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Abstract

Introduction: Fluid-attenuated Inversion Recovery (FLAIR) and dual T2w and proton density (PD)

magnetic resonance images (MRIs) are considered to be the optimum sequences for detecting

white matter hyperintensities (WMHs) in aging and Alzheimer’s disease populations. However,

many existing large multisite studies forgo their acquisition in favor of other MRI sequences due to

economic and time constraints.

Methods: In this article, we have investigated whether FLAIR and T2w/PD sequences are neces-

sary to detect WMHs in Alzheimer’s and aging studies, compared to using only T1w images. Using

a previously validated automated tool based on a Random Forests classifier, WMHs were seg-

mented for the baseline visits of subjects from ADC, ADNI1, and ADNI2/GO studies with and

without T2w/PD and FLAIR information. The obtained WMH loads (WMHLs) in different lobes

were then correlated with manually segmented WMHLs, each other, age, cognitive, and clinical

measures to assess the strength of the correlations with and without using T2w/PD and FLAIR

information.

Results: The WMHLs obtained from T1w-Only segmentations correlated with the manual

WMHLs (ADNI1: r5 .743, p< .001, ADNI2/GO: r5 .904, p< .001), segmentations obtained from

T1w1T2w1PD for ADNI1 (r5 .888, p< .001) and T1w1FLAIR for ADNI2/GO (r5 .969,

p< .001), age (ADNI1: r5 .391, p< .001, ADNI2/GO: r5 .466, p< .001), and ADAS13 (ADNI1:

r5 .227, p< .001, ADNI2/GO: r5 .190, p<0.001), and NPI (ADNI1: r5 .290, p< .001, ADNI2/

GO: r50.144, p< .001), controlling for age.

Conclusion: Our results suggest that while T2w/PD and FLAIR provide more accurate estimates

of the true WMHLs, T1w-Only segmentations can still provide estimates that hold strong correla-

tions with the actual WMHLs, age, and performance on various cognitive/clinical scales, giving

added value to datasets where T2w/PD or FLAIR are not available.

*Part of the data used in the preparation of this article was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As

such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing

of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-ontent/uploads/how_to_apply/ADNI_Acknowledgement_List.
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1 | INTRODUCTION

White matter hyperintensities (WMHs), defined as regions of higher

signal than the surrounding normal appearing white matter (NAWM)

on T2w or FLAIR MR images, are one of the most common findings in

structural MR imaging in older adults, reflecting demyelination and axo-

nal loss (Prins & Scheltens, 2015). While sensitive as an expression of

abnormality in the white matter (WM) tissue, the etiology of WMHs is

quite varied, with ischemia due to cerebral small vessel disease playing

an important role in the majority of older subjects (Gouw et al., 2010;

Yoshita, Fletcher, & DeCarli, 2005). This age-related ischemic small ves-

sel disease is also referred to as arteriolosclerosis, hypertension-related,

or vascular-risk-factor-related small vessel disease (Pantoni, 2010).

However, the term small vessel disease is also related to other patholo-

gies that affect small arteries, arterioles, venules, and capillaries, such as

cerebral amyloid angiopathy, genetic small vessel disease distinct from

amyloid angiopathy (e.g., cerebral autosomal dominant/recessive

arteriopathy with subcortical infarcts and leukoencephalopathy or

CADASIL/CARASIL), inflammatory-mediated small vessel disease (e.g.,

primary angiitis of central nervous system CNS, Wegener’s granuloma-

tosis), and venous collagenosis (Pantoni, 2010).

Some of the consequences of small vessel disease include lacunar

infarcts, WMHs, micro and macro bleeding. The first two phenomena

are easily detected on MR images. In contrast, small vessels cannot be

seen using MRI, so the term small vessel disease on MRI has been used

for (and become equivalent to) WMHs and lacunar infarcts (Pantoni,

2010). Unfortunately, there is great heterogeneity across neuropatho-

logical centers regarding the definition of MRI small vessel disease,

with overall agreement lower than 50% (Pantoni et al., 2006). As there

is no conclusive data showing the levels of specificity and sensitivity of

WMHs on MRI as a reflection of a specific etiology of small vessel dis-

ease, we consider, in our cases, that the two major groups (arteriolo-

sclerosis and amyloid angiopathy) are probably the main substrates of

the WMHs. These two etiologies on their own have a crucial role in

three major clinical areas: stroke, neurocognitive disorders (dementia),

and aging-related cognitive decline (Pantoni, 2010).

The location and load of WMHs have been shown to correlate

with age, a history of hypertension, hyperinsulinemia (Hawkins et al.,

2017), and cognitive deficits (Biesbroek, Weaver, & Biessels, 2017;

DeCarli et al., 1995; Dubois et al., 2014). Therefore, WMHs constitute

a clinically meaningful biomarker of cognitive decline related to general

aging and pathological vascular processes, which are known contribu-

tors to multifactorial neurodegenerative diseases (Iturria-Medina,

Sotero, Toussaint, Mateos-P�erez, & Evans, 2016). They are a particu-

larly important clinical measure in the elderly populations (Carmichael

et al., 2010; De Groot et al., 2002; DeCarli et al., 2001; Dubois et al.,

2014; Longstreth et al., 1996; van Straaten et al., 2008).

