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Abstract
Neural activity in early visual cortex is modulated by luminance contrast. Cortical depth (i.e., lami-

nar) contrast responses have been studied in monkey early visual cortex, but not in humans. In

addition to the high spatial resolution needed and the ensuing low signal-to-noise ratio, laminar

studies in humans using fMRI are hampered by the strong venous vascular weighting of the fMRI

signal. In this study, we measured luminance contrast responses in human V1 and V2 with high-

resolution fMRI at 7 T. To account for the effect of intracortical ascending veins, we applied a

novel spatial deconvolution model to the fMRI depth profiles. Before spatial deconvolution, the

contrast response in V1 showed a slight local maximum at mid cortical depth, whereas V2 exhib-

ited a monotonic signal increase toward the cortical surface. After applying the deconvolution,

both V1 and V2 showed a pronounced local maximum at mid cortical depth, with an additional

peak in deep grey matter, especially in V1. Moreover, we found a difference in contrast sensitivity

between V1 and V2, but no evidence for variations in contrast sensitivity as a function of cortical

depth. These findings are in agreement with results obtained in nonhuman primates, but further

research will be needed to validate the spatial deconvolution approach.
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1 | INTRODUCTION

The visual system is conceptualized as a hierarchical structure, in which

information is conveyed from the eye, through the lateral geniculate

nucleus (LGN) of the thalamus, the primary visual cortex (V1), on to

extrastriate cortical areas (Felleman & Van Essen, 1991). This feedfor-

ward sweep carries incoming sensory information and is complemented

by feedback mechanisms related to higher cognitive processes, such as

attention. The feedback mechanisms control the flow of sensory infor-

mation and modify its content according to cognition and behavioral

needs (Lamme & Roelfsema, 2000).

As information is processed along the visual hierarchy, neurons

become selective for increasingly complex stimulus features—that is,

their preferred stimuli evolve from simple spots of light to more elabo-

rate stimulus properties (Maunsell & Newsome, 1987). Neurons in the

early stages of the visual system are particularly sensitive to luminance

contrast (Albrecht, Geisler, Frazor, & Crane, 2002; Albrecht & Hamilton,

1982). For most neurons in early visual areas, the relationship between

stimulus contrast and neuronal response is not linear, but can be mod-

eled by a power function or a combination of power functions

(Albrecht et al., 2002; Albrecht & Hamilton, 1982; Boynton, Demb,

Glover, & Heeger, 1999; Sclar, Maunsell, & Lennie, 1990). Within the

hierarchy of early visual areas, there is a gradient of contrast response

properties: The responses of LGN, V1, V2, and progressively higher vis-

ual areas are successively less modulated by luminance contrast—the

contrast response function becomes steeper, and the response satu-

rates at a lower contrast (Avidan et al., 2002; Buracas & Boynton,

2007; Levitt, Kiper, & Movshon, 1994; Sclar et al., 1990).

Tootell, Hamilton, and Switkes (1995) presented drifting square

wave gratings at various luminance contrasts and compared the con-

trast sensitivity in V1 and MT. In accordance with electrophysiological

findings in monkeys (Sclar et al., 1990), fMRI contrast sensitivity in
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humans was found to be considerably higher in MT than in V1, but

only slightly higher in V2 compared to V1. The respective fMRI data

were acquired at voxel sizes of 3 3 3 3 5 to 6 mm3 or 1.6 3 1.6 3

4 mm3 (Tootell et al., 1995). Another early fMRI study (Boynton et al.,

1999) used contrast-reversing sine wave gratings at six contrast levels

to study contrast response properties in early visual cortex of two

human observers, at an anisotropic voxel size of 1.02 3 1.02 3 4 mm3.

For contrast levels well above the perceptual threshold, the contrast

discrimination function (relating the minimum detectable contrast

increment to the absolute contrast of the reference stimulus) can be

modelled with a power function (Legge, 1981), and, if the range of con-

trast levels is very broad, a combination of power functions can be

used (Boynton et al., 1999). In the study by Boynton et al. (1999), the

same function yielded a good fit for both the behavioral and the fMRI

data for V1, V2, and V3, suggesting that contrast discrimination judge-

ments are instantiated by neuronal processing in these areas. A signifi-

cant difference in contrast sensitivity between these early visual areas

was not reported (Boynton et al., 1999). Using a similar experimental

design, Buracas, Fine, and Boynton (2005) presented further evidence

for a link between behavioral performance on a contrast discrimination

task and the fMRI response in early visual cortex. Moreover, although

not explicitly stated, their data (Buracas et al., 2005) and a follow-up

study (Buracas & Boynton, 2007) support an increase of contrast sensi-

tivity along the visual hierarchy in V1, V2, V3, and MT1. These two

studies were conducted at an isotropic spatial resolution of 3 3 3 3

3 mm3. A more recent fMRI study (Yan et al., 2014) confirmed these

earlier findings, and presented evidence for higher contrast sensitivity

for peripheral than for central vision, at a voxel size of 2 3 2 3 2 mm3.

All these fMRI studies were performed at 1.5 and 3 T. Tootell & Nasr

(2017) studied response properties of extrastriate visual cortex at 7T

with a voxel size of 1 3 1 3 1 mm3. In accordance with previous low-

resolution fMRI experiments and animal studies, they found differences

in the contrast response between lower and higher extrastriate visual

areas. In addition, they found clusters of response variation along the

cortical surface, which may correspond to functional subdivisions previ-

ously only reported in macaque (Tootell & Nasr, 2017).

With the exception of Tootell and Nasr (2017), previous fMRI

studies in humans averaged the signal over entire cortical areas, such

as V1 and V2, thereby treating these areas as homogeneous structures

and disregarding potential variability in the contrast response proper-

ties within each area. However, cortical areas are not homogeneous

structures (Lund, 1988): Instead, cortical areas can be divided into corti-

cal columns (orthogonal to the surface of the cortex) and layers (across

the cortical depth, i.e., orthogonal to the columns). Most cortical areas

are divided into six main layers based on microstructural features

(Douglas & Martin, 2004; Fitzpatrick, Itoh, & Diamond, 1983; Kleinni-

jenhuis et al., 2013; Lund, 1973, 1988). Layers 3 and 4 of the primate

visual cortex are further divided into sublayers (Lund, 1988). Electro-

physiological (Hubel & Livingstone, 1990; Hubel & Wiesel, 1972) and

tracer (Blasdel & Lund, 1983; Henderickson, Wilson, & Ogren, 1978;

Rockland & Pandya, 1979; Tootell et al., 1988) studies in V1 have

shown that thalamocortical projections primarily target layers 4C and

6, whereas projections from V2 to V1 terminate in layers 1, 2, and 5

(Anderson & Martin, 2009; Rockland & Pandya, 1979; Rockland &

Virga, 1989). Based on this evidence, Callaway (1998) proposed a two-

stage model of information processing in V1. According to the model,

thalamorecipient layer 4C constitutes the first cortical feedforward

module. It projects feedforward connections to the second-level feed-

forward module located in the supragranular layers. Layer 6 acts as the

first-level feedback module, receiving collaterals of the thalamic feed-

forward input to layer 4C as well as the output from layer 4C. In other

words, this feedback module is characterized by sampling both the

feedforward module’s input and output (Callaway, 1998).

In recent years, high-resolution fMRI studies at ultra-high-field

strength (7 T and above) have demonstrated the feasibility of sampling

functional signals at different cortical depth levels in humans (for recent

reviews, see De Martino et al., 2017; Dumoulin, Fracasso, van der

Zwaag, Siero, & Petridou, 2017; Polimeni, Renvall, Zaretskaya, & Fischl,

2017; Uluda�g & Blinder, 2017). Two recurrent findings from fMRI stud-

ies investigating the cortical-depth-dependent responses in humans

sensory cortices are (a) a signal increase toward the cortical surface and

(b) an increased signal around mid-level grey matter, which is detected

in some studies but not in others.

