). Regression analysis

was performed separately for the three domains: communication (ADI-

R com), social interactions (ADI-R soc), and restrictive, repetitive and

stereotyped behaviors and interests (ADI-R rit). There was a significant

cluster for the regression of AIS and ADI-R rit (Figure 5). This cluster

encompassed four peak areas, including sources in the cerebellum and

the precuneus. The source in precuneus was located slightly more

anterior compared to the precuneus area found in the group compari-

son of AIS (see MNI coordinates in Table 3). All of the brain areas in

the significant cluster showed a negative t value, indicating a negative

relationship of AIS and ADI-R rit. In other words, lower AIS in these

areas was associated with higher ADI-R rit scores, that is, a higher

degree of impairment in this domain. No significant clusters were found

for the regression of AIS and ADI-R com or ADI-R soc.

4 | DISCUSSION

Inspired by the suggestion of impaired predictive coding mechanisms in

ASD, we tested the hypothesis that predictable information in neural

signals is reduced in ASD patients. In line with this hypothesis, we

found average predictable information to be reduced in individuals

with ASD compared to neurotypical controls (NTC) during resting-state

FIGURE 5 Linear regression analysis of AIS and ADI-R scores. Results of linear (permutation) regression with ADI-R rit algorithm scores as
predictor variable and AIS as response variable (ASD only, n514, t values masked by p< .05, cluster correction). Z values are shown below
each brain slice. Peak voxels are highlighted with white circles and numbers; corresponding MNI coordinates and labels are given in Table 3
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Peak voxels for the significant cluster in the regression
analysis of AIS and ADI-R rit (Figure 5)

No MNI coordinates Label

1 x525, y5265, z525 Left lingual gyrus/
cerebellum (culmen)

2 x5220, y5250, z525 Left precuneus

3 x5220, y5250, z5235 Left cerebellum

4 x525, y5265, z5250 Left cerebellum (lobule VIII)
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magnetoencephaography (MEG) recordings. In addition to the reduc-

tion of average predictable information in ASD, we found specific

reductions of predictable information in posterior cingulate cortex

(PCC), supramarginal gyrus (SMG), and precuneus (Prec). Importantly,

none of the group differences in predictable information could be

accounted for by differences in age between the participants or by dif-

ferences in signal complexity (entropy) between groups. In addition,

predictable information in ASD patients showed a negative relationship

with symptom severity in the domain of restricted, repetitive, and ster-

eotyped behaviors and interests (ADI-R rit) in several brain areas

including the cerebellum, suggesting a potential clinical relevance of

predictable information in ASD research.

In the following, we will relate our results to previous findings and

predictive coding accounts of perception in ASD.

4.1 | Average predictable information is reduced in

ASD

Our finding of reduced average predictable information in ASD is in

line with a recent report by G�omez et al. (2014). Gomez et al. studied

predictable information using the AIS measure (Lizier et al., 2012) in

ASD patients and NTC in the pre-stimulus interval of a face detection

task. In all but one of the 12 studied brain regions they found at least a

tendency toward a reduction of AIS in ASD. This study confirms this

general finding of reduced predictable information in ASD—while over-

coming several shortcomings of the predecessor study: First, the pres-

ent larger sample of 38 (19 patients, 19 controls) improved statistical

power in contrast to the small sample size of 22 (10 patients, 12 con-

trols) in the previous study (G�omez et al., 2014). Second, in contrast to

the region-of-interest approach by Gomez et al., applying a whole-

brain approach allowed to study the (average) differences in AIS

between groups based on a large amount of sources (�500 inside the

brain) covering all potential brain areas. Thus, the present study dem-

onstrated that overall AIS is reduced in patients with ASD.

4.2 | Predictable information at PCC, SMG, and Prec is

reduced in ASD

Whole-brain analysis of AIS additionally enabled to determine the brain

areas at which predictable information was particularly reduced for

ASD patients. This was the case for PCC, SMG, and Prec. These three

brain areas belong to the default mode network (DMN; Buckner,

Andrews-Hanna, & Schacter, 2008; Mason et al., 2007; Raichle, 2015),

which is known to be engaged during passive (internally focused) tasks

or epochs—corresponding to the resting-state design of this study. Aty-

picalities in the DMN for ASD patients have been reported as reduced

activation of the DMN nodes (Kennedy, Redcay, & Courchesne, 2006)

