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Abstract: Background: A schizophrenia diagnosis relies on characteristic symptoms identified by trained
physicians, and is thus prone to subjectivity. This study developed a procedure for the individualized
prediction of schizophrenia based on whole-brain patterns of altered white matter tract integrity.
Methods: The study comprised training (108 patients and 144 controls) and testing (60 patients and 60
controls) groups. Male and female participants were comparable in each group and were analyzed sep-
arately. All participants underwent diffusion spectrum imaging of the head, and the data were ana-
lyzed using the tract-based automatic analysis method to generate a standardized two-dimensional
array of white matter tract integrity, called the connectogram. Unique patterns in the connectogram
that most accurately identified schizophrenia were systematically reviewed in the training group.
Then, the diagnostic performance of the patterns was individually verified in the testing group by
using receiver-operating characteristic curve analysis. Results: The performance was high in men
(accuracy 5 0.85) and satisfactory in women (accuracy 5 0.75). In men, the pattern was located in
discrete fiber tracts, as has been consistently reported in the literature; by contrast, the pattern was
widespread over all tracts in women. These distinct patterns suggest that there is a higher variability
in the microstructural alterations in female patients than in male patients. Conclusions: The individual-
ized prediction of schizophrenia is feasible based on the different whole-brain patterns of tract
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INTRODUCTION

Schizophrenia, a complex mental disorder, is character-
ized by distortions in thinking, perception, language, emo-
tions, and behaviors [World Health Organization, 1992].
At present, a schizophrenia diagnosis relies solely on iden-
tifying characteristic symptoms and behaviors through
interviews conducted by trained physicians. However,
substantial heterogeneity in symptom manifestation, indis-
tinct symptomatic differentiation from other mental disor-
ders, and subjectivity involved in the interviews indicated
that a more objective assessment of schizophrenia is war-
ranted [Zarogianni et al., 2013].

Recent progress in neuroscience research has provided
evidence that schizophrenia is a dysconnectivity syndrome;
in other words, it is a disorder arising from abnormal neuro-
nal connectivity, which leads to associated symptoms and
cognitive impairments (Stephan et al., 2009). Because the
white matter comprises numerous neuronal axons and
forms structural connections between brain regions, altera-
tions in white matter integrity has been a key focus of
schizophrenia research (Chiappelli et al., 2015; Kubicki et al.,
2005; Oh et al., 2009). Diffusion tensor imaging (DTI) is use-
ful for probing the microstructural properties of white mat-
ter (Alexander et al., 2007; Basser et al., 1994; Basser and
Pierpaoli, 1996) and has been widely used to investigate
alterations in white matter integrity in patients with schizo-
phrenia (Fujino et al., 2014; Pettersson-Yeo et al., 2011; Roalf
et al., 2013; Scheel et al., 2013; Walther et al., 2011). One of
the most common indices, fractional anisotropy (FA), repre-
sents the degree of spatial coherence among microstructures
(Basser and Pierpaoli, 1996), and it changes when the micro-
structure undergoes alterations, such as axonal degenera-
tion, demyelination, or inflammation (Alexander et al., 2007;
Basser et al., 1994). Decreased FA within prefrontal and tem-
poral lobes and abnormalities in the fiber bundles connect-
ing these regions are the most commonly reported findings
in schizophrenia research (Fujino et al., 2014; Pettersson-Yeo
et al., 2011; Roalf et al., 2013; Scheel et al., 2013; Walther
et al., 2011), which supports the notion that schizophrenia is
a dysconnectivity syndrome involving the prefrontal and
temporal lobes (Harrison, 1999). In addition, studies have
reported that schizophrenia is associated with decreased FA
in the parietal and occipital cortices, suggesting widespread
white matter alterations in patients with schizophrenia
(Fujino et al., 2014; Roalf et al., 2013; Scheel et al., 2013;
Walther et al., 2011).

Despite extensive results from magnetic resonance imagin-
ing (MRI) studies, a limited number of studies have developed

individualized diagnosis procedures for schizophrenia on the
basis of structural alterations. One reason may be the wide-
spread alterations of brain structures in schizophrenia, which
preclude the use of a univariate statistical approach (Ardekani
et al., 2011; Caan et al., 2006; Caprihan et al., 2008; Kambeitz
et al., 2015). Recognizing that schizophrenia is associated with
a distributed localization of alterations, several studies have
adopted multivariate statistical approaches to distinguish
patients with schizophrenia from healthy people on an indi-
vidual level (Kambeitz et al., 2015). Typically, quantitative val-
ues of brain structures at each region of interest (ROI) or image
voxel are selected as features. The features then undergo
dimension reduction, such as by using principal component
analysis (PCA), to determine which features are most relevant
to the disease. Finally, the selected components are trained by
a classifier, such as the linear discriminant classifier or support
vector machine, to achieve an optimal function that best differ-
entiates schizophrenic brains from healthy brains.