WMHs are generally assessed using FLAIR or T2w/PD scans

which have optimum contrast for detecting such lesions (Caligiuri et al.,

2015). T2w/PD and FLAIR WMHs have been shown to correspond to

myelin stain lesions in postmortem histology studies (Fernando et al.,

2004; Takao et al., 1999). However, WMHs can also be detected on

T1w scans to some extent. The characteristic bright WMH signal of

FLAIR, T2w and PD, manifests in the T1w sequence as a hypointense

area, heterogeneous in the value of the lower signal, ranging from iso-

intense to hypo-intense in relation to the surrounding NAWM. In other

words, a FLAIR, T2w/PD homogeneous hyperintense area would corre-

spond, in the T1w modality, to a similar area of heterogeneous hypoin-

tense signal, ranging from values close to fluid, to isointense in relation

to the surrounding NAWM. This phenomenon is probably determined

by the different types and degrees of change occurring in the WM at

the same time (e.g., more/less intense demyelination and axonal loss).

This range of T1w hypointensities in a region of WM tissue is more

homogeneously represented by the bright signal of T2w and FLAIR

sequences. As the quantification of lesion volumes in a given MRI

modality depends on the contrast between the lesional area and the

surrounding NAWM, these volumes will always be larger if the detec-

tion considers the bright signal of FLAIR or T2w scans, as opposed to

using only T1w images. The hypointensity seen on T1w images pre-

sumably reflects the most severe spectrum of WM injury.

Although FLAIR or T2w/PD scans are the optimal sequences to

detect WMHs, many especially large-scale studies forgo acquisition

of either one or all of the optimal modalities because of time and

financial constraints. There can also be differences in WMH volume

levels when comparing T2w/PD with FLAIR scans, with FLAIR scans

tending to give higher overall levels. Consequently, it would be

extremely useful if one can get an estimate of the load and location

of WMHs without requiring these optimal modalities. While there

have been other studies that define and use T1w white matter signal

abnormality (WMSA) detected by Freesurfer (Fischl, 2012) as a

measure of WMH in aging and AD populations (Jacobs et al., 2013;

Leritz et al., 2014; Salat et al., 2010), to our knowledge, no studies

have investigated and validated the relationship between these T1w

hypointensities and FLAIR or T2w/PD-based WMH segmentations

and whether there is a significant difference in their relationships

with clinical measures.

In this article, we aimed to compare the ability of T1w, T2w/PD

and FLAIR scans in differentiating between healthy tissue and WMHs,

both in terms of (a) detection in comparison with manually segmented

labels and (b) correlation with a variety of clinical measures. Our goal is

to determine if WMHs can be partially but accurately segmented based

only on T1w images, and how reliable T1w-based assessments are in

comparison with the more accurate estimates obtained based on FLAIR

or T2w/PD sequences.
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2 | MATERIALS AND METHODS

2.1 | Subjects

The WMHs were segmented both manually and automatically in three

different datasets to ensure generalizability of the results. Table 1 sum-

marizes the information for each dataset.

1. The first dataset (ADC) consists of 70 elderly individuals who

received a full clinical workup and structural MR scans including T1w,

double-echo PD/T2w, and FLAIR scans at their enrollment into the

University of California, Davis Alzheimer’s Disease Center (ADC) (Hin-

ton et al., 2010). Subjects were 70–90 years old with normal cognition,

mild cognitive impairment, or AD. All subjects were manually seg-

mented by an expert rater.

2. The second dataset included subjects selected from ADNI study.

This data was obtained from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in

2003 as a public–private partnership, led by Principal Investigator

Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of

mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

ADNI was carried out with the goal of recruiting 800 adults aged from

55 to 90, and consists of �200 cognitively normal, 400 MCI, and 200

AD subjects. ADNIGO is a later study that followed ADNI participants

that were in cognitively normal or early MCI stages (http://www.adcs.

org/studies/imagineadni.aspx). ADNI2 study followed patients in the

same categories as well as recruiting 550 new subjects (http://www.

adcs.org/studies/ImagineADNI2.aspx). Baseline visit data from ADNI1

and ADNI2/GO subjects were used in this study (Table 1). Forty-six

subjects with T1w and FLAIR scans and different loads of WMHs were

selected from ADNI2/GO study for manual segmentation. To ensure

that the datasets used for training and validation of the method have a

wide range of WMHs, segmentation techniques generally make sure to

include subjects with small, medium, and large WMH loads (Dadar

et al., 2017a; Griffanti et al., 2016; Schmidt et al., 2012; Sim~oes et al.,

2013). Here, subjects were selected from different sites and scanners

and a preliminary assessment was performed to evaluate their WMH

load with the goal of acquiring subjects with different scanner informa-

tion as well as different loads of WMHs. For each scanner model, we

selected datasets that had low (<5 CCs), medium (5–20 CCs), and high

lesion loads (>20 CCs). Equal numbers of male and female subjects

were selected. The age of the subjects was also considered for the

selection, with the aim of achieving a normal distribution. Using a simi-

lar strategy, 53 subjects with T1w, T2w, and PD scans and different

WMH loads were selected from the ADNI1 study for manual

segmentation.

2.2 | Clinical evaluations

We did not have the clinical evaluations available for the ADC study.

