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Abstract
The functional neuroimaging literature has become increasingly complex and thus difficult to navi-

gate. This complexity arises from the rate at which new studies are published and from the

terminology that varies widely from study-to-study and even more so from discipline-to-discipline.

One way to investigate and manage this problem is to build a “semantic space” that maps the dif-

ferent vocabulary used in functional neuroimaging literature. Such a semantic space will also help

identify the primary research domains of neuroimaging and their most commonly reported brain

regions. In this work, we analyzed the multivariate semantic structure of abstracts in Neurosynth

and found that there are six primary domains of the functional neuroimaging literature, each with

their own preferred reported brain regions. Our analyses also highlight possible semantic sources

of reported brain regions within and across domains because some research topics (e.g., memory

disorders, substance use disorder) use heterogeneous terminology. Furthermore, we highlight the

growth and decline of the primary domains over time. Finally, we note that our techniques and

results form the basis of a “recommendation engine” that could help readers better navigate the

neuroimaging literature.
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1 | INTRODUCTION

Because terminology varies widely from study-to-study, and even

more so from discipline-to-discipline, the neuroimaging literature is par-

ticularly difficult to synthesize. For example, (a) terminology changes

over time (e.g., alcoholism to alcohol use disorders), (b) a single term

can have many—or even amorphous—definitions (e.g., MVPA as multi-

voxel or multivariate pattern analysis, which itself spans numerous dif-

ferent techniques), and (c) multiple terms describe the same concept

(e.g., in vision studies “striate cortex,” “calcarine sulcus,” “V1,” “primary

visual cortex,” and “Brodmann area 17,” all describe, essentially, the

same brain region in functional neuroimaging). Such a diversity of ter-

minologies makes interpretations, and even reviews, of the literature

difficult to perform and consume.

To help navigate and consume results from the literature, several

meta-analytic approaches (that link reported brain activations with key-

words and topics) have been developed, such as coordinate-based meta-

analysis (CBMA). CBMA was specifically developed for aggregating and

synthesizing neuroimaging data reported in a standard format (Fox, Lan-

caster, Laird, & Eickhoff, 2014b). Some of the most prominent CBMA

tools used in research are BrainMap (Laird, Lancaster, & Fox, 2005),

SumsDB (Van Essen, Reid, Gu, & Harwell, 2009), Brede (Nielsen, 2003),

and NeuroSynth (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011)

—the database of interest in this paper. The main functionalities of many

CBMA tools are to (a) store coordinate information by study, and (b) pro-

vide spatially consistent meta-analytic activation maps. For example,

Nielsen, Hansen, and Balslev (2004) analyzed 121 neuroimaging papers

with 2,655 reported activations loci using probability models followed by

a non-negative matrix factorization-latent semantic analysis to associate

brain coordinates with the words used in the papers’ abstract (e.g., “pain”

was strongly associated with the anterior cingulate). More recently, Pol-

drack et al. (2012) analyzed more than 5,800 papers to model the
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associations between topics derived from the full text of studies and the

reported peak coordinates via “topic mapping.” Poldrack and colleagues

showed that—with a “topic mapping” approach to semantic analysis—

CBMA could reveal new relationships between brain activation and cog-

nitive processes or psychiatric disorders (for different flavors of CBMA,

see e.g., Rubin et al., 2016; de la Vega, Chang, Banich, Wager, & Yarkoni,

2016). Furthermore, some extensions of CBMA can link additional data

types (e.g., gene expression) with brain regions and keywords (Fox,

Chang, Gorgolewski, & Yarkoni, 2014a; Mesmoudi et al., 2015; Rizzo,

Veronese, Expert, Turkheimer, & Bertoldo, 2016).

Although the main functionalities of many of the CBMA tools are

to (a) store coordinate information by study, and (b) provide meta-

analytic activation maps (often based on terminology usage, e.g., which

regions are most associated with “vision,” “anger”), CMBA tools fall

short of revealing the primary domains of neuroimaging and the brain

regions most associated with these domains (although CMBA tools are

designed for that goal, i.e., meta-analyses). This limitation exists in part

because of the absence of a common “semantic space” of the func-

tional neuroimaging literature.

In this work, we define the primary domains of functional neuroi-

maging based on the semantics of the literature (i.e., abstracts)—a neces-

sary step towards the definition of formal brain or cognitive ontologies.