or as altered, mainly diminished connectivity between the nodes

(Cherkassky, Kana, Keller, & Just, 2006; Washington et al., 2014; Weng

et al., 2010). However, hyperconnectivity of posterior nodes has also

been reported, namely to medial and anterior temporal lobe regions

(Lynch et al., 2013; Monk et al., 2009). Further, ASD atypicalties in the

DMN may also be related to anatomical differences such as a relative

increase of gray matter volume in several brain areas including the PCC

in ASD patients (Waiter et al., 2004). Interestingly, internal thoughts

which mainly involve activity in the DMN (Buckner et al., 2008) are

also reported to differ considerably between NTC and ASD patients

(Hurlburt, Happe, & Frith, 1994). Extending these previous findings of

ASD-related atypicalities in the DMN, our results show that for ASD

patients also the amount of predictable information is particularly

reduced in posterior nodes of the DMN during resting state periods. It

should be noted that reductions of predictable information in ASD may

appear in brain regions other than the DMN, when the task requires

specific predictions (G�omez et al., 2014).

4.3 | Complexity is not reduced in PCC, SMG, and

Prec

Noteworthy, decreased predictable information within the DMN as

assessed by AIS was not associated with decreased signal complexity

in these areas. This is of importance as the AIS measure quantifies both

the complexity and predictability of neural processes. High AIS values

are observed for predictable signals, but this increases with the rich-

ness of cortical dynamics that are self-predictable. In particular, com-

plexity, which can be measured as signal entropy (i.e., average

information content), contributes to AIS.

Thus, in principle, reduced AIS in ASD patients could also have

resulted from a reduced signal complexity. Indeed, reduced EEG signal

complexity has been observed during a visual matching task for ASD

patients (Catarino, Churches, Baron-Cohen, Andrade, & Ring, 2011) as

well as during resting-state recordings for children with a high risk of

developing ASD (Bosl, Tierney, Tager-Flusberg, & Nelson, 2011). How-

ever, these previous findings were not replicated in our study using dif-

ferential entropy as a measure of complexity. Our Bayesian analysis

favored the hypothesis that there is no difference in entropy and thus

complexity between ASD patients and NTC for the three DMN areas.

Note that at the descriptive level, even the sign of the marginal differ-

ences in entropy between groups was not the same over brain areas.

These findings suggest that neural signals in the DMN for patients and

controls were equally rich in cortical dynamics; however, they were

structured in a less predictable manner for the ASD group. In the fol-

lowing, we relate our findings to predictive coding accounts of ASD.

4.4 | Reduced predictable information in the light of

predictive coding accounts of ASD

Recently it has been argued that the DMN may play a key role in pre-

dictive coding by acting as a top level of the predictive hierarchy, being

responsible for initiating predictions that cascade down to categorize

sensory input and drive motor activity (Barrett, 2017; Barrett & Sat-

pute, 2013). This postulated high impact of the DMN in predictive

processing is compatible with the key functions associated with the

DMN like episodic memory retrieval (posterior parietal and PCC

regions), future planning, self-referential thoughts (dorsomedial pre-

frontal cortex; PFC), and integrating sensory and interoceptive signals

(ventromedial PFC; Buckner et al., 2008; Raichle, 2015; Whitfield-
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Gabrieli & Ford, 2012). In particular, the posterior regions of the DMN

like the Prec and PCC have been linked to memory-related processing,

that is, retrieving information from memory and anticipating the future

(Bar, 2007; Buckner et al., 2008; Wagner, Shannon, Kahn, & Buckner,

2005). Bar (2007) linked the DMN even more directly to the continu-

ous generation of (memory-based) predictions in the brain. Extending

this line of thought, Fiser, Berkes, Orb�an, and Lengyel (2010) have sug-

gested that spontaneous brain activity (as for instance within the DMN

during resting state recordings) reflects the historically informed prior

beliefs about the world (Sadaghiani, Hesselmann, Friston, & Kleinsch-

midt, 2010). Based on these suggestions our findings of decreased pre-

dictable information in ASD within the DMN seamlessly fit into the

account of reduced use of prior knowledge or “weaker” prior beliefs in

ASD (Pellicano & Burr, 2012). As the neural signals in the DMN for

ASD patients were structured in a less predictable manner during rest,

we might speculate that this reflects the impairment of ASD patients

to represent the high-level regularities of the environment in their

spontaneous activity.