The clinical assessment and cognitive testing of ADNI study followed a

standardized protocol that has been described previously (Petersen

et al., 2010). At each visit, the participants underwent a standardized

clinical evaluation and cognitive tests including Mini-Mental State

Examination (MMSE), Alzheimer’s Disease Assessment Scale-Cognitive

Subscale (ADAS-Cog), Functional Assessment Questionnaire (FAQ),

Neuropsychiatric Inventory (NPI), a composite score for executive

function (Gibbons et al., 2012), and Immediate, Forgetting and Learning

subscores from Rey Auditory Verbal Learning Task (RAVLT). Each indi-

vidual had a self-reported history of hypertension, and cardiovascular

risk factors available. Table 1 summarizes this information for the sub-

jects that were used in this study. For details on the administration and

scoring, see http://www.adni-info.org/Scientists/ADNIData.html.

2.3 | MR imaging

This section describes the scanner information and image acquisition

parameters for the abovementioned datasets. Table 2 shows the sum-

mary of this information for each sequence in each dataset.

2.3.1 | ADC dataset

MRI data were acquired on two 1.5 T MRI scanners: a GE MEDICAL

SYSTEMS Signa scanner located at UCD Medical Center (Sacramento,

CA) and a Philips Eclipse scanner located at the Veterans Administra-

tion Northern California Health Care System (Martinez, CA). T1w scans

were acquired with an FSPGR pulse sequence with 1.5 mm slice thick-

ness, 128 slices covering the entire brain, a 250 3 250 mm field of

view, a 256 3 256 scan matrix, voxel size of 0.9765 3 0.9765 3

1.5 mm, repetition time (TR) of 9 ms, and echo time (TE) of 2.9 ms.

FLAIR scans were acquired with a fast spin echo (FSE) sequence with

TABLE 1 Descriptive statistics for the ADNI subjects enrolled in
this study

Test ADNI1 ADNI2/GO

Number (male) 669 (393) 481 (298)

Age 75.26 6 6.84 72.62 6 7.54

MMSE 26.71 6 2.70 27.58 6 2.76

ADAS11 11.63 6 6.24 9.89 6 6.80

ADAS13 18.45 6 9.08 15.29 6 9.66

FAQ 4.88 6 6.47 3.44 6 5.70

RAVLTI 32.09 6 11.17 37.72 6 13.08

RAVLTF 4.31 6 2.38 4.29 6 2.62

RAVLTL 3.61 6 2.62 4.65 6 2.80

Executive 0.71 6 0.52 0.91 6 0.60

NPI 10.30 6 0.51 7.39 6 7.77

Note. Data are number or mean 6 standard deviation.
ADNI5Alzheimer’s Disease Neuroimaging Initiative; MMSE5Mini-
Mental State Examination; ADAS5Alzheimer’s Disease Assessment
Scale; FAQ5Functional Assessment Questionnaire; RAVLT5Rey Audi-
tory Verbal Learning Task (I5 Immediate, F5Forgetting, L5 Learning);
Executive5Executive Function; NPI5Total Neuropsychiatric Inventory
Score.
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3 mm slice thickness, a 220 3 220 mm field of view, and a 256 3 192

scan matrix, voxel size of 0.9765 3 0.9765 3 3 mm, TR511000 ms,

and TE5144 ms. Analogous sequences were installed on both the GE

and Philips scanners.

2.3.2 | ADNI1 dataset

The MRI data used were acquired on scanners from three different

manufacturers, GE, Philips, and SIEMENS. All patients had similar MRI

protocols for T1w and T2w/PD scans. T1w scans were acquired in 3D

TABLE 2 Scanner information and MRI acquisition parameters for ADC, ADNI1, and ADNI2/GO datasets

Modality Dataset ADC ADNI1 ADNI2/GO

Scanner manufacturer GE, Philips GE, Philips, SIEMENS Philips, SIEMENS

T1w Slice thickness 1.5 mm 1.2 mm 1.2 mm

No. of slices 128 160 196

Field of view 250 3 250 cm2 192 3 192 cm2 256 3 256 cm2

Scan matrix 256 3 256 cm2 192 3 192 cm2 256 3 256 cm2

Repetition time (TR) 9 ms 3000 ms 7.2 ms

Echo time (TE) 2.9 ms 3.55 ms 3.0 ms

Pulse sequence FSPGR MPRAGE MPRAGE

Other Contrast T2w/PD/FLAIR T2w/PD FLAIR

Slice thickness 3/3/3 mm 3 mm 5 mm

No. of slices 42/42/48 56 42

Field of view 240 3 240/240 3
240/220 3 220 cm2

256 3 256 cm2 256 3 256 cm2

Scan matrix 256 3 256/256 3
256/256 3 192 cm2

256 3 256 cm2 256 3 256 cm2

Repetition time (TR) 2420/2420/11000 ms 3000/3000 ms 11000 ms

Echo time (TE) 90/20/144 ms 95.2/10.5 ms 150 ms

Pulse sequence DSE/DSE/FSE FSE SE/IR

FIGURE 1 Axial slices showing T1w, T2w, PD, and FLAIR images and manual (yellow), all-contrasts (cyan), and T1w-Only (red) segmenta-
tions of subjects from ADC (top), ADNI1 (middle), and ADNI2/GO (bottom) datasets [Color figure can be viewed at wileyonlinelibrary.com]
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with a gradient recalled sequence with 1.2 mm slice thickness, 160

sagittal slices, covering the entire brain, a 192 3 192 mm field of view,

and a 192 3 192 scan matrix, voxel size of 1.2 3 0.937530.9375 mm,

TR53000 ms, and TE53.55 ms. T2w/PD scans were acquired in 2D

with an FSE sequence with 3.0 mm slice thickness, 56 axial slices cover-

ing the entire brain, a 256 3 256 mm field of view, and a 256 3 256

scan matrix, a voxel size of 0.8594 3 0.8594 3 5 mm, with TR53000

ms, TE595.2 ms for T2w, and TE510.5 ms for PD images.