In addition to cortical thickness, some DTI-derived indi-
ces such as FA and mean diffusivity (MD) have been used
as features. Using PCA and linear discrimination analysis
(LDA) to automatically extract the combination of relevant
brain regions on FA maps, Caan et al. (2006) reported a
classification accuracy of 75% in a cohort of 34 patients
with schizophrenia and 24 controls. Elsewhere, Caprihan
et al. (2008) modified the PCA method to maximize the
Mahalanobis distance between two comparison groups,
and used Fisher’s linear discriminant (FLD) analysis as a
classifier. These researchers achieved a classification
accuracy of 80% in a sample of 45 patients and 45 healthy vol-
unteers. By applying PCA and FLD analysis on MD maps,
Ardekani et al. (2011) achieved a classification accuracy of
98% in a sample of 50 patients and 50 healthy controls.

However, although multivariate statistical approaches
appear to be able to identify patients with schizophrenia
to a classification accuracy of 75%–98% at an individual
level, it is difficult or even impossible to localize the result-
ing function computed from the classifier back to image
space. This limitation prevents us from relating the predic-
tive function to the structural attributes of the disease,
which would provide notable insight into the altered con-
nectivity of schizophrenic brains (Wolfers et al., 2015). To
retain the connectional attributes of the features for the
individualized prediction of schizophrenia, we proposed
resampling the diffusion indices along the course of major
fiber tracts. This resampling procedure is helpful in two
ways. First, it extracts the white matter pixels located in
the major fiber pathways of the brain, and filters out unre-
lated pixels. Second, the extracted pixels are reorganized
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according to their location in the “tract space,” which
ensures that pixels in the same fiber tracts are connected
as neighbors despite physical distance. We hypothesized
that the features following this resampling procedure
could bypass machine learning algorithms, and be used
directly to predict schizophrenia at the individual level.

We recently established an automatic tract-specific analy-
sis of diffusion MRI, called tract-based automatic analysis
(TBAA), to resample diffusion indices in the “tract space”
(Chen et al., 2015). The TBAA method was developed based
on three key factors: a diffusion spectrum imaging (DSI)
template; a tract atlas of 76 major fiber tract bundles seg-
mented in the template; and nonlinear transformation,
which registers individual diffusion data sets to the
template (Hsu et al., 2012). TBAA automatically assesses the
76 fiber tracts covering the whole brain and provides a stan-
dardized output for each data set. The standardized output
of TBAA is a two-dimensional (2D) matrix, called the 2D
connectogram. The connectogram contains 76 tracts (rows)
and 100 steps (columns) in each tract, which represent the
information that travels along each fiber pathway from
beginning to end. This connectogram enables us to observe
the global pattern of white matter alterations in patients
with schizophrenia and determine the pattern that most
accurately differentiates patients with schizophrenia from
healthy controls.

The aim of this study was to identify the unique pattern
of white matter alterations that yielded the most desirable
performance of individualized schizophrenia prediction.
We selected patients who had been diagnosed with schizo-
phrenia at least 2 years before the recruitment period,
because there was sufficient observation time to confirm
the diagnosis of schizophrenia among such patients.
Because sex-associated differences in brain alterations
were implicated based on cognitive domains, including
immediate and delayed memory in schizophrenia (Han
et al., 2012), patients were stratified according to sex for
the analysis of white matter alteration patterns.

METHODS AND MATERIALS

Participants

From January 2010 to April 2016, we recruited 176 patients
with schizophrenia and 207 age-matched healthy controls.
Eight patient data sets and three control data sets were
excluded during the image quality assurance procedures
(refer to the section “Image Acquisition”). In total, 168
patients and 204 controls were analyzed.

Our study patients met the criteria listed in the Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition,
for schizophrenia, as confirmed by attending psychiatrists at
National Taiwan University Hospital. All patients were medi-
cated and had been diagnosed as having schizophrenia for at
least 2 years. The healthy controls were interviewed using the
Diagnostic Interview for Genetic Studies (Nurnberger et al.,
1994). All the healthy controls had no lifetime history of any

psychiatric disorders. Additionally, all the participants were
Han Chinese; right-handed; and free of neurological
disorders, major systemic illness, substance abuse problems,
or intellectual disability. The institutional review board of
National Taiwan University Hospital approved the study,
and all participants provided informed consent before the
study began.