Our study is designed to achieve three major goals: (a) define a “semantic

space” of the neuroimaging literature (which forms the basis of a “recom-

mendation engine” to identify papers with high semantic similarity), (b)

identify semantically defined domains within the literature, and (c) map

brain activations onto these domains. To do so, we used correspondence

analysis (CA)—a technique similar to principal components analysis (PCA)

that was originally created for analyzing the co-occurrences of words in a

corpus (Abdi & B�era, 2014; Benz�ecri, 1976; Escofier-Cordier, 1965; Leb-

art, Salem, & Berry, 1998)—to identify neuroimaging domains from co-

occurrences of words in the neuroimaging literature as identified in the

Neurosynth database (Yarkoni et al., 2011).

First, we applied CA to a 10,898 studies 3 3,114 words matrix;

because CA on this matrix generates thousands of components, we used

split-half resampling (SHR) to identify the most reliable and replicable

components. Next, we applied hierarchical clustering (HC) within the sub-

space (i.e., the subset of components) identified by SHR to identify the

primary subdomains in functional neuroimaging. We then investigated

how these clusters change over time. Next, we generated brain maps (in

MNI space) conditional to both the components and clusters, which high-

light the brain regions most commonly associated with the components

and clusters we identified. We also include a comparison of our brain

maps with recent maps from Yeo et al. (2015). Finally, our work provides

the basis of a “recommendation engine” that allows researchers to find

semantically similar papers (based on PubMed IDs).

2 | METHODS

2.1 | Data and preprocessing

Neurosynth is an open source and open science initiative—hosted via

the website www.neurosynth.org—that facilitates meta-analyses and

reviews of the functional neuroimaging literature (Yarkoni et al., 2011).

Neurosynth, at the time of this writing, contains more than 11,406

articles from the functional neuroimaging literature. When we began

this work, Neurosynth contained 10,903 articles (from 43 journals),

which were the basis of this study. As an aside, some articles in our

data set no longer appear in Neurosynth because Neurosynth periodi-

cally updates its content for exclusion (e.g., to remove structural only

studies) and public release. See http://github.com/neurosynth/neuro-

synth-data and http://www.neurosynth.org/ for details.

Neurosynth uses automated webcrawlers to fetch data (e.g.,

abstract text, peak coordinates) and metadata (e.g., PubMed ID, title,

year published, journal) of neuroimaging studies. For our study, we cre-

ated and analyzed two data tables derived from Neurosynth data: (a) a

“studies 3 words” matrix and (b) a “studies 3 voxels” matrix, where

studies are identified by their PubMed ID (PMID) number. To achieve

our three goals, our study comprised three major parts that correspond

to each goal, wherein each major part has several steps. All analyses

were conducted with a variety of publicly available packages (noted in

relevant sections) or in-house scripts written in MATLAB (MathWorks,

Natick, MA), R (R Core Team, 2017), and Python (Python Software

Foundation, https://www.python.org/) languages and environments.

To create a studies-by-words matrix for analysis, we acquired

information from Neurosynth and PubMed (http://www.ncbi.nlm.nih.

gov/pubmed/). With PMIDs from the Neurosynth database, we

obtained from PubMed the text in all abstracts associated with the

studies in the Neurosynth database. Next, we used the tm package in

R (Feinerer, 2011) to conduct several preprocessing steps that were

used in previous works (Ailem, Role, Nadif, & Demenais, 2016) and

that consisted in (a) converting all text to lower case, (b) removing all

punctuations, numbers, emails and web addresses, (c) removing all

words of length one or two, (d) removing step words, meta-words and

words that describe numbers, quantities, nationalities, cities, or names

(e.g., “publisher,” “article,” “date,” “ten,” “zero,” “weeks,” “european,”

“montreal,” “welcome”), (e) converting British English to American Eng-

lish, (e.g., “behaviour” to “behavior”) and finally (f) stripping out white

spaces. Once the data were cleaned, some words with different mean-

ings were updated so they did not have the same “stems.” For example,

“posit,” “positive,” “positively,” “position,” and “positioning” would cor-

respond to the same stem “posit;” therefore, some words were altered

so they would only have the same stem if they had (in general) the

same meaning. In a final step, we went through all remaining words

individually to identify words that were potentially missed in the previ-

ous steps (e.g., “science,” “academic,” “publishing”). With a final set of

words, we created a matrix of studies (rows) by words (columns). Each

cell of this matrix contained the number of occurrences of a word used

in the abstract of a study; for example, the abstract of PMID

17360197 used the word “cold” 28 times. Finally, we eliminated infre-

quent words in the studies-by-words matrix: words with frequencies

below the third quartile (in our case: <16 occurrences) were removed.

This step was followed by the removal of two studies that were with-

drawn by the publisher. The final studies-by-words matrix contained

10,898 studies and 3,114 words (the full data table is provided in

https://github.com/fahd09/neurosynth_semantic_map).