The first finding is attributed to the fact that the laminar specificity

of the fMRI signal is degraded by the properties of the vascular system,

in particular when gradient-echo (GE) fMRI sequences are used (see

Uluda�g & Blinder, 2017 for an overview). After having passed the capil-

laries and venules, blood drains through ascending veins of increasing

diameter toward the cortical surface. Because GE fMRI sequences

have a strong weighting toward the signal originating from veins

(Uluda�g, M€uller-Bierl, & U�gurbil, 2009), the reported signal increases

toward the cortical surface are thought to originate from an increas-

ingly larger contribution from draining veins (Koopmans, Barth, Orzada,

& Norris, 2011; Markuerkiaga, Barth, & Norris, 2016).

The cause of the (elusive) second finding is less clear. One possible

explanation suggests a neuronal origin. The thalamic input to primary

visual cortex terminates mainly in layer 4 and 6 (Blasdel & Lund, 1983;

Henderickson et al., 1978; Hubel & Livingstone, 1990; Hubel & Wiesel,

1972; Rockland & Pandya, 1979; Tootell et al., 1988). Thus, increased

metabolic demand due to local processing of incoming signals at mid-

cortical depth may explain a peak in the amplitude of the hemodynamic

response. However, an alternative explanation is offered by the differ-

ences in vascular density at different cortical depths (Uluda�g & Blinder,

2017; Weber, Keller, Reichold, & Logothetis, 2008). In addition to the

six cortical layers that are distinguished with respect to cytoarchitec-

tonic features, the cortex can also be divided into four vascular layers,

which are delineated based on the structure and density of blood ves-

sels (Duvernoy, Delon, & Vannson, 1981). According to this alternative

explanation, the peak fMRI signal at mid-cortical depth may be unre-

lated to differences in neuronal processing across cortical layers, but an

artefact of a higher vascular density at mid-cortical depth. These two

hypotheses are not mutually exclusive; that is, a peak at mid-level grey

matter could be the result of a combination of neuronal and vascular

causes.

In this study, we investigated the contrast response properties of

human V1 and V2 across cortical depths in an fMRI experiment at 7 T,
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and applied spatial deconvolution based on the simulations byMarkuer-

kiaga et al. (2016) to account for the ascending vein effect. We

employed a visual stimulus with a parametrically varied luminance con-

trast. The rationale of this approach is twofold: First, the processing of

luminance contrast is probably the primary computational task carried

out in early visual cortex. Altering the contrast of a stimulus is expected

to be an effective way to reveal the profile of feedforward processing

across the cortical depth in early visual cortex. Second, whereas the

progression of contrast response properties has been studied along the

hierarchy of visual areas in both monkeys (Albrecht & Hamilton, 1982;

Tootell et al., 1988) and humans (Avidan et al., 2002; Boynton et al.,

1999; Levitt et al., 1994; Sclar et al., 1990; Tootell et al., 1995), the

responsiveness to contrast and the contrast sensitivity at different

depths of early visual cortex has not been studied in humans so far. The

only high-resolution fMRI study on contrast responses in humans has

studied variations along the cortical surface, but has not investigated

response properties at different cortical depths (Tootell & Nasr, 2017).

In this study, we were able to extract cortical depth profiles of GE-

fMRI signal changes in human V1 and V2 at 7 T in response to a con-

trast stimulus and demonstrate that the shape of the depth profiles

changes with spatial deconvolution. Only when accounting for the

draining vein effect, both V1 and V2 show peak response amplitudes

at mid-grey matter, as expected for feedforward processing of visual

stimuli. In addition, the contrast sensitivity was found to be different

between V1 and V2 in agreement with previous studies, but constant

across cortical depth, both before and after spatial deconvolution. This

study demonstrates the potential of high-resolution fMRI in humans at

7 T to investigate visual processing and perception, if vascular and MRI

physics confounds are properly accounted for.

2 | METHODS

2.1 | Experimental design

Healthy participants (n511, age between 23 and 35 years, mean age

29 years, 7 females) gave informed consent before the experiment, and

the study protocol was approved by the local ethics committee of the

Faculty for Psychology & Neuroscience, Maastricht University. Subjects

were presented visual grating stimuli at luminance contrasts of 2.5%,

6.1%, 16.3%, and 72.0% (Figure 1a). The grating stimulus had the form

of an annulus, with an inner radius of 1.58 of visual angle and an outer

radius of 4.08 of visual angle. Within the annulus was a square wave

grating with a spatial frequency of 2.08 of visual angle. Stimuli were

created with Psychopy (Peirce, 2007; Peirce, 2008) and projected on a

translucent screen mounted behind the MRI head coil, via a mirror

mounted at the end of the scanner bore. The projection intensity was

calibrated based on luminance measurements taken with a photometer.

Stimuli were presented in a block design with stimulus block durations

of 11.76 s and variable rest periods in random order (20.58 s, 23.52 s,

or 26.46 s). Each run began with an initial rest period with a fixed dura-

tion of 23.52 s, and ended with a rest period of one of the three possi-

ble durations. Within each stimulus block, the luminance contrast of

the stimulus was constant, and the stimulus orientation was altered

between 08, 458, 908, and 1358 in a random order. Each orientation was

presented for 1.68 s, interspersed with equally long interstimulus inter-

vals (Figure 1b). All lights in the scanner room were switched off during

the experiment, and black cardboard was placed on the inside of the

MRI transmit coil in order to minimize light reflection.

Throughout the experiment, participants were asked to fixate a

central dot and to report randomly occurring changes in the dot’s color

by button presses to retain the subjects’ attention. These targets were

presented for 300 ms, with a mean intertrial interval of 16 s (range6

4 s). No targets occurred during the first and last 20 s of each run. The

timing of the color changes was arranged such that the predicted

hemodynamic responses to the grating stimulus and to the color

changes have minimal correlation. First, a design vector representing

the stimulus blocks and a design vector containing pseudorandomly

timed target events were separately convolved with a gamma function

serving as a model for the hemodynamic response. Second, the correla-

tion between the predicted response to the stimulus blocks and to the

target events was calculated. Third, if the correlation coefficient was

above threshold (r> .001), a new pseudorandom design matrix of tar-

get events was created, and the procedure was repeated. This proce-

dure was repeated until the correlation was below threshold,

separately for each run. Each subject completed six functional runs,

with four repetitions of each luminance contrast level per run. The total

duration of a run was 588 s. In an additional run, retinotopic mapping

stimuli were presented for population receptive field estimation, allow-

ing us to delineate early visual areas V1 and V2 on the cortical surface

(Dumoulin & Wandell, 2008). The stimuli used for retinotopic mapping

were oriented bars at four different orientations and eight different

positions per orientation. Each of the resulting 32 stimulus configura-

tions was presented 12 times for 2.94 s in random order.

FIGURE 1 Stimuli used in the main experiment. (a) Grating stimuli were presented at four luminance contrast levels (2.5%, 6.1%, 16.3%,
and 72.0%). (b) Within each stimulus block, the luminance contrast of the stimulus was constant, but the stimulus orientation was altered in
a random order
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2.2 | Data acquisition and preprocessing

Functional MRI data were acquired on a 7 T scanner (Siemens Medical

Systems, Erlangen, Germany) and a 32-channel phased-array head coil

(Nova Medical, Wilmington, MA, USA) using a 3D GE EPI sequence

(TR52.94 s, TE526 ms, nominal resolution 0.7 mm isotropic, 52 slices,

coronal oblique slice orientation; Poser, Koopmans, Witzel, Wald, &

Barth, 2010). We also acquired whole-brain structural T1 images using

the MP2RAGE sequence (Marques et al., 2010) with 0.7 mm isotropic

voxels, and EPI images with opposite phase encoding for distortion cor-

rection of the functional data (Andersson, Skare, & Ashburner, 2003).