Image Acquisition

Images were acquired on a 3 T MRI system (TIM Trio, Sie-
mens, Erlangen, Germany) with a 32-channel phased-array
head coil. T1-weighted imaging was performed using a
three-dimensional (3D) magnetization-prepared rapid gra-
dient echo sequence (repetition time [TR]/echo time [TE] 5

2000 ms/3 ms, flip angle 5 98, field of view [FOV] 5 256 3

192 3 208 mm3, and matrix 5 256 3 192 3 208). DSI was per-
formed using a single-shot spin-echo planar imaging
sequence with twice-refocused diffusion-sensitive gradients
to reduce distortions induced by the eddy current (Reese
et al., 2003). The sequence comprised 102 diffusion-encoding
directions and a maximal b value of 4000 s/mm22 (Kuo
et al., 2008): TR/TE 5 9600/130 ms, FOV 5 200 mm,
matrix 5 80 3 80, slice thickness 5 2.5 mm, and slice
number 5 54. All DSI data sets in the study underwent
image quality assurance for the head motion; this was done
by assessing the number of images with signal dropout in
the DSI data sets (Yendiki et al., 2014). Altogether, the
acquired DSI data sets comprised 5508 images, which were
subsequently scrutinized by calculating the signal dropout
counts. DSI data sets with more than 90 signal dropout
images were discarded because they considerably skewed
the diffusion measures, with a percentage error of�6%.

Reconstruction of the Diffusion

Spectrum Imaging Data

For each voxel of DSI data set, the 102 diffusion-attenuated
signals of a half sphere were projected to fill the other half of
the sphere; notably, the data in the q space were considered
real and symmetrical around the origin (Kuo et al., 2008). We
calculated the probability density function (PDF) by invoking
the Fourier relationship between the PDF and diffusion-
attenuated signals (Yeh et al., 2010), and determined the orien-
tation distribution function (ODF) by computing the second
moment of the PDF along each of the 362 radial directions in a
sixfold tessellated icosahedron (Yeh et al., 2011). Generalized
fractional anisotropy (GFA) was estimated as (standard devia-
tion of the ODF)/(root mean square of the ODF) (Tuch, 2004).
The GFA value is considered to be indicative of white matter
integrity, as is the FA value in DTI (Gorczewski et al., 2009).

Tract-Based Automatic Analysis

The DSI data sets were subjected to TBAA to generate
connectograms following previously described procedures
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(Chen et al., 2015). Briefly, all the DSI data sets were regis-
tered to create a study-specific template (SST), which was
registered to the DSI template (NTU-DSI-122) (Hsu et al.,
2015). We then transformed the predefined sampling coor-
dinates of the 76 fiber tract bundles (Chen et al., 2015)
from the DSI template into individual DSI data sets by
transforming the sampling coordinates first from the DSI
template to the SST, and then from the SST to individual
DSI data sets. We sampled GFA along each of 76 fiber
tracts by using the sampling coordinates that were trans-
formed to each individual DSI data set, and finally
obtained a 2D connectogram for each participant.

Diagnostic Analysis

The diagnostic analysis comprised training and testing
phases. In the training phase, we identified a unique pat-
tern of the connectogram that most precisely distinguished
patients from healthy controls. In the testing phase, we
individually applied the unique pattern to all of the partic-
ipants and evaluated the diagnostic performance of the
pattern considering sensitivity, specificity, positive predic-
tive value (PPV), and negative predictive value (NPV).

The image data in the training and testing phases were
organized as independent data sets. Data acquired from Jan-
uary 2010 to May 2015 were analyzed in the training phase,
which comprised 108 patients (54 males, 54 females) and 144
healthy controls (70 males, 74 females). Data acquired from
May 2015 to April 2016 were analyzed in the testing phase,
which comprised 60 patients (30 males, 30 females) and 60
healthy controls (30 males, 30 females). To account for the
sex differences in diagnosing schizophrenia, the males and
females were separately analyzed using the same proce-
dures. The demographic data for the training and testing
phases are shown in Tables I and II, respectively. Finally, to
determine how much accuracy was gained by employing
different sex-specific models, an additional analysis that
combined the male and female data was performed.

Training Phase

Figure 1 outlines the procedures used in the training
phase, which consisted of six steps. The first three steps
were conducted on half of the participants (Training I),
and the last three steps were conducted on the remaining
participants (Training II). To account for variability in the
resulting unique pattern caused by such grouping, we also
randomly divided the Training I and II participants and
repeated the training procedures 300 times, generating 300
examinations in the training phase.