2.3.3 | ADNI2/GO dataset

The MRI data used were acquired on scanners from three different

manufacturers, Philips, GE and SIEMENS. All patients had similar MRI

protocols for T1w and FLAIR scans. T1w scans were acquired in 3D

with a gradient recalled sequence with 1.2 mm slice thickness, 196 sag-

ittal slices, covering the entire brain, a 256 3 256 mm field of view,

and a 256 3 256 scan matrix, voxel size of 1 3 1 3 1.2 mm, TR57.2

ms, and TE53.0 ms. FLAIR scans were acquired in 2D with a spin

echo inversion recovery sequence with 5.0 mm slice thickness, 42 axial

slices covering the entire brain, a 256 3 256 mm field of view, and a

256 3 256 scan matrix, voxel size of 0.8594 3 0.8594 3 5 mm, with

TR511000 ms and TE5150 ms.

2.4 | Preprocessing

All MRI scans were preprocessed using our standardized pipeline.

Images were denoised (Manj�on, Coup�e, Martí-Bonmatí, Collins, &

Robles, 2010), corrected for image intensity inhomogeneity (Sled, Zij-

denbos, & Evans, 1998) and intensity scaled (Fonov et al., 2011). The

T2w, PD, and FLAIR scans were then co-registered to the structural

T1w scan of the same subject using a six-parameter rigid body registra-

tion (Collins, Neelin, Peters, & Evans, 1994). The T1w scans were nonli-

nearly registered to the ADNI template based on intensity correlation

coefficient (Collins & Evans, 1997). The quality of the nonlinear regis-

trations was visually assessed and the results that did not pass this

quality control were discarded. Using the T1w-to-template transforma-

tions (i.e., linear1 nonlinear), the other modalities (e.g., FLAIR, T2w,

PD) were registered to the ADNI template as well. The manually seg-

mented lesion maps were also registered to the ADNI template using

the transformations of their corresponding FLAIR images.

2.5 | Manual segmentation

In ADC and ADNI2/GO datasets, the WMHs were manually seg-

mented by an expert with more than 12 years of experience in reading

MRI and developing standardized MRI guidelines to detect WM lesions

using different image modalities (Maranzano, Rudko, Arnold, & Nar-

ayanan, 2016) with FLAIR used as the primary contrast and with T1w

used to aid in the decision process to include or exclude a voxel from

FIGURE 2 Intensity histograms of white matter (WM), grey matter (GM), cerebrospinal fluid (CSF), and white matter hyperintensities
(WMHs) for (a) ADC and (b) ADNI datasets [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Percentage of overlap between density histograms of
WMHs and GM, WM, and CSF

Dataset Dataset WM GM CSF

ADC T1w 22.33 37.71 5.33

T2w 9.02 29.80 30.75

PD 15.77 36.47 56.91

FLAIR 2.73 3.76 1.02

ADNI1 T1w 30.06 42.49 9.72

T2w 9.32 23.95 32.95

PD 28.96 39.90 32.37

ADNI2/GO T1w 28.72 41.87 8.97

FLAIR 12.41 14.53 5.00

Note. WMH5white matter hyperintensity; GM5 gray matter;
WM5white matter.
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the lesion mask. In ADNI1, T2w images were used as the primary con-

trast with T1w and PD used to aid in the decision process. The rater

defined the voxel of interest according to anatomical location and

intensity information in all given MRI modalities. To be considered a

WMH, a given voxel had to be hyperintense in relation to the sur-

rounding NAWM on T2w, PD, or FLAIR. The same voxel had to be iso

to hypointense in relation to the NAWM on T1w images. Previous

work (Dadar et al., 2017a) showed that intrarater Dice Kappa was 0.72,

0.80, and 0.86 for ADC, ADNI1, and ADNI2/GO, respectively.

2.6 | Automatic segmentation

A previously validated fully automatic WMH segmentation technique

was used to automatically segment theWMHs in all three datasets using

a set of intensity and spatial features and a Random Forest classifier

(Dadar et al., 2017a, 2017b). The intensity features include voxel inten-

sity for all available modalities, the probability of a specific intensity value

being aWMH (pWMH) or non-WMH (pnon-WMH) for each available modal-

ity, and the ratio of these two probabilities for each available modality.

FIGURE 3 Total brain and per lobe correlations for automatic versus manually segmented WMH volumes (CCs), using all contrasts
available (red) and using only T1w contrast (blue) for (a) ADC, (b) ADNI1, and (c) ADNI2/GO datasets [Color figure can be viewed at
wileyonlinelibrary.com]
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The spatial features include a spatial WMH probability map indicating

the probability of a voxel at a specific location being a WMH and the

average intensity of a non-WMH voxel at that specific voxel location for

each available modality. After preprocessing and co-registration of all

available modalities, these spatial and intensity features are calculated

for each modality. The Random Forest classifier is then trained using

these features to segment theWMHs (Dadar et al., 2017a).