Motion correction was performed using SPM 12 (Friston, Williams,

Howard, Frackowiak, & Turner, 1996), and the data were distortion cor-

rected using FSL TOPUP (Andersson et al., 2003). More specifically, data

weremotion correctedwithin runs before estimating and correcting geo-

metric distortions individually for each run. Afterward, the distortion-

corrected images were registered to correct for across-run head move-

ment using SPM12’s two pass procedure: images were first registered to

the first image of the first run, and subsequently to themean of all images

after the first realignment. Standard statistical analyses were performed

using FSL (Smith et al., 2004), fitting a general linear model (GLM) with

separate predictors for the four stimulus conditions (luminance contrast

levels) and a nuisance predictor for the target events of the fixation task.

High-pass temporal filtering (cutoff value 100 s) was applied to both the

model and the functional time series before GLM fitting. Population

receptive field mapping (Dumoulin & Wandell, 2008) was performed

using publicly available python code (Marquardt, Schneider, & Gulban,

2018) and standard scientific python packages (Numpy/Scipy, Matplot-

lib, Cython; Behnel et al., 2011;Millman & Aivazis, 2011; Oliphant, 2007;

van derWalt, Colbert, & Varoquaux, 2011).

Each of the 11 subjects completed 6 functional runs of the main

experiment. One subject completed two identical sessions on separate

days. Cortical depth sampling requires a high level of spatial accuracy.

However, the fMRI time series sometimes contained artefacts, such as

unstable geometric distortions or strong, global image intensity fluctua-

tions. These artefacts are presumably due to subject motion or field

fluctuations due to scanner instability or physiological noise. To remove

low-quality data based on a quantifiable and reproducible exclusion cri-

terion, we calculated the spatial correlation between each functional

volume and the mean EPI image of that session after the across-runs

registration. If the mean correlation coefficient of the volumes in a run

was lower than 0.93, that run was excluded from further analysis. The

threshold (r< .93) was chosen based on visual inspection of respective

plots for all subjects (Supporting Information, Figure S1), in order to dis-

criminate low- and high-quality runs. Note that the value of 0.93 is

conservative and may have led to exclusion of valid data but made sure

that only high-quality data was included in the final results. For studies

with low number of subjects and/or runs, a lower threshold can be

chosen. The spatial correlation exclusion criterion resulted in the exclu-

sion of 19 runs in total from 4 out of 11 subjects (for two subjects, all

six runs were excluded; for four subjects, one run was excluded; and

one subject had three runs removed). One additional run was excluded

because the subject had detected <75% of targets, compared to an

average performance of 95% across subjects. Thus, 20 runs were

excluded in total. Because of hemispheric imbalances in temporal

signal-to-noise ratio (tSNR), we limited the cortical-depth analysis to

the left hemisphere in all subjects. (Functional data were acquired using

a 3D EPI sequence with right–left phase encoding. The tSNR imbalance

between hemispheres possibly is due to the asymmetric coil sensitivity

profile and phase readout polarity. The asymmetry of the NOVA medi-

cal coil at 7 T is a commonly observed issue and the result of the coil’s

design to improve the general homogeneity and reduce the sensitivity

to head size and position within the coil. Because the stimulus was

symmetric about the vertical meridian, it is not expected that the

results qualitatively differ for the right hemisphere. Thus, we decided

to focus our analysis on the hemisphere with the higher data quality.

We tested this hypothesis on a subsample of subjects, which yielded

very similar results for the right and left hemispheres (data not shown).)

2.3 | Segmentation and depth sampling

The anatomical MP2RAGE images were registered to the mean func-

tional image of each subject using boundary-based registration (Greve

& Fischl, 2009; Jenkinson, Bannister, Brady, & Smith, 2002; Jenkinson

& Smith, 2001), and used for grey/white matter segmentation. We

obtained an initial tissue type segmentation from FSL FAST (Zhang,

Brady, & Smith, 2001). These initial segmentations were manually

improved using publicly available python code (Gulban & Schneider,

2016) and ITK-SNAP (Yushkevich et al., 2006). Manual corrections of

the automatic segmentations were based on the T1 image from the

MP2RAGE sequence and aimed to remove mistakes in the definition of

the white/grey matter boundary and at the pial surface. Particular care

was taken to ensure that voxels outside the pial surface were correctly

labelled as CSF. To this end, the T1 images were upsampled to a voxel

size of 0.35 mm isotropic using trilinear interpolation, allowing for a

more fine-grained delineation of tissue types.

Given the maximum spatial resolution currently achievable with

fMRI, it is not yet possible to sample individual cortical layers. There-

fore, cortical-depth-specific fMRI studies need to increase the effective

spatial resolution during postprocessing, by upsampling (as in this

study), or by another super-resolution approach, such as spatial GLM

(Kok, Bains, van Mourik, Norris, & de Lange, 2016). (See Supporting

Information for more details on spatial resolution and upsampling.) The

final grey and white matter definitions were used to construct cortical

depth profiles using volume-preserving parcellation implemented in

CBS-tools (Bazin et al., 2007; Waehnert et al., 2014). CBS-tools repre-

sents information about cortical depth in distance maps, also known as

level-set images. Based on these distance maps, the cortical grey mat-

ter was divided into 10 compartments, resulting in 11 depth-level

images delineating the borders of these equivolume compartments.

The parameter estimates and z-scores from the GLM analysis, the pop-

ulation receptive field estimates, and the mean EPI images were up-

sampled to the resolution of the segmentations (0.35 mm isotropic

voxel size) using nearest-neighbor interpolation, and sampled along

the previously established depth-levels using CBS-tools (Bazin et al.,

2007; Waehnert et al., 2014). The depth-sampled data were then

MARQUARDT ET AL. | 2815



projected onto a surface mesh (Tosun et al., 2004), and visual areas V1

and V2 were delineated on the cortical surface based on the polar

angle and eccentricity estimates from the pRF modelling using Para-

view (Ahrens, Geveci, & Law, 2005; Ayachit, 2015). Note that the pur-

pose of representing the data on a surface mesh was only to select our

regions of interest (ROIs); the depth-sampling was performed in the

previous step, and cortical fMRI profiles were obtained as described

below. See Figure 2 and Supporting Information, Figure S2 for a

scheme of the preprocessing and analysis pipeline.

2.4 | ROI selection

We defined the ROIs, on which all further analyses were performed, in a

sequential procedure, designed to obtain an observer-independent,

unbiased selection (Figure 2). The first step of the ROI selection proce-

durewas the retinotopic V1 and V2 definitions: Only “columns” (i.e., grey

matter segments covering all depths) that were located within V1 or V2

were selected (the procedure was carried out separately for V1 and V2).

Second, “columns” with a low population receptive field model fit at any

depth level were excluded (minimum R2 across cortical depth>0.12).

The purpose of this step was twofold: An unreasonably low pRF model

fit indicates that the polar angle and eccentricity estimates may not be

reliable, therefore calling into question the validity of the first selection

criterion (i.e., V1 andV2 definitions). Furthermore, even in case of a corti-

cal location that is certainly contained within V1 or V2 based on its ana-

tomical location, a low pRF model fit is indicative of an unspecific visual

response, which may be due to the presence of a large draining vein with

a strong but unspecific signal change in response to visual stimulation.