For the Training I participants, we calculated the mean
connectogram of both patients and controls (Step 1), and
determined the differences in the obtained connectograms
(Step 2). We subsequently obtained a series of masks
based on the combined thresholds, which were derived
from those connectogram differences (Step 3). Specifically,
we calculated Cohen’s effect size (ES) stepwise in the 2D
connectogram (76 3 100 steps in total) as follows:

ES5
jMean ðFAaÞ2MeanðFAbÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðStdðFAaÞ21StdðFAbÞ2Þ=2

q

where FAa and FAb indicate the FA values in the two
comparison groups. In addition to the size of the differ-
ence, we also considered the length of the difference as
another important factor for differentiating patients with
schizophrenia from controls. Therefore, we defined the
cluster size (CS) as the length of a segment in a tract that
showed the difference contiguously. Specifically, the CS
was the number of contiguous steps along a tract pathway
that passed a certain threshold level of ES. The ES
threshold levels included 21 levels equally partitioned from
0 to 1, and the CS threshold levels included 15 levels from
1 to 15. Thus, 315 (21 3 15) binary masks were determined
in each examination.

For each Training II participant, a patient-or-control (POC)
map was plotted by stepwise comparing the GFA value of

TABLE I. Participant Demographics in the Training Phase

Male Female

Patients
(N 5 54)

Controls
(N 5 70) P value

Patients
(N 5 54)

Controls
(N 5 74) P value

Age (years) 28.75 6 5.78 29.11 6 5.15 0.305a 30.34 6 5.94 30.11 6 5.36 0.456a

Education (years) 14.15 6 2.23 15.82 6 3.16 0.035a 14.37 6 2.51 15.76 6 2.86 0.087a

PANSS-positive subscale score 12.72 6 5.15 12.58 6 5.33 0.957b

PANSS-negative subscale score 17.19 6 5.94 14.68 6 6.01 0.031b

PANSS general psychopathology
subscale score

25.35 6 8.63 24.55 6 8.23 0.452b

Duration of illness (years) 9.56 6 7.72 8.05 6 5.68 0.136b

Age of onset (years) 23.55 6 7.23 24.61 6 7.16 0.455b

Total antipsychotic dose (mg)c 311.63 6 185.21 306.79 6 175.43 0.963b

aThe P value between patients and controls.
bThe P value between male and female patients.
cDaily chlorpromazine equivalent dose.
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the participant’s connectogram with the mean GFA values of
patients and controls, as obtained from step 1. If the GFA
value of the participant was closer to that of the patient
(i.e.,|GFAparticipant 2 GFApatient|<|GFAparticipant 2 GFAcontrol|),
a value of 1 was assigned to that step; if the GFA value was
closer to that of the control, a value of 21 was assigned
(Step 4). We applied each mask obtained in Step 3 to each
participant’s POC map and calculated the patient-like-score
(PLS) by adding the values within the mask, which had been
normalized by the number of steps in that mask (Step 5).

We then performed ROC curve analysis on each mask
by comparing each participant PLS with individual clinical
diagnostic outcomes (namely, schizophrenia or healthy).
We estimated the area under the ROC curve (AUC) for
each mask and plotted an AUC map that corresponded to
a 21 3 15 matrix of AUC (Step 6).

We obtained 300 AUC maps after repeating the training
procedures 300 times and identified the optimal threshold
as the criterion of the mask that had the highest AUC
value in the AUC map, averaged over 300 AUC maps. To
visualize the unique pattern of the connectogram resulting
from the optimal threshold, we created a heat map by
accumulating the difference connectograms that were
masked by the optimal threshold in the 300 examinations.

Testing Phase

We performed TBAA on each participant in the testing
phase to obtain individual 2D connectograms and esti-
mated the PLS of each participant by using the optimal
mask obtained from the training phase. Here, we used the
mean connectograms of all patients and controls in the
training phase as a reference and performed the same
comparison procedure, as described in Step 4 in the train-
ing phase. We used an optimal mask by applying the opti-
mal threshold to the difference in the connectograms
calculated from all participants in the training phase. The
participants with a PLS of > 0 were considered to have

TABLE II. Participant Demographics in the Testing Phase

Male Female

Patients
(N 5 30)

Controls
(N 5 30) P value

Patients
(N 5 30)

Controls
(N 5 30) P value

Age (years) 29.17 6 5.78 28.66 6 6.10 0.336a 29.54 6 5.77 29.58 6 5.63 0.653a

Education (years) 14.15 6 2.23 15.82 6 3.16 0.063a 14.37 6 2.51 15.76 6 2.86 0.127a

PANSS-positive subscale score 13.13 6 5.67 13.72 6 5.45 0.918b

PANSS-negative subscale score 15.21 6 5.35 16.20 6 6.16 0.121b

PANSS general psychopathology
subscale score

26.63 6 8.72 25.52 6 8.14 0.631b

Duration of illness (years) 8.86 6 5.22 7.72 6 5.19 0.375b

Age of onset (years) 22.94 6 7.05 23.11 6 6.93 0.452b

Total antipsychotic dose (mg)c 303.45 6 195.92 293.77 6 177.68 0.926b

aThe P value between patients and controls.
bThe P value between male and female patients.
cDaily chlorpromazine equivalent dose.