For each dataset, the automatic technique was first trained and vali-

dated based on the manual segmentations. Two sets of automatic seg-

mentations were completed, first with all available modalities (referred to

as All-Contrasts segmentations) and second without using the T2w, PD,

and FLAIR information (referred to as T1w-Only segmentations). The

trained classifiers were then used to segment the entire ADC, ADNI1,

and ADNI2/GO datasets. The quality of the segmentations was then

assessed and verified by a human expert. The volumes of the WMHs for

the left and right frontal, parietal, temporal, and occipital lobes and the

entire brain were calculated by nonlinearly warping the Hammers atlas

(Hammers et al., 2003) to the T1w scans of individual subjects and nor-

malized for head size to make population comparisons possible.

The WMH volumes obtained from the T1w-Only segmentations

were then correlated with All-Contrasts volumes and clinical scores. False

discovery rate (FDR) correction was performed to correct for all multiple

comparisons separately for each dataset (significance threshold50.05).

All the correlations with clinical scores were performed with log trans-

formedWMHs (to achieve normal distribution), controlling for age.

The key concern when using T1w-Only segmentations is whether

the WMH portions that are not captured by T1w-Only segmentations

are clinically significant. To assess whether the difference between the

WMH volumes provided by T1w-Only and All-Contrast segmentations

is statistically significant, a general linear model was used to regress the

contrast (WMHLAll-Contrast-WMHLT1w-Only) and each measure.

Figure 1 shows the axials slices of T1w, T2w, PD, and FLAIR

images for a subject from ADC, T1w, T2w, and PD images for a subject

from ADNI1 and T1w and FLAIR images for a subject from ADNI2/

GO, along with the manual segmentations, as well as T1w-Only and

All-Contrasts automated segmentations. While All-Contrasts segmenta-

tions conform very well with the manual labels, the T1w-Only segmen-

tations seem to mostly capture the brightest of the WMHs.

3 | RESULTS

3.1 | Comparison of tissue histograms

Here we compare the histograms of WMHs with white matter

(WM), gray matter (GM), and cerebrospinal fluid (CSF) density

FIGURE 4 Total brain and per lobe correlations for automatically segmented WMHs volumes (CCs) based on all available contrast images
versus only T1w contrast image for ADNI1 (left) and ADNI2/GO (right) datasets [Color figure can be viewed at wileyonlinelibrary.com]
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histograms using the manually segmented labels for each dataset

(Fig. 2). Table 3 shows the percentage of overlap between the

density histograms of WMHs and WM, GM, and CSF. The tissue

histograms show the greatest separation of WMH with GM,

WM, and CSF in FLAIR contrast images, followed by T2w, PD, and

T1w.

FIGURE 5 Total brain and per lobe correlations for z-scored log-transformed automatically segmented WMH volumes correlated with age
(z-scored) based on all available contrasts (red) versus only T1w images (blue) for ADNI1 (left) and ADNI2/GO (right) datasets.
WMHL5white matter hyperintensity load [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Dice kappa and volumetric correlation between T1w-Only and All-contrasts segmentations and thresholded manual labels based
on T1w image intensity [Color figure can be viewed at wileyonlinelibrary.com]
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3.2 | Comparisons with manual segmentations

To assess the importance of using the T2w, PD, and FLAIR information,

the WMH loads obtained from segmentations with and without the

information of the optimal modality (i.e., T2w/PD and FLAIR sequences

for ADNI1 and ADNI2/GO datasets, respectively) were correlated with

the equivalent volumes obtained from the manual segmentations. Cor-

relations were computed for total brain WMH, and for lobar WMH

loads. Figure 3 shows this information for the three datasets. While the

T1w-Only volumes systematically underestimate the gold standard vol-

umes (obtained from the manual segmentations), they are still able to

retain high correlations in all regions and datasets (r5 .963, p< .001 for

ADC, r5 .743, p< .001 for ADNI1, and r5 .904, p< .001 for ADNI2/

GO for whole brain T1w-Only correlations). The WMH volume range

(i.e., the range of the WMH volumes obtained from T1w-Only and All-

Contrasts segmentations) is also substantially reduced (e.g., 0–42.5 CCs

vs 0–124 CCs for ADC, 0–74 CCs vs 0–116 CCs for ADNI1, and 0–67

CCs vs 0–104 CCs for ADC, for T1w-Only and All-Contrasts segmenta-

tions, respectively).

3.3 | Large-scale correlations

A correlation analysis of the WMH loads for the whole brain as well as

different lobes was performed between the automatic segmentations

obtained with and without T2w/PD and FLAIR information (All-Con-

trasts and T1w-Only, respectively) for the subjects from ADNI1 and

ADNI2/GO datasets. Figure 4 shows the results of these comparisons

for each dataset. The correlations were significant for every lobe in

both datasets (r5 .888, p< .001 for ADNI1, and r5 .969, p< .001 for

ADNI2/GO for whole brain correlations). The results show a trend of

under-segmentation that remains consistent with the change in the

WMH load. The amount of this underestimation is also highly corre-

lated with the total WMH load for both datasets (r5 .790, p< .00001

for ADNI1 and r5 .717, p< .00001 for ADNI2/GO).