After these initial selection based on retinotopic information, the third

selection criterion excluded “columns”with a very low signal intensity at

any cortical depth level in the mean EPI image, to avoid sampling from

veins and low intensity regions around the transverse sinus, due to slight

imprecisions in the registration and/or segmentation. Specifically, we

excluded all “columns”with EPI image intensity below 7,000 at any corti-

cal depth in the mean functional image, which has a mean intensity of

about 10,000 for voxels containedwithin the brain.

The selection criteria described so far are based on anatomical and

retinotopic information, irrespective of stimulus-induced signal changes

in the main experiment. The final ROI selection was performed based

on the responsiveness to the grating stimulus in the main experiment,

as indicated by the GLM z-scores contrasting each of the four stimulus

conditions against rest. For each “column” that had passed all previous

selection criteria, the maximum z-score across cortical depth levels was

obtained separately for each of the four stimulus conditions. The mini-

mum of these four z-values (one per stimulus condition) was deter-

mined, and from these the “columns” containing the maximum 1,000 z-

values were selected. By first taking the minimum z-value across condi-

tions, we aimed to select “columns” that are responsive to all stimulus

conditions, and not only to the highest luminance contrast. Note, how-

ever, selection based on minimum or mean across conditions did not

produce significant differences in the main results (data not shown).

The selection was based on z-values (and not on parameter estimates)

because we expect the z-statistic to be less sensitive to pials veins (due

to the high physiological noise caused by a large vein).

The ROI selection procedure was carried out separately for V1 and

V2. Selection criteria were always applied to an entire “column”—that

FIGURE 2 Overview of region of interest (ROI) selection. Vertices were selected based on a combination of criteria: retinotopic
information, mean EPI image intensity, and z-scores from the GLM analysis. The selection procedure attempts to select vertices with a
specific response to the stimulus while minimizing subjective selection bias. This procedure was applied separately for V1 and V2. See
Section 2 and Supporting Information, Figure S2 for details
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is, either the entire “column” was included or excluded. The ROI selec-

tion described in this section, and all subsequent analysis steps were

performed using standard scientific python packages (Numpy, Scipy,

Matplotlib; Hunter, 2007; Millman & Aivazis, 2011; Oliphant, 2007;

van der Walt et al., 2011).

2.5 | Creation of cortical depth profiles

For each subject, we sampled the GLM parameter estimates corre-

sponding to the four stimulus conditions within the final ROIs, sepa-

rately for V1 and V2. The parameter estimates were then averaged

within the cortical depth levels to obtain one depth profile of stimulus-

induced activation for each subject. Because the fMRI signal amplitude

of the stimulus-induced responses differed across subjects, we normal-

ized the depth profiles of each subject before averaging across sub-

jects. Normalization was performed by dividing each subject’s depth

profile by the within-subject mean activation (given by the GLM param-

eter estimates) across depth levels and stimulus conditions. In this way,

averaging across subjects does not bias the resulting group-level pro-

files toward subjects with a strong level of activation.

2.6 | Draining effect spatial deconvolution

As described above, cortical depth-specific BOLD fMRI using GE

sequences is expected to result in depth-profiles with a signal increase

toward the surface of the brain, due to the sensitivity to ascending

draining veins (Koopmans et al., 2011; Zhao, Wang, & Kim, 2004; Mar-

kuerkiaga et al., 2016; see Uluda�g & Blinder, 2017 for a review). That

is, the fMRI signal at each cortical depth is not only influenced by the

local neuronal activation but also by the draining of altered deoxyhe-

moglobin content and increased blood pressure from lower layers. As a

result, the laminar-resolved, measured fMRI signal (S) is the sum of local

fMRI activation (LA) and nonlocal fMRI signal changes (NL) due to

ascending veins (assuming similar signal intensity S0 at each layer). If

we reasonably assume the flow direction from layer 6 (close to white

matter) to layer 1 (close to CSF), then we can formalize this as

LA65 S6

LA55 S5–w6!5 3 LA6

LA45 S4–w6!5 3 LA6–w5!4 3 LA5

and so on.

In other words, to obtain the fMRI signal due to local neuronal

activation, the influence of the lower layers is subtracted from the

measured signal with weighting factors w(n11)!n. In laminar fMRI

experiments, the weighting factors are usually not known. It may be, in

the future, possible to derive these factors from resting-state or hyper-

capnia data, as suggested by Polimeni, Witzel, Fischl, Greve, and Wald

(2010) and Guidi, Huber, Lampe, Gauthier, and M€oller (2016), or from

laminar-specific dynamic fMRI signal models (Havlicek and Uludag, in

preparation). In the current study, we used the model proposed by

Markuerkiaga et al. (2016) to derive the weighting factors (from their

Figure 3f, factors shown here in Table 1). In short, Markuerkiaga et al.

(2016) developed a detailed microanatomical model of the vascular

system of primate visual cortex, based on histological data, following

the study by Boas, Jones, Devor, Huppert, and Dale (2008). They com-

bined this vascular model with the BOLD signal model proposed by

Uluda�g et al. (2009), and simulated the spread of fMRI signal changes

across cortical layers. The simulations by Markuerkiaga et al. (2016)

provided a specific estimate of the draining effect on the fMRI signal

for each cortical layer, allowing differentiating between signal changes

due to a local hemodynamic response, and signal changes due to the

inflow of blood and deoxygenated hemoglobin from deeper layers. The

model assumptions match our experimental parameters in terms of

field strength, imaging parameters, and stimulus duration (Markuerkiaga

et al., 2016). To account for the different relative thickness of the corti-

cal layers in V1 and V2, and because the model by Markuerkiaga et al.

(2016) is defined at five cortical layers (layers 2 and 3 are grouped

together), we resampled our depth profiles to those five layers (Mar-

kuerkiaga et al., 2016; de Sousa et al., 2010; Waehnert et al., 2014).

The spatial deconvolution has, to the best of our knowledge, not

been applied in an fMRI study before, and the model parameters have

not yet been empirically validated. Therefore, before proceeding with

the analysis of contrast response properties in V1 and V2, we need to

assess the sensitivity of the BOLD signal profile after using the

FIGURE 3 The visual grating stimulus caused strong fMRI signal
changes across the visual cortex. Shown are the z-scores for the
GLM contrast of the strongest contrast stimulus (72.0% contrast)
against rest, overlaid on the quantitative T1 image, for a
representative subject. The T1 image has been cropped to the
approximate extent of the field-of-view of the functional images
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Weighting factors for spatial deconvolution

Depth
level 1 2/3 4 5 6

1 1.00 0.41 0.59 0.20 0.26

2/3 1.00 0.59 0.20 0.26

4 1.00 0.20 0.32

5 1.00 0.32

6 1.00

Each row specifies the weighting factors w for the contribution of local
fMRI activation (LA) and nonlocal fMRI signal changes (NL) to the total
measured signal (S) at that depth level. For example, the measured signal
S6 is completely determined by the local activation LA6; therefore,

w6!65 1.00, and
X5

n51

w n!6ð Þ50. In contrast, the measured signal S5 is

the sum of the local activation LA5 and a fraction w6!55 0.32 of the
nonlocal signal NL6, that is, S55 1.00 3 LA510.32 3 NL6 (weighting
factors derived from Markuerkiaga et al., 2016, p. 495, figure 3f).
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deconvolution method to changes in its model parameters. Whereas it

is reasonable to assume that draining veins cause a unidirectional signal

spread from deeper to more superficial cortical depth levels, the exact

size of this draining effect is contingent on the model assumptions

made by Markuerkiaga et al. (2016). To assess how our results would

change with deviations in the draining model parameters, we multiplied

the weighting factors w(n11)!n (Table 1) with two different bias sour-

ces. First, the spatial deconvolution model is based on histological data

on the structure of the vascular system. The respective histological

monkey data may not be representative of our sample of human sub-

jects, resulting in a systematic overestimation or underestimation of

the extent of signal spread across cortical depth levels. Another source

of systematic deviation may result from a bias in the model of the

BOLD signal. We modelled such an over- and underestimation by using

weighting factors that are 30% larger and smaller than the original

weighting factors at all cortical depth levels.