Figure 1.

Procedures used in the training phase. AUC, area under the

curve; ROC, receiver-operating characteristic; PLS, patient-liked

score; POC, patient-or-control.
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schizophrenia, whereas those with a PLS of < 0 were con-
sidered healthy. By individually comparing PLS results
with clinical diagnostic outcomes, we performed ROC
curve analysis to evaluate the diagnostic performance and
calculated indices, namely sensitivity, specificity, PPV,
NPV, and accuracy.

Patterns Correlated With Clinical Variables

To elucidate the possible confounding effects of clinical
variables on the optimal masks identified in the predictive
analysis, the patterns of the 2D connectograms that corre-
lated with clinical variables (including duration of illness
and medication dose) were analyzed. Stepwise Pearson
correlation between the GFA values and clinical variables
was performed on each step of the connectograms. The
steps with correlation coefficients larger than 0.2 were con-
sidered to be clinically correlated. Overlaps between the
optimal masks and the clinically correlated steps were
evaluated to clarify what confounding effects duration of
illness and medication dose had on the optimal masks.
Additionally, Pearson correlations between PLS and the

Positive and Negative Syndrome Scale (PANSS) scores
were evaluated for men and for women separately to
investigate the relationships between the prediction scores
(PLS) and clinical variables. The connectogram data used
in the analysis here included those from patients in the
training and testing phases.

RESULTS

Demographic Data

Tables I and II list the demographic data of the partici-
pants. Notably, there was almost no significant difference
in any relevant parameters, except years of education
between the male patients and controls (P 5 0.035) and the
PANSS-negative subscale scores between the male and
female patients in the training phase (P 5 0.031).

Training Phase

Figure 2a,b shows the distributions of ES for men and
women, respectively. Notably, men had more steps with

Figure 2.

Distributions of Cohen’s effect size (ES) for (a) men and (b) women. The top panels are the con-

nectograms of ES and the bottom panels are the histograms of ES. [Color figure can be viewed

at wileyonlinelibrary.com]
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high ES than did women: in men, there were 609 steps
with ES > 0.8 (8% of 7600 steps), whereas in women, there
were only 72 steps with ES > 0.8 (0.9% of 7600 steps).

Figure 3 shows the AUC maps for male, female, and all
participants. Overall, the masks for men tended to have
higher AUC values as they approached higher and lower
threshold levels of ES and CS, respectively (Fig. 3a). The
optimal mask was located at the combined threshold lev-
els of ES 5 0.85 and CS 5 1, which yielded a mean AUC
value of 0.87 (black-edged square, Fig. 3a). The masks for
women tended to have higher AUC values as they
approached lower threshold levels of both ES and CS (Fig.
3b). The optimal mask was located at the combined thresh-
old levels of ES 5 0.1 and CS 5 1, which yielded a mean
AUC value of 0.77 (black-edged square, Fig. 3b). When the
participants were examined altogether, their masks tended
to have higher AUC values as they approached lower
threshold levels of both ES and CS (Fig. 3c). The optimal
mask was located at the combined threshold levels of
ES 5 0.2 and CS 5 1, which yielded a mean AUC value of
0.79 (black-edged square, Fig. 3c).

Figure 4a–c reveals the optimal masks for men, women,
and all the training participants, respectively. The optimal
mask for men comprised 535 steps; these steps were dis-
cretely distributed, and mostly located in the association
and commissural fibers. The optimal mask for women
comprised 4460 steps; these steps were widespread over
the whole brain. When the two masks were overlapped,
494 steps were found to overlap, constituting 92% of the
mask for men and 11% of the mask for women.

The heat maps of the optimal masks are presented in Figure
5. Those of the men showed a high occurrence of contribution
from a few discrete segments (Fig. 5a), whereas those of
women and of all the participants showed a widespread occur-
rence of contribution from all the tracts (Fig. 5b,c).

Figure 6 presents the 3D visualization of the distinct
heat map patterns of male and female brains. Specifically,
the optimal mask in men was concentrated in the associa-
tion and commissural fibers, which connected the prefron-
tal and temporal lobes (Fig. 6a). By contrast, the optimal
mask in women was uniformly distributed throughout the
whole brain (Fig. 6b).

Figure 3.

AUC maps for (a) males, (b) females, and (c) all participants. The AUC map was a 21 3 15

matrix, in which each element indicated the AUC value for a mask corresponding to a combined

threshold level of the ES and cluster size (CS). The elements with numerical values are the ele-

ments surrounding the element with the maximal AUC value (black-edged square). The averaged

AUC value of each map was the value averaged from 300 examinations. [Color figure can be

viewed at wileyonlinelibrary.com]

Figure 4.