The log-transformed WMH loads were also correlated with age.

Figure 5 shows the results of the correlations with age for ADNI1 and

ADNI2/GO datasets.

If one considers the T1w intensity profile of the tissue that is seg-

mented as WMH based on FLAIR or T2w images, the intensities range

from hypointense to isointense in relation to the neighboring tissue. To

investigate whether the T1w-Only segmentations have different sensi-

tivity levels for detecting WMHs (i.e., whether the T1w-Only segmen-

tations label the hypo-intense portion of the WMHs and not the

isointense areas), the manual WMH masks created by the expert were

thresholded based on T1w intensity of NAWM at different values,

reflecting different levels of sensitivity. The resulting WMH masks

were then compared with the T1w-Only and All-Contrasts WMH

TABLE 4 Coefficients of correlation between WMH loads in different lobes and cognitive measures for ADNI1 subjects, controlling for age

Test LFL RFL LPL RPL LTL RTL LOL ROL WB

T11T21PD MMSE 20.165* 20.171* 20.139* 20.145* 20.081* 20.090* 20.125* 20.134* 20.174*

ADAS11 0.203* 0.199* 0.183* 0.192* 0.108* 0.131* 0.129* 0.172* 0.217*

ADAS13 0.219* 0.217* 0.201* 0.199* 0.127* 0.151* 0.141* 0.190* 0.236*

FAQ 0.209* 0.215* 0.171* 0.192* 0.109* 0.128* 0.139* 0.208* 0.216*

RAVLTI 20.174* 20.179* 20.161* 20.163* 20.119* 20.168* 20.130* 20.157* 20.197*

RAVLTF 0.074 0.051 0.062 20.028 20.005 20.005 20.023 20.020 20.061

RAVLTL 20.084* 20.100* 20.079 20.079 20.070 20.085* 20.084* 20.095* 20.103*

Executive 20.111* 20.110* 20.121* 20.107* 20.112* 20.113* 20.182* 20.139* 20.130*

NPI 0.210* 0.199* 0.279* 0.273* 0.270* 0.239* 0.242* 0.221* 0.277*

Only T1 MMSE 20.203* 20.211* 20.127* 20.147* 20.031 20.057 20.144* 20.162* 20.187*

ADAS11 0.231* 0.230* 0.149* 0.180* 0.054 0.083* 0.132* 0.146* 0.217*

ADAS13 0.251* 0.251* 0.168* 0.186* 0.069 0.092* 0.148* 0.156* 0.236*

FAQ 0.226* 0.238* 0.150* 0.182* 0.065 0.089* 0.160* 0.224* 0.218*

RAVLTI 20.220* 20.217* 20.166* 20.179* 20.100* 20.130* 20.133* 20.141* 20.217*

RAVLTF 0.074 0.067 0.054 0.043 0.053 0.033 0.036 0.044 0.073

RAVLTL 20.109* 20.113* 20.059 20.070 20.020 20.037 20.070 20.084* 20.097*

Executive 20.128* 20.135* 20.117* 20.113* 20.018 20.077 20.124* 20.092* 20.130*

NPI 0.228* 0.237* 0.308* 0.300* 0.211* 0.200* 0.200* 0.228* 0.290*

Note. WMH5white matter hyperintensity; LFL/RFL5 left/right frontal lobe; LPL/RPL5 left/right parietal lobe; LTL/RTL5 left/right temporal lobe;
LOL/ROL5 left/right occipital lobe; WB5whole brain; MMSE5Mini-Mental State Examination; ADAS5Alzheimer’s Disease Assessment Scale;
FAQ5Functional Assessment Questionnaire; RAVLT5Rey Auditory Verbal Learning Task (I5 Immediate, F5 Forgetting, L5 Learning); Execu-
tive5 executive function (Gibbons et al., 2012); NPI5Total Neuropsychiatric Inventory Score.
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segmentations for different threshold values using Dice Kappa similar-

ity measure and volumetric correlation (Fig. 6). The results show higher

Dice Kappa values as well as stronger correlations with T1w-Only seg-

mentations at lower threshold values, confirming that the T1w-Only

segmentations correspond to the more hypointense regions of the

manual WMH masks, with the optimal intensity threshold at �63 (note

that the intensity range of all the images has been normalized to the

range of 0–100).

3.3.1 | WMHs and clinical measures

Tables 4 and 5 summarize the results of correlating different cognitive

measures and the log-transformed WMH loads in different lobes

obtained from All-Contrasts and T1w-Only segmentations, controlling

for age for ADNI1 and ADNI2/Go datasets, respectively. The “*” indi-

cates significant correlations after FDR correction, controlling for age

for ADNI1 and ADNI2/GO datasets. Figure 7 shows an example of

these correlations for ADAS13 score.

To assess whether the difference between the T1w-Only and All-

Contrast WMH volumes is statistically significant, a general linear

model was used to regress the contrast and each measure. None of

these contrasts was significant after correcting for multiple compari-

sons using FDR.