Second, the histological data forming the basis of the deconvolu-

tion model may be affected by random measurement error. We mod-

eled such nonsystematic error by multiplying the weighting factors

with random Gaussian noise before applying the spatial deconvolution.

More specifically, each weighting factor w(n11)!n was separately multi-

plied with a factor that was randomly sampled from a normal distribu-

tion with mean 1.0 and standard deviation 0.15. Thus, the average

deviation of the perturbed model parameters was 15% with respect to

the original model parameters. This procedure was repeated 10,000

times, each time sampling different random noise factors from the nor-

mal distribution. Because the random noise was distributed around 1.0,

averaging across iterations results in mean depth profiles that are iden-

tical to the ones based on the original model parameters. The parame-

ter of interest is therefore the spread of the resulting depth profiles.

2.7 | Contrast response function

To characterize the response properties of V1 and V2 in more detail, we

fitted a contrast response function to the depth profiles of stimulus

induced signal changes, both before and after draining-effect spatial

deconvolution, separately for all depth levels. Because our stimuli were

well above the perceptual threshold, and due to the small number of stim-

ulus contrast levels, we fitted a simple power function, which can approxi-

mate contrast responses under the given conditions reasonablywell:

R Cð Þ5A3CB

with C being the luminance contrast level, and A and B as free parameters

(Albrecht&Hamilton, 1982). (ParameterA determines the overall response

amplitude andB specifies the slope of the function.) To determine the error

of the fits, the contrast response function was fitted using a bootstrapping

procedure. We randomly resampled the single-subject response profiles

10,000 times with replacement, and fitted the contrast response function

to the across-subjects average profile of each bootstrapping iteration.

Based on the fitted contrast response function, we calculated the

predicted response to a 50% contrast stimulus for each bootstrapping

sample (i.e., R(0.5)5A3 0.5B). This 50% contrast response was obtained

for both V1 and V2 for all cortical depth levels, both before and after

spatial deconvolution. The resulting response profiles are a summary of

the overall responsiveness of a region/depth level to a contrast stimulus.

Furthermore, the semisaturation contrast was derived from the fit-

ted contrast response function of each bootstrapping sample. The

semisaturation contrast is the stimulus contrast necessary to create a

half-maximum response and is used to describe the overall contrast

sensitivity of neurons in the visual system (Albrecht & Hamilton, 1982;

Sclar et al., 1990). Semisaturation contrast is insensitive to the overall

response amplitude and relatively constant across spatial frequencies

(Albrecht & Hamilton, 1982).

2.8 | Peak identification

A peak identification algorithm was applied to quantify the shape of

the cortical depth profiles. The depth profiles were up-sampled to 100

points, smoothed with a Gaussian kernel with a FWHM55% of the

cortical depth, and peaks were defined as local maxima within a neigh-

borhood of610 points. If no such local maximum was present, the

global maximum across cortical depths was defined as the peak of the

respective depth profile. For instance, for a profile exhibiting a mono-

tonic increase toward the pial surface, the peak is at the most superfi-

cial cortical depth level.

A permutation test was performed to test for statistical differences

in peak positions in cortical depth profiles between V1 and V2. Specifi-

cally, we compared the difference in peak position obtained from across-

subjects average depth profiles with a null distribution of the difference

in peak position obtained by permuting the ROI labels (i.e., “V1” and

“V2”) within subjects. The null distribution was obtained by sampling

500,000 times without replacement. This procedure was performed on

depth profiles of the parameter estimates of all four stimulus conditions,

before and after spatial deconvolution, and on the depth profiles of the

predicted response to a 50% contrast stimulus, separately for V1 andV2.

3 | RESULTS

The visual stimuli caused strong fMRI signal changes in the visual cor-

tex (for example, see Figure 3). Not surprisingly, we observed a stron-

ger response for higher luminance contrast levels irrespective of

cortical depth (Figure 4). In the original depth-profiles (i.e., before spa-

tial deconvolution), the response initially increased with distance from

the white matter in V1, but levelled off at mid-cortical depth (Figure

4a). The peak positions for the four stimulus conditions, from lowest to

highest contrast, were located at �35%, �30%, �30%, and �35% of

cortical depth from the pial surface, respectively. (Please note that

these peak positions were determined from averaged and upsampled

depth profiles.) The original depth-profiles for V2 showed a slightly

more monotonic increase toward the pial surface (Figure 4c; peak posi-

tion at �0%, �0%, �5%, and �0% of cortical depth from the pial sur-

face, respectively). The difference in the distribution of peak positions

between V1 and V2 was not statistically significant, after correcting for

multiple comparisons, for all but the lowest stimulus contrast condition

(p< .05, p> .05, p> .05, p> .05, Bonferroni corrected, for the four

stimulus conditions, from lowest to highest luminance contrast).
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The spatial deconvolution dramatically changed this picture: After

accounting for the draining effect, in V1, there was a local maximum at

the middle of grey matter (Figure 4b, at �55% of cortical depth from

the pial surface in all four stimulus conditions). In addition, there was

another, even slightly higher, maximum at the lowest depth in V1. The

deconvolved profile for V2 also showed a pronounced peak at mid

grey matter, with a slight signal decrease toward the surface (Figure

4d; peak position at �45% cortical depth from the pial surface for all

four stimulus conditions).

Figure 5 shows the experimental fMRI response and the fitted

contrast response functions exemplarily for three depth-levels for V1

and V2 after spatial deconvolution (see Supporting Information, Figure

S3 for the same data without spatial deconvolution). The fMRI

responses were well approximated by a power function, and the result-

ing contrast response functions showed differences in shape and ampli-

tude across areas and cortical depths. To characterize the contrast

response properties in more detail, the predicted response at 50% con-

trast (Figure 6) and the semisaturation contrast (Figure 7) were

obtained from the fitted contrast response functions.

Before spatial deconvolution, the peak of the response at 50%

contrast was at �30% of cortical depth relative to the pial surface in

V1 and at �0% of cortical depth in V2 (Figure 6a). A permutation test

revealed the difference in the distribution of peak positions between

V1 and V2 to be statistically significant (p< .05). After accounting for

the draining effect, the position of the mid grey matter peak in V1 was

slightly deeper than in V2, at �55% and �45% of cortical depth

relative to the pial surface for V1 and V2, respectively. Even though

this difference in peak positions was statistically significant (p< .05),

we caution against over-interpreting this effect. The peak positions of

V1 and V2 are separated by a distance of �10% of the cortical depth.

Given the limited spatial resolution of the data, different histological

layering in V1 and V2, and possibly errors in the deconvolution parame-

ters for the removal of the draining vein effect in V1 and V2, the cer-

tainty in determining the peaks may not be sufficient to relate these

differences to the spatial profiles of neuronal activity.

We did not find statistical evidence for a difference in semisatura-

tion contrast across cortical depths (Figure 7). However, as expected,

the semisaturation contrast was much higher for V1 than for V2. These

results were similar before and after spatial deconvolution (parametric

bootstrap linear regression, 100,000 iterations; before and after spatial

deconvolution: cortical depth level, p> .05; ROI (V1/V2), p< .01). Thus,

we found the V2 response to saturate at a lower contrast than the

response in V1, in line with a smaller dynamic range in V2.