Optimal masks for (a) men (cyan) and (b) women (orange). (c) The overlaps between the two

masks (red). [Color figure can be viewed at wileyonlinelibrary.com]
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Testing Phase

The diagnostic indices were calculated from the testing
group by using PLS 5 0 as the cutoff point. For men, the
overall prediction accuracy was 0.85, with a sensitivity of
0.83, specificity of 0.87, PPV of 0.86, and NPV of 0.84. For
women, the overall accuracy was 0.75, with a sensitivity of
0.80, specificity of 0.70, PPV of 0.75, and NPV of 0.75.
When all the participants were examined together, the
overall accuracy was 0.76, with a sensitivity of 0.75, specif-
icity of 0.76, PPV of 0.77, and NPV of 0.75. The ROC
curves showed a satisfactory prediction performance of
the optimal masks; specifically, the AUC value was 0.87,
0.77, and 0.79 for men, women, and all participants,
respectively (Fig. 7).

Patterns Correlated With Clinical Variables

To investigate the possible confounding effects of clini-
cal variables on the optimal masks, we calculated the Pear-
son correlation between clinical variables (duration of
illness and medication dose) and GFA value on each step
of the connectograms. The steps that were clinically corre-
lated were 101 steps for duration of illness, and 0 steps for
medication dose. Figure 8a shows the steps that were cor-
related with duration of illness. Notably, when overlap-
ping these steps with the optimal masks, there were 15
overlapped steps for men (Fig. 8b) and 65 overlapped
steps for women (Fig. 8c).

In male patients, the correlation coefficients between
PLS and the PANSS positive, negative, and general psy-
chopathology subscale scores were 0.36 (P 5 0.008), 0.46
(P< 0.001), and 0.26 (P 5 0.058), respectively; in female

patients, these coefficients were 0.34 (P 5 0.012), 0.35
(P 5 0.009), and 0.15 (P 5 0.279), respectively. The results
indicated that male patients had higher correlations of PLS
with PANSS scores than did female patients, and that PLS
was most and least correlated with PANSS-negative sub-
scale scores and general psychopathology subscale scores,
respectively.

DISCUSSION

This study proposed a method for the individualized pre-
diction of schizophrenia on the basis of whole-brain patterns
of white matter tract integrity. Bypassing conventional
machine learning methods, this study is the first to use the
features resampled on major white matter tract pathways of
the whole brain to predict schizophrenia at an individual
level. We used TBAA to obtain a series of GFA values corre-
sponding to the 76 white matter tracts for each participant.
We then compared the individual information, namely, the
2D connectograms, with a collective database and scored the
structural similarity of the connectograms to schizophrenia
by capturing the patient-like steps within masked regions.
By using this approach, we successfully identified the opti-
mal masks that most accurately predicted schizophrenia; the
accuracy of the individualized predictions was 85%, 75%,
and 76% for men, women, and all the participants, respec-
tively. Such a high prediction performance suggests that the
patterns of white matter tract integrity defined by the opti-
mal mask contain representative information for schizophre-
nia. The unique patterns discovered in this study can
therefore serve as potential imaging biomarkers for diagnos-
ing schizophrenia.

Figure 5.

Heat maps of the optimal masks for (a) males, (b) females, and

(c) all participants. Each heat map was generated by accumulat-

ing the masks that resulted from the application of the optimal

threshold levels of ES and CS to different connectograms in 300

examinations. The pixel was coded in blue if the mean general-

ized fractional anisotropy (GFA) value of the controls was larger

than that of the patients (GFAC>GFAS), whereas it was coded

in orange if the mean GFA value of the controls was smaller

than that of the patients (GFAC<GFAS). The hue of the heat

map indicates the number of occurrences included in the opti-

mal mask from 300 examinations. [Color figure can be viewed

at wileyonlinelibrary.com]
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Many studies have reported widespread differences in
the whole-brain FA values between patients with schizo-
phrenia and healthy controls (Fujino et al., 2014; Roalf
et al., 2013; Scheel et al., 2013; Walther et al., 2011).
Although it is reasonable to use these different patterns as
classifiers of schizophrenia at an individual level, chal-
lenges exist during implementation. First, overlaps of dif-
fusion measures occur between patients and controls, even
in the regions exhibiting significant statistical difference.
Although combining the measures from multiple regions
yields a higher classification performance (Zarogianni
et al., 2013), it is unclear as to how many and which
regions should be included. Moreover, the findings of sig-
nificant differences are inconsistent among different stud-
ies. Some crucial predictors might be missed if one
performs the classification by only using some regions
showing statistically significant differences. The regions
that fail the statistical tests may provide relevant informa-
tion because these regions may be altered despite high