ALHAZMI ET AL. | 2765

http://www.neurosynth.org
http://github.com/neurosynth/neurosynth-data
http://github.com/neurosynth/neurosynth-data
http://www.neurosynth.org/
https://www.python.org
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
https://github.com/fahd09/neurosynth_semantic_map


2.2 | Correspondence analysis

Because our data are the number of occurrences (i.e., counts), we

decided to use correspondence analysis (CA)—a technique designed

specifically to analyze co-occurrences and often described as a ver-

sion of PCA tailored for qualitative data. Like PCA, CA decomposes

a matrix into orthogonal components rank-ordered by the variance

they explained (Abdi & B�era, 2014; Greenacre, 1984; Lebart, Mori-

neau, & Warwick, 1984). CA is a bi-factor analysis that accounts for

the relationships between and within the rows and the columns of a

(contingency table) data matrix. CA assigns to each row (study) and

column (word) item a “component score” (a.k.a. factor score) that

reflects the amount of variance this item contributes to a given

component. CA places emphasis on rare items so that they contrib-

ute a high amount of variance, while frequent items contribute little

variance (Greenacre, 2017); this is particularly useful for our study

because frequent words (e.g., “brain”) will be near the origin (i.e.,

zero) of the components whereas rare words (e.g., “polymorphism”)

will be far from the origin and thus are the sources of variance for

the components. CA is closely linked to the independence assump-

tions of v2, which is proportional to the total variance decomposed

by CA and therefore CA decomposes in orthogonal factors the pat-

tern of deviation to independence of the data. Also, because both

rows and columns are represented in the same space (with the same

variance), we can interpret the relationships within row items and

within column items and the relative relationships between row and

column items. Finally, because we wanted to identify brain regions

most associated with semantically defined domains, we used a tech-

nique called supplementary projection (also called “out of sample

projection,” Greenacre, 2017; Abdi & B�era, 2014) that allows to pre-

dict a supplementary (i.e., new, or excluded) data set (i.e., studies 3

voxels) from the component structure of the active data set (i.e.,

studies 3 words).

We used in-house MATLAB code, as well as the ExPosition

(Beaton, Fatt, & Abdi, 2014) and ggplot2 (Wickham, 2009) packages

in R to perform CA and visualizations and additional analyses (i.e., visu-

alizations, resampling-based inference tests, clustering, and supplemen-

tary projections; see following sections).

2.3 | Split-half resampling

Split-half resampling (SHR, Churchill et al., 2012; Strother et al., 2002)

is a cross-validation (CV) technique that evaluates the stability of the

results of a statistical analysis performed on a data set by randomly

splitting this data set into two (approximately) equal sized nonoverlap-

ping data sets, and then performing the same analysis on each data set.

The similarity (e.g., correlation) between the results obtained from

these two data sets is then used to evaluate the reliability of the results

(i.e., replicable effects). SHR is performed many times to create a distri-

bution of reliability estimates.

We used SHR to identify the most replicable components in two

ways: (a) split the data by study (rows) and (b) split the data by words

(columns); in both approaches, we performed CA on each split set, and

then computed the absolute correlation1 between the component

scores of each split. SHR was performed 1,000 times to create a distri-

bution of (absolute) correlations between components for both (a) the

row component scores conditional to the columns and (b) the column

sets of scores conditional to the rows. We then computed the average

(absolute) correlations to detect which components (after 1,000 splits)

were most replicable between splits to identify a low rank approxima-

tion of the semantic space (i.e., component selection via SHR).

2.4 | Clustering of studies and assignment of words

We performed hierarchical clustering (HC), with squared Ward linkage

(Murtagh & Legendre, 2014), on the subset of reliable (as identified by

SHR) component scores for the studies (rows). We chose squared

Ward linkage because its objective function minimizes the error sums

of squares (and thus provides an optimal ANOVA-like configuration).

The component scores take into account the explained variance per

component (i.e., Component 1 explains more variance than Component

2). After HC, we performed cluster stability analysis via Calinski-

Harabasz index (Calinski & Harabasz, 1974) to identify a stable number

of clusters. After the studies had been divided into clusters, we used

distance-based classification in order to assign each word (column) to

the closest study cluster barycenter (i.e., the point that represents the

multidimensional mean of all studies in a given cluster). Hierarchal clus-

tering and cluster stability were conducted in R via hclust and clus-

terCrit (Desgraupes, 2015), respectively.