Figure 8 plots the results of simulated deviations of the spatial

deconvolution model parameters for the strongest luminance contrast

level (75% luminance contrast). Systematic over- and underestimation

of the weighting factors are represented by the two red lines, and the

effect of random error is indicated by the blue error shading. The deep-

est cortical depth level, close to the white matter, is not affected by

perturbing the model parameters, because no deconvolution is applied

there. With increasing distance from the white matter, the effect of

perturbing the model parameters becomes larger, for both systematic

FIGURE 4 Cortical depth profiles for V1 (a and b) and V2 (c and d) before (a and c) and after (b and d) accounting for the draining effect.
Shown are the mean GLM parameter estimates contrasting the response to the four different stimuli against rest, normalized, and averaged
across the left hemispheres of all subjects. The shading depicts the standard deviation (across subjects) of the mean [Color figure can be
viewed at wileyonlinelibrary.com]
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and random error. This is not surprising, since any deviation in the

weighting factors affects the deconvolution at all subsequent (i.e., more

superficial) depth levels. Importantly, although the range of the distri-

bution becomes wider toward the cortical surface, the general shape of

the profiles and the presence of the local maximum in mid-grey matter

do not change.

4 | DISCUSSION

Along the hierarchy of visual areas, neurons’ preferred stimuli evolve

from simple luminance contrasts to more complex visual features

(Hochstein & Ahissar, 2002; Maunsell & Newsome, 1987; Vogels &

Orban, 1996). Moreover, sensitivity to stimulus features varies

between cortical layers, suggesting that cortical layers are

interconnected but separate networks within the visual hierarchy

(Alonso & Martinez, 1998; Gilbert, 1977; Hubel & Wiesel, 1968; Marti-

nez & Alonso, 2003). Whereas the progression of response properties

between visual areas in humans has been studied in detail (Hochstein

& Ahissar, 2002), less is known about the specific role of human corti-

cal layers in visual feature processing. To address this issue, we investi-

gated the contrast response properties of human V1 and V2 across

cortical depths in an fMRI experiment at 7 T at high spatial resolution.

4.1 | Contrast response properties over cortical depth

We fitted a contrast response function (Albrecht & Hamilton, 1982) to

the stimulus-induced fMRI responses at different cortical depths, and

determined the predicted response at 50% luminance contrast as a

FIGURE 5 Contrast response function for V1 (upper row) and V2 (lower row) for three depth levels (left: deep grey matter; middle: mid-
grey matter; right: superficial grey matter). The blue line shows the experimental fMRI response after accounting for draining effects at the
four stimulus contrast levels (2.5%, 6.1%, 16.3%, and 72.0%); the blue error bars represent the standard deviation of the mean across sub-
jects. The red line indicates the median power function model fit across bootstrapping iterations, and the shaded region represents the cor-
responding 99% confidence interval. See Supporting Information, Figure S3 for the same contrast response function fitted before spatial
deconvolution [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Response at 50% contrast across cortical depth, before (a) and after (b) spatial deconvolution. The solid lines indicate the
median response for a stimulus with 50% luminance contrast, based on the bootstrapped contrast response function. Shaded regions
indicate the 99% confidence interval of the median (percentile bootstrap). The dotted vertical lines indicate the median relative cortical
depth of the peak [Color figure can be viewed at wileyonlinelibrary.com]

2820 | MARQUARDT ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


measure of the amplitude of the stimulus-induced response, and con-

trast sensitivity as a measure how much this response was modulated

by varying luminance contrast levels. We did not observe an effect of

cortical depth on contrast sensitivity (Figure 7). Hence, our results are

not indicative of a contrast sensitivity gradient between the proposed

two stages of feedforward processing in the middle and superficial

layers of human V1 (Callaway, 1998). Differences in contrast sensitivity

between layers have been reported in monkeys (Tootell et al., 1988),

and we cannot exclude the possibility that the absence of such an

effect may be due to a lower sensitivity and/or specificity of depth-

dependent fMRI compared to invasive methods.

With respect to the stimulus-induced response amplitude, our

results after spatial deconvolution (see below for discussion) indicate a

signal peak at mid-grey matter in V1 and V2 (Figure 6b). While there

are, to the best of our knowledge, no previous studies on the cortical

depth-dependence of contrast response properties in human visual

cortex, our results can be compared with studies in monkeys: Tootell

et al. (1988) measured tracer uptake across cortical layers 3–6 in maca-

que V1 after prolonged exposure to grating stimuli at four different

luminance contrasts. We applied the same contrast response function

used to fit our fMRI data to their data (Tootell et al., 1988, p. 1602,

their figure 6), and found the cortical depth profiles of the normalized

response amplitude in monkey V1 to be in close agreement with our

data, with maxima in deep grey matter and at mid cortical depth (com-

pare Figure 9 with Figure 6b). This result is expected for feedforward

stimuli. In fact, several high-resolution fMRI studies in animals (Chen,

Wang, Gore, & Roe, 2013; Goense, Merkle, & Logothetis, 2012; Harel,

Lin, Moeller, Ugurbil, & Yacoub, 2006; Jin & Kim, 2008; Kim & Kim,

2010; Lu et al., 2004; Yu et al., 2012; Yu, Qian, Chen, Dodd, & Koret-

sky, 2014; Zhao, Wang, Hendrich, Ugurbil, & Kim, 2006) and humans

(Fracasso, Luijten, Dumoulin, & Petridou, 2017; Koopmans, Barth, &

Norris, 2010; Koopmans et al., 2011) have also found a peak at inter-

mediate depth levels in primary sensory cortex as a result of bottom–

up stimulus modulation (see Uluda�g & Blinder, 2017, for a review,

including conflicting evidence), suggested to reflect direct thalamic

input to V1, and cortico-cortical input from V1 to V2, respectively.

In addition to the expected local response maximum at mid cortical

depth, we found an elevated signal in deep grey matter in V1,

FIGURE 7 Semisaturation contrast across cortical depth in V1 and V2 (a) before and (b) after draining effect spatial deconvolution. Solid
lines indicate the bootstrapped median semisaturation contrast, and the shading represents the respective 95% confidence interval. The
semisaturation contrast is relatively constant across cortical depth, and is generally higher for V1 than for V2 [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 8 The effect of variance in the model assumptions on spatial deconvolution. We assessed the effect of two types of error: First, a
systematic over- and underestimation of the extent of signal spread across cortical depth levels (represented by the red lines), and second,
random error in the weighting factors used for spatial deconvolution (blue error shading represents the 0.5th and 99.5th percentile after
applying random Gaussian noise to the deconvolution weighting factors over 10,000 iterations; see Section 2.2 for details). With increasing
distance from the white matter, the spread of the distribution becomes larger, reflecting a greater effect of changes in the model
parameters toward the cortical surface. However, the general shape and peak positions are not affected. For better visibility, only the data
for one stimulus condition (75% luminance contrast) are shown [Color figure can be viewed at wileyonlinelibrary.com]
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presumably originating from layers 5 and/or 6. This observation was