variability. Therefore, in this study, we used patterns not
necessarily related to statistical significance. A whole-brain
approach for analyzing diffusion data is favorable for
obtaining such patterns, and here we selected TBAA
because it provides diffusion measures of well-defined
white matter tracts in the entire brain. Additionally, the
diffusion index GFA value was determined in the native
space of participants and rendered in a standardized “tract
space.” Such an output format is appropriate for perform-
ing individualized estimation. By comparing the similarity
of the TBAA outputs with the collective database, we
proved its feasibility in predicting schizophrenia on an
individual basis by using the whole-brain pattern of white
matter tract integrity.

In our analyses, the optimal masks were identified at
the CS threshold level of 1. Notably, this does not mean
that the prediction is contributed from multiple single
steps that are isolated from each other; indeed, the heat
maps of the optimal masks (Fig. 5) reveal that there are

Figure 6.

3D visualization of the heat maps of the brains of the (a) male

and (b) female participants. Each fiber tract bundle is repre-

sented by a track skeleton. Five discrete colors were assigned

according to the number of occurrences in the heat maps.

Cold-colored segments represent those where the control GFA

value was larger than the patient value (GFAC>GFAS), whereas

the warm-colored segments represent those where the control

GFA value was smaller than the patient GFA value (GFAC<G-

FAS). The color appears bright if the number of occurrences in

the segments was larger than 200, whereas it appears dark if

the number was 100–200. Segments with <100 occurrences are

shown in gray. [Color figure can be viewed at wileyonlinelibrary.

com]
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multiple segments with variable lengths. The threshold
level of CS 5 1 suggests that contributions for predicting
schizophrenia are important down to the single steps of
the connectogram, which implies that the individual pre-
diction of schizophrenia using diffusion MRI should be
performed stepwise along the fiber pathway.

This study identified the optimal masks for predicting
schizophrenia in chronic patients. Although we also con-
sidered sex-associated differences and separately analyzed
men and women, it is unclear whether the masks were
confounded by clinical variables, such as duration of ill-
ness and medication dose. Our results showed that only

duration of illness had an association with the GFA values
in 101 steps of the connectogram, with 15 and 65 overlap-
ping steps with the optimal masks for men and women,
respectively, which constituted < 3% of the diagnostic
masks (Fig. 8). These results suggest that the confounding
effect from illness chronicity and medications on the opti-
mal masks is negligible.

Whether the unique patterns identified in chronic patients
are applicable to first-episode patients remains unknown.
Recent diffusion MRI studies on first-episode patients have
reported little difference in tract integrity between first-
episode and chronic patients (Fitzsimmons et al., 2014; Wu
et al., 2015). In other words, it appears that patient-related
white matter tracts are impaired at disease onset and remain
stationary throughout the course of illness. Bohlken et al.
(2016) reported an association between genetic markers and
brain connectivities in patients with schizophrenia and pro-
posed that white matter integrity should be the trait marker
associating genes with biological pathways that contribute
to schizophrenia development. Overall, the aforementioned
studies and our present analysis indicate that the unique
tract integrity patterns identified in this study might predict
schizophrenia early in the course of the disease.

The heat map of men substantially differs from that of
women (Fig. 5). In men, the regions with a high occurrence
of contribution were concentrated in discrete tract bundles
and showed high ES differences between patients and con-
trols. These tracts included the left arcuate fasciculus, left
cingulum bundle (main body part), bilateral cingulum bun-
dles (hippocampal part), bilateral fornices, bilateral uncinate
fasciculi, bilateral inferior fronto-occipital fasciculi, left infe-
rior longitudinal fasciculus, bilateral frontostriatial tracts to
the orbitofrontal cortex, and a large portion of callosal fibers.
These tracts are well-known for their microstructural
derangement in schizophrenia and have been regularly
reported in the literature (Fujino et al., 2014; Roalf et al.,
2013; Scheel et al., 2013; Walther et al., 2011; Wu et al., 2015).
By contrast, in women, the regions with a high occurrence of

Figure 7.

ROC curve analysis for men (black), women (dark gray), and all

participants (light gray). The areas under the ROC curves are

0.87, 0.77, and 0.79 for men, women, and all participants,

respectively.

Figure 8.

(a) Steps in the connectogram that are correlated with duration of illness. The overlaps of these

steps (red) with the optimal masks (cyan) are presented for (b) men and (c) women. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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contribution were spread through the entire brain, involving
not only the well-known tracts but also many other tracts.
The regions exhibiting a high ES were similar to those in
men. However, if we only used the regions with a higher ES
for classification, the performance was worse overall than
were those with a lower ES. As shown in Figure 3b, the AUC
was 0.68 at the combined threshold level of ES 5 0.7 and
CS 5 1, and it increased as the ES threshold decreased. This
indicates that the regions with a low ES also contribute to
schizophrenia classification in women.