3.3.2 | WMHs and other measures

The log-transformed total WMH loads were significantly different

between subjects with and without cardiovascular risk factors and his-

tory of hypertension, for both T1w-Only and All-Contrasts segmenta-

tions (p< .0001). Figure 8 shows the boxplots of the log-transformed

WMH loads in normal control (NC), mild cognitive impairment (MCI),

and dementia groups, separately for T1w-Only and All-Contrasts loads

in ADNI1 and ADNI2/GO datasets. In all cases, the dementia cohort has

significantly larger WMH loads than the other two groups (note that the

log-transformed values are plotted here, and that a 0.4 difference in the

log-transformed values is equivalent to approximately 3 CCs ofWMHs).

Tables 6 summarizes the results of correlating different risk factors

with the log-transformed total WMH loads from T1w-Only images and

All-Contrasts segmentations, for ADNI1 and ADNI2/Go datasets, respec-

tively. The “*” indicates significant correlations, after multiple comparisons

correction using false discovery rate (FDR). None of the contrasts

(WMHLAll-Contrast-WMHLT1w-Only) was significant after correcting for mul-

tiple comparisons.

4 | DISCUSSION

White matter hyperintensities are an important clinical marker of small

vessel disease in aging, and patients suffering from stroke and

TABLE 5 Coefficients of correlation between WMH loads in different lobes and cognitive measures for ADNI2/GO subjects, controlling for
age

Test LFL RFL LPL RPL LTL RTL LOL ROL WB

T11FLAIR MMSE 20.153* 20.124* 20.145* 20.137* 20.095 20.086 20.147* 20.083 20.152*

ADAS11 0.210* 0.191* 0.199* 0.189* 0.166* 0.130* 0.231* 0.135* 0.219*

ADAS13 0.197* 0.184* 0.184* 0.180* 0.161* 0.119* 0.227* 0.138* 0.208*

FAQ 0.160* 0.148* 0.155* 0.148* 0.132* 0.104* 0.124* 0.099* 0.167*

RAVLTI 20.108* 20.115* 20.096 20.104* 20.064 20.024 20.180* 20.070 20.121*

RAVLTF 20.069 20.048 20.077 20.046 20.036 20.087 20.022 20.061 20.072

RAVLTL 20.124* 20.143* 20.126* 20.138* 20.096 20.102* 20.088 20.011 20.137*

Executive 20.057 20.078 20.056 20.074 20.036 20.013 20.104 20.100 20.080

NPI 0.179* 0.204* 0.175* 0.213* 0.200* 0.247* 0.175* 0.195* 0.215*

Only T1 MMSE 20.126* 20.094 20.109* 20.106* 20.055 20.067 20.097 20.041 20.118*

ADAS11 0.209* 0.183* 0.186* 0.158* 0.136* 0.102* 0.140* 0.097 0.199*

ADAS13 0.192* 0.165* 0.162* 0.145* 0.120* 0.084 0.126* 0.083 0.179*

FAQ 0.151* 0.118* 0.113* 0.096 0.071 0.037 0.055 0.051 0.127*

RAVLTI 20.115* 20.105* 20.101* 20.112* 20.057 20.033 20.072 20.012 20.111*

RAVLTF 20.057 20.056 20.062 20.024 20.037 20.042 20.050 20.073 20.061

RAVLTL 20.158* 20.156* 20.094 20.105* 20.134* 20.108* 20.067 20.021 20.142*

Executive 20.075 20.077 20.069 20.095 20.016 20.055 20.046 20.031 20.083

NPI 0.125* 0.130* 0.113* 0.152* 0.145* 0.153* 0.034 0.108* 0.144*

Note. WMH5white matter hyperintensity; LFL/RFL5 left/right frontal lobe; LPL/RPL5 left/right parietal lobe; LTL/RTL5 left/right temporal lobe;
LOL/ROL5 left/right occipital lobe; WB5whole brain; MMSE5Mini-Mental State Examination; ADAS5Alzheimer’s Disease Assessment Scale;
FAQ5Functional Assessment Questionnaire; RAVLT5Rey Auditory Verbal Learning Task (I5 Immediate, F5 Forgetting, L5 Learning); Execu-
tive5 executive function; NPI5Total Neuropsychiatric Inventory Score.
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dementia (Carmichael et al., 2010; DeCarli et al., 1995; Pantoni et al.,

2006; van Straaten et al., 2008). In recent years, there has been an

increasing interest in using WMHs as an outcome in clinical trials inves-

tigating cerebral small vessel disease in the context of stroke and

dementia (Debette & Markus, 2010). They reflect the burden of the

disease in relation to a small-vessel component (Pantoni, 2010), and

are associated with decline in different cognitive domains. Specifically

in AD, WMHs are emerging as a potential biomarker of the preclinical

vulnerability risk for the disease (Brickman et al., 2012; Deoni, Mat-

thews, & Kolind, 2013; Provenzano et al., 2013).

The optimal MRI sequences for detecting WMHs are FLAIR and

T2w/PD scans. However, many previous large-scale datasets have for-

gone the acquisition of these sequences in favor of other imaging

modalities or due to time and financial concerns. WMHs are also visible

as hypointense regions on T1w images, but their range of hypointensity

is more spread out when compared to the bright signal obtained in

FLAIR and T2w/PD, with large isointense areas, or almost isointense in

relation with the surrounding NAWM (Fig. 9). This lower contrast

between the NAWM tissue and WMHs on T1w sequence makes accu-

rate detection of the full extent of WMHs more challenging in this MRI

modality. However, by assessing, even to some extent, the load and

location of WMHs using only T1w data, it is possible to study them in

other retrospective datasets, where T2w/PD, or FLAIR information are

not available. The key concern when using T1w-Only segmentations

would be whether the WMH portions that are not captured by T1w-

Only segmentations are clinically significant.