2.5 | Producing brain maps

Activation maps are represented in Neurosynth as peak activations of

individual studies as centers of a sphere with a radius of 6 mm. Voxels

inside the sphere have a value of 1 and the other voxels have a value

of 0. The voxels-by-studies matrix then uses a vectorized (flattened)

version of the peak activation maps with reference to a 3D brain. The

voxels-by-studies matrix initially contained 10,898 studies and 228,453

voxels (i.e., the voxels within MNI space). For our analyses, infrequently

reported voxels (i.e., voxels that are reported in less than 10% of stud-

ies) were removed. The final studies-by-voxels matrix contained

10,898 studies and 206,077 voxels. We computed two different brain

activation maps from the semantic space. The first type of activation

map was a component-wise map. Brains were projected onto (i.e., pre-

dicted by) the semantic space—per replicable component—via supple-

mentary projections. The second type of activation map was simply the

sum of peak activations per study cluster.

2.6 | Supplementary projections

Supplementary—a.k.a. out of sample—observations (or variables) can be

integrated into an existing analysis performed on a different set of

observations (or variables) referred to as the active data set.

1We used absolute correlation because there can be trivial sign flips

between subsamples of data, so the sign is irrelevant but the magnitude of

the correlation is relevant.
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Supplementary data are assigned component scores by computing the

least square projection for observations (or variables) onto the space

defined by the active observations (or variables). We used supplemen-

tary projection to predict component scores for voxels from the com-

ponent scores of studies defined in the in the semantic space (i.e., CA

of studies 3 words). Predicted activation maps (from the supplemen-

tary scores) were projected back into MNI space. Functional volumes

are then projected to the brain surface space using Caret5 software

(Van Essen et al., 2001; http://brainvis.wustl.edu/) with the “Interpo-

lated Voxel Algorithm.” All resulting maps (5 components maps and 6

cluster maps) are shared publicly in a Neurovault (Gorgolewski et al.,

2015) repository: http://neurovault.org/collections/2002/.

3 | RESULTS

CA was applied to a 10,898 studies 3 3,114 words matrix and pro-

duced 3,112 components (see Figure 1a for the Scree plot). Split-half

resampling (SHR) and cluster stability analysis revealed 5 reliable com-

ponents (Figure 1b,c) and 6 reliable study clusters that define the latent

semantic space of functional neuroimaging literature (via Neurosynth).

To help interpret the components of our semantic space, we used

the words and studies at the extremes (i.e., highest contributing var-

iance) for each component (Figure 3 for extreme words; Supporting

Information, Tables 1–5 for extreme studies). Table 1 shows the total

and relative number of studies and words per cluster. As with the com-

ponents, the most (and least) frequent words within each cluster help

us interpret the cluster’s meaning (Supporting Information, Table 6).

Furthermore, we also identified the words closest to the barycenter of

each cluster (across all five dimensions; Supporting Information, Table

7). We also provide the titles and PubMed IDs of the twenty studies

closest to the barycenter of each cluster in Supporting Information,

Tables 8–13 as well as the overall “most average” and “most unique”

studies and terms in Supporting Information, Table 14. Component

maps—which present two components at a time—are presented in

Figure 2. We present component maps of the words and studies sepa-

rately. In each map, we color each dot (i.e., a study or word) by its asso-

ciated cluster. Components 1, 2, and 3 are visualized in Figure 2a–d.

We show Components 4 and 5 separately from the other components

(Figure 2e,f) because studies on Components 4 and 5 constitute a sin-

gle cluster (see next section). Brain maps for the components are pre-

sented in Figure 3, and brain maps for clusters are presented in Figure

4. In Results, the components and clusters are first referred to by num-

bers: The component number reflects its rank order (by variance), but

the cluster numbers are arbitrary. We provide interpretations of com-

ponents and names for clusters after their descriptions.

3.1 | Components

Component 1’s words and studies can be seen in Figure 2a,b. Words at

extreme positive and negative sides of Component 1, as well as the

projected brain maps for Component 1 are shown in Figure 3a. The

projected brain map for Component 1 (Figure 3a) show that (a) The

positive side of Component 1 is associated with the left temporal lobe,

bilateral occipito-temporal, and parietal regions, and (b) the negative

side of Component 1 is associated with many subcortical structures.

Component 1 generally reflects basic science research on the positive

side to clinical/translational neuroimaging research on the negative side

(Figure 2a,b). While the basic science research is more associated with

cortical structures, the clinical/translational research is more linked

with subcortical structures (Figure 3a).

Component 2’s words and studies can be seen in Figure 2a,b.