somewhat surprising, as it is commonly assumed that the response to a

simple feed-forward stimulus is characterized by a peak mainly in thala-

morecipient layer IV. Several electrophysiological studies in nonhuman

primates found strong postsynaptic, stimulus-induced activity in layers

2, 3, and 4B of V1, but not in deep layers (Roberts et al., 2013; Xing,

Yeh, Burns, & Shapley, 2012). Similarly, an fMRI study in rats reported

evidence for a stimulus-induced activity increase in middle layers of pri-

mary visual cortex, but not in deep layers (Bissig & Berkowitz, 2009). In

contrast, some fMRI experiments measuring BOLD signal and cerebral

blood volume in anaesthetised macaque monkeys observed an ele-

vated signal in deep layers (Goense, Zappe, & Logothetis 2007, see

their Figure 2B; Smirnakis et al., 2007, see their Figure 2D). Please note

that most electrophysiological and fMRI studies presented drifting or

flickering grating stimuli with a high temporal frequency. Self, van Ker-

koerle, Goebel, and Roelfsema (2017) point out that experiments using

rapidly changing visual stimuli are biasing the neuronal responses

toward the feedforward modules. In contrast, stimuli at a lower tempo-

ral frequency are likely to result in different relative response strength

between feedforward and feedback modules. In line with this argu-

ment, a study, in which awake Macaque monkeys were presented with

a uniform luminance stimulus for 1.5 s, found a broadband response in

deep grey matter that lasted throughout the stimulus presentation, in

addition to an onset response at mid-grey matter (Maier, Aura, & Leo-

pold, 2011). Whereas the spatial properties of the stimulus used in that

experiment were different to ours, the duration was very similar, and,

in contrast to most invasive electrophysiological studies, the monkeys

were awake. Similar to our experiment, the stimulus was not behavior-

ally relevant, and the monkeys’ only task was to maintain fixation.

Maier et al. (2011) propose three possible causes for their observed

sustained, post-synaptic activity in deep layers: (a) direct thalamocorti-

cal sensory input from LGN, (b) indirect input from extrastriate visual

cortex or from the pulvinar, or (c) intrinsic processing within V1, possi-

bly due to recurrent activation within a cortical column. Based on the

known connectivity pattern of the infragranular layers and the

strengths of these connections, Maier et al. (2011) conclude that the

third option, that is, intrinsic cortical connections, is the most likely

cause of the observed sustained activity within the deep layers of V1.

Although speculative, their results, and our finding of an elevated

responsiveness in deep grey matter in V1, may be the consequence of

recurrent excitation caused by the prolonged presentation of a slowly

changing stimulus.

In this context, it is worth noting that layer 6 receives collaterals of

the feedforward projections originating in layer 4 (Callaway, 1998; Call-

away, & Wiser, 1996). Neurons in layer 6 of V1 presumably form a

first-level feedback node that modulates the responses to incoming

sensory information in layer 4C of V1, and in the LGN, according to

behavioral needs (Callaway, 1998; Kim, Matney, Blankenship, Hestrin,

& Brown, 2014; Olsen, Bortone, Adesnik, & Scanziani, 2012; Sherman,

2005; Thomson, 2010). Similarly, layer 5 of V1 constitutes a second-

level feedback module (Adesnik & Scanziani, 2010; Callaway, 1998;

Callaway & Wiser, 1996). In summary, the elevated response observed

in mid grey matter in our study could be linked to the feedforward

flow of transient information, whereas the peak in deep layers in V1

may be related to recurrent processing caused by the constant pres-

ence of the stimulus. Note, however, that the response peak in deep

layers has only been observed under particular stimulus conditions, and

may not be present for all stimulus types and/or feedforward process-

ing of transient stimuli. Therefore, a systematic comparison between

laminar fMRI responses to various stimulus parameters will be needed

to validate our findings and to identify the conditions under which a

high response in deep layers is evoked.

Although the relationship between electrophysiological measures

of neuronal activity and the fMRI signal is not completely under-

stood (Logothetis, 2008), the fMRI signal, particularly in primary vis-

ual cortex, is more closely related to postsynaptic activity than to

spiking (Goense & Logothetis, 2008; Logothetis, Pauls, Augath, Tri-

nath, & Oeltermann, 2001; Viswanathan & Freeman, 2007). Hence,

the most obvious explanation for a local response maximum is an

increased metabolic demand due to postsynaptic activity caused

either by afferent signals targeting layer 4 and 6 or by local process-

ing. Alternatively, a higher vascular density at intermediate cortical

depths may cause a peak in the fMRI signal (Uluda�g & Blinder,

2017). However, after applying the spatial deconvolution, we

observed a peak at mid-grey matter in both V1 and V2, but a

higher local vascular density in middle layers has only been reported

for V1, not for V2, in macaque monkeys (Weber et al., 2008). It is

expected that human V1 and V2 exhibit a similar vascular volume

distribution. Even though we cannot completely rule out the alterna-

tive, the electrophysiological evidence and relatively constant vascu-

lar volume across layers of V2 argue that the laminar fMRI signal

profile after spatial deconvolution reflects the neuronal laminar

profile.

FIGURE 9 Tootell et al. (1988) measured tracer uptake across
cortical layers in macaque V1 after prolonged exposure to grating
stimuli at four different luminance contrasts. Shown is the
predicted response at 50% luminance contrast after fitting their
data with the same contrast response function that was used on
our fMRI data. To facilitate the comparison with the fMRI results,
Gaussian smoothing (SD520% of cortical depth) was applied to
the histological data. Tracer uptake was reported for layers 3, 4A,
4B, 4Ca, 4Cb, 5, and 6 (Tootell et al., 1988)
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4.2 | Spatial deconvolution model assumptions

Our deconvolution results are contingent on the validity of the model

proposed by Markuerkiaga et al. (2016). To assess the impact of devia-

tions of the model predictions from the actual signal spread on the

resulting cortical depth profiles, we modeled the effects of systematic

and random error in the assumed signal spread on the resulting depth

profiles (Figure 9), and found that the general shape of the profiles and

the positions of local maxima remain intact despite strong perturba-

tions of the model parameters. Therefore, our overall conclusions are

relatively insensitive to the exact values of the weighting factors that

represent draining of deoxygenated hemoglobin and blood volume via

ascending veins toward the cortical surface. In other words, the change

of the slope of the fMRI response amplitude before spatial deconvolu-

tion as a function of cortical depth is a strong indicator of the underly-

ing neuronal laminar profile. However, this may not be true for other

experimental designs resulting in more subtle neuronal changes

between layers. Thus, in vivo derivation or calibration of these weight-

ing factors or invertible generative fMRI signal models may alleviate

determination of underlying neuronal laminar profiles from experimen-

tal fMRI data (Havlicek and Uluda�g, in preparation).

It could be argued that the lowest cortical depth level (closest to

white matter) has a particularly strong influence on the spatial decon-

volution, in the sense that any measurement error at this level would

affect the deconvolution at all higher depth levels. Partial volume

effects at the white matter boundary may result in an underestimation

of the stimulus-induced response in deep layers, because white matter

tissue is presumably not responsive to the stimulus. We have simulated

the effect of an underestimation of the response amplitude at the

deepest cortical depth level, and found that while a strong underesti-

mation alters the relative amplitude of the deep grey matter and mid

grey matter peaks, the presence of those peaks is not affected (see

Supporting Information, Figure S4 for details).

At present, the model of signal spread between cortical depth lev-

els developed by Markuerkiaga et al. (2016) is only defined for V1.

Between-area variability, within-area variability, and between-subject

variability in vascular structure may therefore lead to erroneous decon-

volution results. When applying the deconvolution to V2, we

accounted for the different relative thickness of cortical layers, but not

for differences in vascular structure (Weber et al., 2008). However,

simulations using systematically and random deviations from the model

parameters did lead to similar depth profiles (Figure 8). To test the gen-

eralizability of our approach, we applied the deconvolution model to

cortical depth profiles from primary motor cortex (M1), recently pub-

lished by Huber et al. (2017a). In that study, cortical blood volume

(CBV) was measured using the VASO sequence, in addition to BOLD

images acquired with a GE-EPI sequence. As CBV changes are assumed

to be located in microvasculature (see Uluda�g & Blinder, 2017 for a

review), the CBV spatial profile is a nonlinear proxy for the neuronal

activity profile. Cortical depth profiles were obtained for activation dur-

ing a sensory-motor task. The GE-EPI BOLD data are, similar to our

results, prone to vascular signal spread due to ascending veins. Because

of differences in vascular structure and cortical thickness between V1

and M1, the spatial deconvolution model is not expected to provide an

optimal solution in this context. However, when applying the spatial

deconvolution with model parameters optimized for V1 to the data

from M1, the BOLD fMRI profile becomes more similar to the CBV

profile, and thus—presumably—more similar to the “true” profile of local

neuronal activity (Supporting Information, Figure S5). We take this as

an indication that the optimal deconvolution parameters may not dras-

tically differ between brain regions. Nevertheless, we recommend a

sensitivity analysis of the weighting parameters to determine the

dependence of the results on the exact values of the parameters.