The difference in the heat maps may be related to the sex-
associated differences in schizophrenia, including onset age,
symptom severity, treatment response, illness course, and
outcome (Barajas et al., 2015; Moriarty et al., 2001; Ramsey
et al., 2013). Women with schizophrenia tend to have less
severe illness and more desirable global outcomes than do
men (Vlassoff, 2007). Moreover, women with schizophrenia
tend to show pronounced positive symptoms, such as hallu-
cinations and delusions, whereas their male counterparts
tend to manifest severe negative symptoms, such as anhedo-
nia, asociality, and affective flattening (Leung and Chue,
2000). Women with schizophrenia are also more likely to be
more socially active than are their male counterparts (Abel
et al., 2010). In this study, we found that male patients had
higher correlations between PLS and PANSS scores than did
female patients, and that PLS was most correlated with
PANSS negative subscale scores. These findings suggest that
PLS partially reflects the severity of negative symptoms,
which are sex-associated. We therefore speculate that the
discrete tracts shown in the heat map for men might be
related to negative symptoms and be sufficient to predict
schizophrenia in men.

The sex differences in the heat maps can also be under-
stood from our ES analysis (Fig. 2). Specifically, we deter-
mined that men had more steps with high ES than did
women. In men, 8% of the connectogram had ES> 0.8%,
whereas in women, it was only 0.9%. Consequently, the
average ES of the differences in connectograms was lower in
females than in males (0.23 6 0.18 vs 0.32 6 0.24, respec-
tively). Moreover, the ES maps were very different between
men and women. In men, there were discrete segments with
high ES that presented a pattern similar to that in their heat
map. In women, most of the steps presented moderate ES
with widespread distribution over the whole connectogram,
again similar to the pattern in their heat map. This observa-
tion indicates that the drastic difference in the heat maps
between men and women may arise from the higher vari-
ability in the GFA values in female patients than in male
patients among our recruited participants.

In this article, we proposed using connectograms as fea-
tures to predict schizophrenia at an individual level, and the
prediction accuracy was 85%, 75%, and 76% for men, women,
and all the participants, respectively. Although the perfor-
mance is not as impressive as what has been reported using
machine learning techniques (Castellani et al., 2012; Lu et al.,
2016; Nieuwenhuis et al., 2012; Squarcina et al., 2017; Yang

et al., 2010), our method is unique in two ways. First, the tech-
nique only uses difference connectograms with appropriate
thresholds to predict schizophrenia. The simplicity of the
method could potentially facilitate its clinical application.
However, it may require a sufficiently large number of sam-
ples in the training set to achieve satisfactory performance,
especially for determining subtle differences between the
comparison groups. Second, the unique tract integrity pat-
terns derived from our approach are specific tract locations in
the “tract space.” These patterns can be understood in terms
of the neuroanatomical functions of individual tracts. This
allows us to interpret the results on the basis of previous neu-
roanatomical or physiological studies on schizophrenia.

This study has some limitations to acknowledge. First,
we did not recruit patients with psychotic symptoms simi-
lar to schizophrenia, such as bipolar disorder, leaving
uncertain specificity regarding the predictive patterns. One
recent study indicated that patients with bipolar disorder
and schizophrenia show a lower FA value than do healthy
individuals. However, bipolar disorder involves fewer
white matter regions than does schizophrenia (Skudlarski
et al., 2013), and the different patterns of white matter
integrity between patients with bipolar disorder and those
with schizophrenia suggest that our predictive patterns
might be specific for schizophrenia. Second, our patients
in the testing phase were all patients with chronic schizo-
phrenia (although, as previously discussed, the current
optimal masks might also be applicable to first-episode
patients or those with ultrahigh risks). Further validation
through a prospective study on this patient subgroup is
necessary to confirm this applicability. Third, this study
used DSI to acquire diffusion MRI data sets. Additional
studies are required to compare the diagnostic perfor-
mance across different diffusion acquisition schemes, such
as DTI or Q-ball imaging, or different diffusion indices.

In conclusion, the tract integrity information derived from
TBAA is useful for the individualized prediction of schizo-
phrenia. By applying the proposed analysis to chronic
patients, the performance of individualized prediction was
85%, 75%, and 76% for male, female, and all the participants,
respectively, in the ROC curve analysis. The proposed anal-
ysis method and resulting predictive patterns warrant fur-
ther exploration of potential imaging biomarkers in refined
subgroups of patients with schizophrenia or among a spec-
trum of acquisition variables.
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