Words at the extreme positive and negative sides of Component 2, as

well as the projected brain map for Component 2 are shown in Figure

3b. The projected brain maps for Component 2 show that (a) the posi-

tive side of Component 2 is associated with bilateral somatosensory

areas and the right cerebellum and (b) the negative side of Component

2 is associated with subcortical structures as well as medial prefrontal

cortex. Component 2 generally reflects a methodological spectrum that

FIGURE 1 Variance explained and reproducibility (via split-half resampling; SHR) of latent semantic components. (a) The Scree plot shows
the explained variance per component for all 3,112 components. (b and c) Heatmaps of correlations between component scores after SHR,
where (b) shows average (absolute) correlations after SHR for the words component scores and (c) shows the average (absolute) correlations
after SHR for the studies component scores; only components 1 through 20 are shown. Both the Scree plot and the heatmap for the stud-
ies component scores suggest three high variance and highly reproducible components. The heatmap for the words component scores
also show that the first three components are highly reproducible, but also that Components 4 and 5 are reproducible in the words
component scores [Color figure can be viewed at wileyonlinelibrary.com]
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ranges from cognitive tasks on the negative side to multi-modal imag-

ing (e.g., structural–functional association) on the positive side. The

negative—and more densely populated—side of Component 2 is more

associated with studies on affect and emotion and similar study types

(Figure 2a,b) with projections in subcortical and prefrontal cortex,

whereas the positive side of Component 2 is linked to studies that rely

on multi-modal imaging and other related methodologies and somato-

sensory, temporal, and cerebellar projections (Figure 3b).

Component 3’s words and studies can be seen in Figure 2c,d.

Words at the extreme positive and negative sides of Component 3, as

well as the projected brain maps for Component 3 are shown in Figure

3c. The projected brain maps for Component 3 show that (a) the posi-

tive side of Component 3 is associated with the left lateralized

language-related areas (e.g., temporal and frontal areas known as Bro-

ca’s Area and Wernicke’s Area) and (b) the negative side of Component

3 is associated with somatosensory cortex in addition to the brainstem.

FIGURE 2 Visualization of the semantic space of functional neuroimaging literature. Component scores for both the words and the studies
on Components 1–5 are visualized in a series of 2D figures. Axes are components and individual dots represent either a particular study or
particular word. Words and studies are colored by which cluster they belong to and thus illustrate the large subdomains within fMRI. (a) and
(b) show the words and studies (respectively) component scores for Components 1 (horizontal) and 2 (vertical). (c) and (d) show the words
and studies (respectively) component scores for Components 1 (horizontal) and 3 (vertical). 2 (e) and (f) show the words and studies
(respectively) component scores for Components 4 (horizontal) and 5 (vertical). While most words and studies form large groups within the
axes, Components 4 and 5 show a highly specific subset of words and studies, of which nearly all are assigned to Cluster 6 (typically fMRI
studies that include genetic and molecular terms) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 The total number of studies and terms per cluster

Cluster #Studies (%) #Terms (%) Brief description

1 1,569 (14.4%) 351 (11.3%) Knowledge representation & language processing

2 2,272 (20.8%) 720 (23.1%) Development, lifespan and disorders

3 728 (6.7%) 347 (11.1%) Sensation, movement and action

4 3,159 (28.9%) 1019 (32.7%) Cognition & psychology

5 2,927 (26.9%) 612 (19.7%) Decision, emotion, & substance use

6 243 (2.2%) 65 (2.1%) Imaging genetics

All 10,898 3,114

Note. Our analyses revealed six clusters. The total number of studies and terms per cluster are provided. Furthermore, we provide a description that
helps characterize the contents of each cluster.
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Component 3 generally reflects low-to-high level of cognition; studies

about higher order cognitive processes (especially linguistics) are on

the positive side of Component 3 (with cortical projections to the bilat-

eral temporal and frontal regions; Figures 2c,d and 3c), whereas studies

on lower order cognitive processes (such as sensation, perception, and

direct sensory stimulation) are on the negative side of Component 3

(and also projects to the bilateral somatosensory areas and the brain-

stem in addition to the left cerebellum; Figures 2c,d and 3c).