Further research may measure cortical depth profiles of CBV or

cerebral blood flow (CBF) in addition to the BOLD fMRI signal under

identical stimulus conditions, and compare the cortical depth profiles of

stimulus-induced signal change after spatial deconvolution with the

CBV or CBF profiles. A close match between deconvolved BOLD fMRI

profiles and CBV or CBF profiles would constitute converging evidence

for the validity of the deconvolution approach and/or experimentally

allow for subject- and brain area-specific estimation of the spatial

weights.

We have applied spatial deconvolution in order to remove signal

spread due to ascending veins. The resulting cortical depth profiles are

expected to be “closer” to the underlying neuronal activity than before

the deconvolution. However, there are most likely other (possibly non-

linear) transformations between neuronal activity and the BOLD signal,

similarly as in low-resolution fMRI studies. Thus, in an additional step,

an anatomically informed transfer function that models the relationship

between neuronal activity and the hemodynamic response for each

depth level, including a scaling factor related to capillary and venule

CBV, has to be used to quantitatively deduce the underlying spatial

neuronal activation profile. Nevertheless, the main experimental obser-

vations of the current study after spatial deconvolution, namely the

decrease in the BOLD signal in V1 toward CSF and the pronounced

peak in the middle layers in V2, are expected to remain valid even after

such scaling.

While this study focused on the fMRI response to a modulation of

“bottom–up” stimulus properties, other studies have investigated the

neural correlates of “top–down” perceptual processing (Kok et al.,

2016; Muckli et al., 2015). Accounting for signal spread in the GE fMRI

signal caused by draining veins may also benefit the deduction of other

neuronal activity spatial profiles than in this study and, thus, investiga-

tions of top–down effects.

4.3 | Alternative approaches

In this study, we employed a model-based method to account for the

effect of draining veins on the cortical depth profiles of the fMRI signal.

Two alternative methods aim to deduce neuronal activity profiles from

the fMRI signal rely on taking either (a) the difference or (b) the ratio of

fMRI signal for two or more experimental conditions (Kashyap, Ivanov,

Havlicek, Poser, & Uluda�g, 2017). The rationale behind these methods

is that any confounding vascular factors should affect different experi-

mental conditions in the same way. The method of subtraction is used

to remove nuisance signal components in fMRI studies at low spatial
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resolutions, as it is commonly applied in standard general linear model

(GLM). However, in the case of high-resolution fMRI, subtracting the

cortical depth profile of the response to a stimulus from that of a con-

trol condition is unlikely to remove the effect of ascending veins, and/

or a possible blood volume bias, on cortical depth profiles, as such vas-

cular effects are nonlocal and result in multiplicative factors of BOLD

signal sensitivity, respectively (Kashyap et al., 2017). Second, the

method of division can be useful in exploring nonlinearities present in

the data, most likely being neuronal in origin. That is, the division

approach does not remove the ascending vein effect (but only the

fMRI scaling factor proportional to baseline blood volume). Thus, it is

rather an exploration tool to thoroughly characterize the properties of

the data. In contrast, the method of this study explicitly takes the

ascending vein bias into account, albeit with some model assumptions.

It remains to be tested whether these assumptions are generalizable to

other brain areas and/or physiological states. Clearly, more work is

required to reliably extract neuronal laminar profiles from high-

resolution fMRI data.

Another proposed approach to deal with the spatial bias due to

draining veins is to regress out time course contributions from other

depth levels. Kok et al. (2016), separately for each depth level, removed

the (neuronal and vascular) variance present at the other depth levels

using a regression model. The goal of this regression approach is to

identify each depth level’s unique contribution (i.e., to identify the dif-

ferential neuronal activity of each layer). The advantage of this

approach is that it does not require an explicit vascular model, in con-

trast to the model-based approach of the current study. However, the

regression approach may inadvertently remove shared variance that is

neuronal in origin, (a) if some of the neuronal signal of interest is spread

over more than one depth level, and (b) because the draining vein

effect leads to BOLD signal correlations between a neuronally active

layer and the upstream layers. Finally, even though our approach needs

spatial weights determined from a vascular model, for our specific

experimental data, large deviations of these weights yield similar pro-

files. However, for more subtle neuronal changes in laminar profiles,

this spatial deconvolution approach may not be sensitive enough, and

subject- and brain area-specific weights may be necessary.

4.4 | Limitations and directions for future research

T2-weighted sequences, such as GRASE (De Martino et al., 2013; Kem-

per, De Martino, Yacoub, & Goebel, 2015; Kemper et al., 2016), and

sequences that are not based on the BOLD contrast, such as VASO

(Huber et al., 2014, 2015, 2016; Huber, Uluda�g, & M€oller, 2017b) and

ASL (Huber et al., 2017b; Pfeuffer et al., 2002; Uluda�g et al., in prepara-

tion), are less affected by vascular biases and are therefore expected to

yield a better estimation of local neuronal activity compared with GE

sequences. However, this advantage comes at the price of a lower sen-

sitivity and/or decreased coverage. The GE MRI sequence utilized in

this study achieves good coverage and sensitivity, but for cortical-

depth-specific studies, the problem of reduced specificity due to signal

spread along the ascending draining veins needs to be addressed. The

spatial deconvolution model proposed by Markuerkiaga et al. (2016)

may help to remove nonlocal signal contributions from cortical depth

profiles. However, to be more generally applicable, the model needs to

be extended to other brain areas with a different vascular structure,

and to different experimental designs and imaging sequences. In partic-

ular, in its current state, the spatial deconvolution model is only applica-

ble to the steady-state fMRI response to a block design. To investigate

transient components of the fMRI signal, such as the initial overshoot

or the poststimulus undershoot, at different cortical depths, a dynamic

deconvolution model is needed. This may be achieved by a generative

model of the temporal dynamics of the hemodynamic response across

cortical depth (Havlicek and Uluda�g, in preparation). With the help of

such dynamic deconvolution models, the disadvantages of GE acquisi-

tions for cortical-depth-specific fMRI research may be addressed, while

retaining its good sensitivity and coverage.

4.5 | Summary

We have studied the contrast response properties of human V1 and

V2 using fMRI at submillimeter resolution. After accounting for signal

spread due to ascending draining veins, we found the stimulus-induced

response to peak at mid cortical depths in V1 and V2, in addition to a

response maximum in deep grey matter, which was more pronounced

in V1. A response peak at middle depth levels is expected, as it is in

agreement with electrophysiological evidence obtained in monkey V1

and V2. In contrast, a stimulus-induced response in deep layers has

been observed in some (Goense et al., 2007; Maier et al., 2011; Smir-

nakis et al., 2007; Tootell et al., 1988), but not all (Bissig & Berkowitz,

2009; Roberts et al., 2013; Xing et al., 2012) relevant animal studies. A

systematic investigation of the stimulus conditions under which a

response in deep layers is evoked will be necessary to resolve this

issue.
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