The fact that this effect was found at posterior nodes of the DMN

could indicate that there is a deficit in retrieving information from

memory (Raichle, 2015) to generate appropriate predictions. One hypo-

thetical mechanism for this deficit could be related to the previously

reported functional hyperconnectivity between the PCC and medial

and anterior temporal lobe regions (Lynch et al., 2013): if too much or

nonspecific information is retrieved more or less at random during rest,

it may impair the ability to generate stable predictions that would show

as AIS.

Aside from this speculation, our data strongly suggest that the

brain areas receiving the information from the DMN will need to deal

with information that is less predictable. This may result in difficulties

to learn (or change) new predictive models, leading to even more unre-

liable representations of the world. Reduced reliability or precision of

prior knowledge for the formation of top–down propagated predictions

may further result in an imbalance of bottom–up and top–down influ-

ences in ASD (Friston et al., 2013; Lawson et al., 2014). A relative

increase of the influence of bottom–up propagated prediction error

may lead to the feeling of being overwhelmed by sensory information

(Grandin,1992), as weak or imprecise predictions will be less efficient in

explaining away sensory inputs, thus leaving more feed-forward sen-

sory information to be processed by relatively limited central

resources.

While our results are fully compatible with predictive coding

accounts of perception in ASD, which highlight the reduced use or

(relative) precision of priors (Friston et al., 2013; Lawson et al.,

2014; Pellicano & Burr, 2012), they are not easily explained by

accounts of merely increased bottom–up precision in ASD (Brock,

2012; Van de Cruys et al., 2014). This is because increased bottom–

up precision should not be associated with decreased predictable

information.

Furthermore, our finding of the strong association of epoch-by-

epoch predictable information in resting state recordings and neural

activity in low frequencies adds support to the hypothesis that low fre-

quencies are the carrier of top–down propagated information within

the predictive coding framework (Bastos et al., 2012; see, e.g., Brodski-

Guerniero et al., 2017 for empirical evidence).

4.5 | Predictable information in ASD is associated

with symptom severity in the ADI-R rit domain

Studying predictable information in ASD may not only help to distin-

guish between competing theoretical accounts but may also have a

potential clinical relevance. This is supported by the finding of a signifi-

cant negative relationship between predictable information and the

symptom severity in the ADI-R rit domain. The ADI-R rit domain cap-

tures mainly stereotypical motor behaviors like hand flapping as well as

the insistence on sameness and routines. Thus, in contrast to deficits in

social interactions (ADI-R soc) and communication (ADI-R com), the

ADI-R rit domain of ASD symptoms is maybe most closely related to

perceptual atypicalities and also predictive coding mechanisms in ASD.

In fact, the behavioral abnormalities captured in this domain might rep-

resent techniques to control the exaggerated prediction error resulting

from the imbalance of top-down and bottom–up information flow

(Friston et al., 2013; Lawson et al., 2014) and reduce the anxiety asso-

ciated with the inability to predict upcoming events (Sinha, 2002).

The significant cluster for the regression of ADI-R rit scores and

AIS included prominent peaks in the cerebellum—a brain area in which

anatomical abnormalities in ASD (e.g., decreased number of Purkinje

cells) have been observed most consistently (Brambilla et al., 2003; see

also Fatemi et al., 2012 for a review). Even more closely related to our

findings, a significant negative correlation between rates of repetitive

behavior and area measures of cerebellar vermis lobules VI–VII has

been previously reported (Pierce & Courchesne, 2001). Based on this

finding we might speculate that anatomical abnormalities in the cere-

bellum would also show a correlation with the AIS measure. However,

this remains to be tested in future investigations.

5 | CONCLUSION

Resting-state neural activity in patients with ASD shows less predict-

able information compared to controls. This is particularly the case for

posterior regions of the default mode network. Further, in cerebellum

and precuneus, signal predictability is negatively associated with symp-

tom severity in the domain of restricted and repetitive behaviors. Thus,

AIS appears to be a sensitive measure describing differences in neural

information processing between patients with ASD and neurotypical

controls. Extensive comparisons to more traditional descriptors of neu-

ral dynamics such as spectral power and autocorrelation times suggest

that AIS uncovers additional group differences not seen in these other

measures. Last, our findings of reduced predictable information in

patients with ASD replicate at the whole-brain level our earlier results

based on a more limited region-of-interest analysis.
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