Components 4’s and 5’s words and studies can be seen in Figure

2e,f and show a highly distinct pattern from the other components,

mostly driven by words and studies related to molecular, genetic, and

genomic neuroimaging studies. Words at the extreme positive and neg-

ative sides of Components 4 and 5, and the projected brain maps for

Components 4 and 5 are shown in Figure 3d,e. The brain maps for

Component 4 (Figure 3d) show that (a) the positive side of Component

4 is associated with medial structures of parietal areas (precuneus) and

(b) the negative side of Component 4 is associated with bilateral

somato-sensory areas and the insular cortex and brainstem. The brain

maps for Component 5 (in Figure 3e) show that (a) the positive side of

Component 5 is associated with the posterior cingulate and medial pre-

frontal cortices and (b) the negative side of Component 5 is associated

with bilateral somato-sensory areas and the brainstem. Components 4

and 5 showed a distribution of words and studies that makes a near

458 angle between Components 4 and 5 that extended out from the

origin. These words and studies were almost entirely molecular,

genetic, and genomic neuroimaging (i.e., “imaging genetics”) studies.

FIGURE 3 Visualization of brain maps, per component, as predicted (via supplementary projections) by the words 3 studies component
scores (left) and a word cloud that shows some words that either loads on the positive or negative axis (right). (a) The projected map for
Component 1 shows that the positive side (marked in red) is associated with the left temporal lobe, bilateral occipito-temporal, and parietal
regions, while the negative side (marked in blue) is associated with many subcortical structures. (b) The projected maps for Component 2
show that the positive side is associated with bilateral somatosensory areas and the right cerebellum (not rendered in surface plots), while
the negative side is associated with subcortical structures as well as medial prefrontal cortex. (c) The projected brain maps for Component 3
show that the positive side is associated with the left lateralized language-related areas while the negative side is associated with somato-
sensory cortex in addition to the brainstem (not rendered in surface plots). (d) The projected map for Component 4 shows that the positive
side is associated with medial structures of parietal areas (precuneus) while the negative side is associated with bilateral somato-sensory
areas as well as the insular cortex and brainstem (not rendered in surface plots). (e) The projected brain maps for Component 5 show that
the positive side is associated with the posterior cingulate and medial prefrontal cortices while the negative side is associated with bilateral
somato-sensory areas and the brainstem (not rendered in surface plots) [Color figure can be viewed at wileyonlinelibrary.com]
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While studies on Component 4 are more associated with genetic con-

tributions to cognition in healthy populations, by contrast, the projec-

tions to parietal and frontal regions studies on Component 5 were

more associated with genetic contributions in disordered populations

with projections to bilateral somatosensory regions.

3.2 | Clusters

Cluster 1 contains studies/words primarily associated with language/

speech production, comprehension, and disorders, as well as knowl-

edge processing. Some examples include: decod, word, superior, auditori,

languag, semant, percept, speech, recognit, complex (Supporting Informa-

tion, Tables 6–8). Figure 2a,b shows that this cluster primarily lies on

positive sides of Components 1 and 3. Summed peak activations of

individual studies in this cluster are localized in the bilateral frontal and

temporal regions—which are often associated with language and

knowledge representation—in addition to the anterior cingulate cortex

(Figure 4a). Cluster 1 represents the studies that mainly investigate

knowledge representation and language processing and we henceforth

refer to Cluster 1 as knowledge representation and language processing.

Cluster 2 contains studies/words associated with developmental,

lifespan, and aging studies, and their respective disorders. Some exam-

ples include patient, differ, chang, healthi, age, structur, breakdown, degen,

ecnp, epidemiolog (Supporting Information, Tables 6, 7, and 9). Figure

2a,b shows that this cluster primarily loads on the negative side of

Component 1 and on the positive side of Component 2. Summed peak

activations of studies in this cluster (Figure 4b) showed a diffuse pat-

tern of activations in the frontal and parietal areas, and in the subcorti-

cal regions. Cluster 2 represents studies that mainly investigate

developmental and adult lifespan research in addition to brain disorders

and we henceforth refer to Cluster 2 as developmental, lifespan, and

disorders.

Cluster 3 contains studies/words primarily associated with sensa-

tion (cutaneous and olfaction) and movement. Some examples include

motor, pain, movement, hand, stimul, sensori, thalamus, somatosensori,

reflex, anesthet (Supporting Information, Tables 6, 7, and 10). Figure

2c,d shows that this cluster loads primarily on the negative side of

Component 3. Summed peak activations of studies in this cluster (Fig-

ure 4c) showed in the bilateral somato-sensory areas and the thalamus.

Cluster 3 represents studies that mainly investigate sensation, move-

ment and action and we henceforth refer to Cluster 3 as sensation,

movement, and action.