In our study, a previously validated automated technique was used

to segment the WMHs with and without the optimal FLAIR and T2w/

PD information. In a previous study, we have shown that this auto-

mated tool was able to detect WMHs using different combinations of

MRI sequences (Dadar et al., 2017a). Here, a random forest classifier

was chosen to report our results based on our previous experiments

and validations as it had the best performance in detecting WMHs

among the studied linear and nonlinear classifiers. However, similar

experiments were also performed using the other available classifiers

such as AdaBoost which showed similar results regardless of the choice

of classifier.

Our results suggest that the measures obtained from using only

T1w images underestimate the actual WMH burden, since they only

capture the portion of the lesions that co-localizes with the lower

intensity signal of the overall T1w hypointense area (Fig. 9). We specu-

late that these deeper hypointense portions are probably due to more

severely affected tissue (i.e., more extensive demyelination, and/or

more axonal loss) which are likely to be more clinically relevant (hence

FIGURE 7 Total brain and per lobe correlations for log transformed automatically segmented WMH volumes (CCs) versus ADAS13 while
controlling for age, based on all available contrasts (red) and based only on T1w images (blue) for ADNI1 (left) and ADNI2/GO (right)
datasets [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Boxplots of log transformed WMHLs for NC, MCI, and dementia cohorts. WMHL5white matter hyperintensity load;
NC5 normal control; MCI5mild cognitive impairment [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 6 Coefficients of correlation between total WMH loads and measures for ADNI1 and ADNI2/GO subjects

Dataset ADNI1 ADNI2/GO

Measure N T11T21PD T1 N T11 FLAIR T1

Systolic blood pressure 148 0.002 20.014 409 0.162* 0.199*

Diastolic blood pressure 148 20.052 20.027 409 0.103 0.089

Hyperhomocysteinemia 667 0.124* 0.146* 47 0.016 0.048

FDG 342 0.183* 0.135* 448 0.284* 0.261*

AV45 0 - - 443 0.172* 0.162

Serum glucose 626 0.119* 0.112* 417 0.048 0.043

Cholesterol 557 0.065 0.080 382 0.153* 0.105

CSF protein 333 0.209* 0.125* 73 0.232* 0.247*

Note. WMH5white matter hyperintensity; FDG5 fluorodeoxyglucose PET; AV455Florbetapir; PET5 positron emission tomography; CSF5 cerebrospinal
fluid.
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the maintained correlations). Future studies correlating histological

specimens and MR T1w information would be necessary to clarify the

specific histological substrate of the full range of hypointense signal

captured by T1w sequence and the more homogeneous bright signal

on FLAIR/T2w/PD. Nevertheless, despite the absence of a histopathol-

ogy gold standard, T1w-Only WMHs volumes are still able to hold

strong correlations with both manual and automatic segmentations

obtained using the optimal modalities. Additionally, the assessment of

colocalization shows higher Dice Kappa values for the T1w-Only classi-

fications when they are compared with the manual mask thresholded

to a percentage value of the T1w NAWM, confirming that the partially

detected WMH area colocalizes with the lower T1w signal voxels

(Fig. 6). Similarly, the volumetric correlation of the T1w-Only volumes

with the thresholded manual expert volumes reinforces the concept of

specific partial detection of hypointense voxels on T1w images.

Regarding the assessment of clinical outcomes, the T1w-Only

WMH volumes mostly correlate with age, cognitive, and clinical meas-

ures as strongly as the WMH volumes determined using the optimal

modalities of FLAIR or T2w/PD. This is true for WMHs in whole brain

and in different single brain lobes. Similarly, vascular risk factors show a

significant correlation with T1w-Only WMHs volumes, similar to those

obtained with all the optimal modalities. This suggest that, although the

WMH burden might be underestimated in T1w-Only segmentations,

the identified lesions can be used for clinical correlations in datasets

where the optimal sequences are not available. This will enable us to

generate and use the WMH loads obtained from the T1w images as an

estimate of the actual WMH loads in datasets where the FLAIR or

T2w/PD information is unavailable, and also in T1w scans that do not

have full FLAIR or T2w/PD brain coverage.

Finally, many studies acquire T2w/PD or FLAIR information in

their baseline visit, or at longer intervals compared with the T1w scans,

which are acquired at every MRI visit. Even though the T1w-Only seg-

mentations systematically underestimate the volume of WMHs, having

an estimate of the accurate WMH load from the baseline T2w/PD or

FLAIR images, one may correct for this bias to obtain more accurate

estimates of WMH loads, for the visits that only have T1w acquisitions.

In addition, T1w images are generally acquired at higher resolutions

(i.e., 1-mm-thick slices) than the T2w/PD or FLAIR scans which are

generally acquired at 3–5 mm slice thicknesses. The higher spatial reso-

lution of T1w images can also be used to obtain more spatially accurate

segmentations, where such information may not available due to the

higher slice thickness of the T2w/PD and FLAIR images.

Our study indicates that datasets that lack T2w/PD and FLAIR

modalities may still benefit from the estimation of WMHs using our

T1w-Only segmentation approach, to correlate this MRI data with

other clinical variables available for the subjects.
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