Cluster 4 contains studies/words associated with more “tradi-

tional” aspects of human cognitive neuroscience: those rooted in cogni-

tive and experimental psychology (i.e., they rely primarily on behavioral

tasks to examine neural correlates). Some examples include: activ, func-

tion, task, area, fmri, network, memori, effect, visual, decay (Supporting

Information, Tables 6, 7, and 11). Figure 2a,c shows that Cluster 4 is

closest to the origin point across all components with no apparent

trend toward any axis. Summed peak activations of studies in this clus-

ter (shown in Figure 4d) showed in the mid-line and bilateral frontal

regions, in addition to bilateral occipito-temporal region. Cluster 4 rep-

resents the majority of cognition and psychological-based functional

neuroimaging research and we henceforth refer to Cluster 4 as cogni-

tion and psychology.

Cluster 5 contains studies/words that describe affective processes,

such as emotional responses and decision-making, but also includes a

number of studies and words related to substance use disorders and

FIGURE 4 Visualization of brain maps, per cluster, computed as the sum of peak activations for all studies within a particular cluster.
(a) Summed activations of individual studies in Cluster 1 (knowledge representation and language processing) showed in the bilateral peaks in the
frontal and temporal lobes—which are often associated with language and knowledge representation—in addition to a peak area in the anterior
cingulate cortex. (b) Summed peak activations of studies in Cluster 2 (development, lifespan and disorders) showed a diffuse pattern of reported
activations in frontal and parietal areas, as well as subcortical regions. (c) Summed peak activations of studies in Cluster 3 (sensation, movement
and action) showed in bilateral somatosensory areas and the thalamus. (d) Summed peak activations of studies in Cluster 4 (cognition and
psychology) showed in the mid-line and bilateral areas in frontal regions, in addition to bilateral occipito-temporal regions. (e) Summed peak
activations of Cluster 5 (decision, emotion, and substance use) appeared in subcortical areas and medial frontal regions. (f) Summed peak activa-
tions of Cluster 6 (imaging genetics) showed almost entirely subcortical areas [Color figure can be viewed at wileyonlinelibrary.com]
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mood disorders. Cluster 5 includes the words: emot, prefront, reson, cin-

gul, examin, medial, amygdala, negat, social, diminish, take (Supporting

Information, Tables 6, 7, and 12). Figure 2a,b shows that this cluster

lies mostly on the negative side of Component 2. Summed peak activa-

tions of Cluster 5 (Figure 4e) appeared in subcortical areas and medial

frontal regions. Cluster 5 represents studies that mainly investigate

decision-making, emotions and substance use (or abuse) and we hence-

forth refer to Cluster 5 as decision, emotion, and substance use.

Cluster 6 loads almost entirely and exclusively on both Compo-

nents 4 and 5 (Figure 2e,f). Cluster 6 contains words such as: variat,

genet, dopamin, gene, carrier, allel, genotyp, receptor, polymorph, dopami-

nerg, comt, serotonin, apo, norepinephrine (Supporting Information,

Tables 6, 7, and 13). Summed peak activations of Cluster 6 (Figure 4f)

showed almost entirely in the subcortical areas. Cluster 6 represents a

unique dimension (i.e., Components 4 and 5) of molecular, genetic, and

genomic neuroimaging (“imaging genetics”) studies and we henceforth

refer to Cluster 6 as “imaging genetics.”

3.3 | Temporal effects of clusters

Upon completion of the analyses, there were two clusters that stood out:

(a) Cluster 4 (cognition and psychology)—which is essentially the “average”

neuroimaging study because it is centered roughly on the origin of the

components—and (b) Cluster 6 (imaging genetics)—which is comprised of

the studies that define Components 4 and 5). Notably, Cluster 4 (cogni-

tion and psychology) reflects the origins of neuroimaging use (i.e., cognitive

psychology), whereas Cluster 6 (imaging genetics) reflects the current

state-of-the-art (i.e., translational and interdisciplinary work).

Figure 5 shows the relative frequency of the number of studies in

each cluster sorted by year. Cluster 4 (cognition and psychology)

accounts for a substantial amount of studies in the earlier years. For

example, in the year 2000, approximately 50% of all neuroimaging

studies (in Neurosynth) were in Cluster 4 (cognition and psychology). On

the other hand, Cluster 5 (decision, emotion, & substance use) started as

a small proportion of all neuroimaging studies in the earlier years, but

now accounts for nearly 33% of all studies. We discuss the temporal

properties of these clusters further in Section 4.

3.4 | Correlations with maps in Yeo et al. (2015)

In Yeo et al. (2015), a hierarchal Bayesian model was applied to 10,449

experimental contrasts in the BrainMap database to estimate the prob-

ability that each pre-defined task category would engage a specific cog-

nitive component, and the probability that each cognitive component

would engage brain regions (represented by voxels). Correlations

between our component and cluster maps and Yeo et al. (2015)’s 12-

component cognitive maps were computed using a custom script. We

first downloaded the maps from Neurovault (http://neurovault.org/col-

lections/866/, last accessed June 7, 2017). We only included the non-

zero voxels from the component maps to exclude all non-valid voxels

(i.e., outside the brain).

Figure 6 shows the correlations between our maps and the maps

from Yeo et al (2015). We refer to Yeo et al.’s (2015) components as,

for example, Yeo Component 1 (YC1) or Yeo Component 6 (YC6) while

we refer to our own components as “Component 1” or “Component 5.”

There were several correlations of note for both the components (Fig-

ure 6a) and the clusters (Figure 6b). To note, although the magnitudes

of those correlations are interpretable, the sign (or direction) of the cor-

relation are not easily interpretable.

Figure 6a shows the strong correlations between our Component

2 and YC11 and YC12. Both maps show strong association with bilat-

eral subcortical structures (e.g., amygdala and striatum) in addition to

their relationship with subcortical-related functions such as emotions

and affect. Also, there is a strong correlation between our Component

3 and YC5 because both maps show strong association with temporal

and frontal activations in addition to their relationships with semantic

knowledge and language processing. Furthermore, there is a strong cor-

relation between our Component 4 and YC6 because both maps show

strong associations with medial parietal and frontal areas (commonly

known as the frontal-parietal network; Smith et al., 2009).

Similar to the components, correlations between our clusters and

the Yeo components are illustrated in Figure 6b. Our Cluster 1 is most

correlated with YC 5 followed by YC3, all of which have activations in

the temporal and frontal regions and are generally involved with knowl-

edge representation and higher order semantic processing. Our Cluster

3 is correlated with YC1 followed by YC7, both of which have activa-

tions in somatosensory areas and are involved in sensation and move-

ment processing. Our Clusters 5 are both correlated with YC11 and

YC12, all of which are associated with activations in subcortical struc-

tures and are associated with tasks that involve some aspect of affec-

tive or emotional processing. Although our Cluster 6 also share the

same regions (and is most similar to YC11 and YC12), it comes mostly

from molecular and genetic studies.

FIGURE 5 The proportion of studies within each cluster over
time. Cluster 4 (cognition and psychology) was, and still generally is
the core of fMRI research and as such comprises a substantial
proportion of the literature. Though Cluster 4 (cognition and
psychology) remains very large, it has decreased over time. Both
Cluster 5 (decision, emotion, substance use) and Cluster 2
(developmental, lifespan, disorders) have shown a considerable
increase over time and now comprise, respectively, comparable
proportions of the literature as Cluster 4 (cognition and psychology)
[Color figure can be viewed at wileyonlinelibrary.com]
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3.5 | Recommendation engine

Finally, we provide a simple tool in R as a Shinyapp that works as a

“recommendation engine” akin to preference and ratings systems (e.g.,

for movie preferences, shopping, or internet searches). While the app

has many current and planned features, we only discuss the recom-

mendation portion here. Our recommendation tool uses a distance-

based search to retrieve papers (PMIDs) that are the most semantically

similar to a given paper (PMID). Specifically, users only need to provide

(a) a PMID of a paper of interest and (b) how many N similar papers to

select. Our recommendation tool then provides the N papers closest to

the target paper. Additionally, in the same way as for the papers, users

can input a term of interest and retrieve the N closest terms. In both

cases, we also provide additional information such as to which primary

domain (cluster) a study or term belongs. The recommendation is based

on the component scores of the first five components (see Results). This

recommendation engine, however, works based on the results in this

paper and not the most recent version of Neurosynth. However, we

provide code for all of our work including the recommendation tool and

thus all results and recommendations can be updated as Neurosynth is

updated. The recommendation engine with a brief description and how-

to are available at the following address: http://bit.ly/neurosanity.

4 | DISCUSSION

In recent years, there have been many meta-analyses, mega-analyses

(analyses of pooled data across many studies), and other large-scale

analyses of data within neuroimaging. In general, the aims of such anal-

yses are to (a) test or refute findings and hypotheses (Wager, Lindquist,

& Kaplan, 2007), (b) build a consensus around particular models,

hypotheses, or theories (Salimi-Khorshidi et al., 2009), (c) estimate con-

sistency of findings (Wager, Lindquist, Nichols, Kober, & Van Snellen-

berg, 2009), (d) help define related brain regions and networks (Toro,

Fox, & Paus, 2008; Mesmoudi et al., 2013), (e) interpret functional

maps (Laird et al., 2011), or (f) segment the brain in new ways with

FIGURE 6 Correlations between the maps generated by Yeo et al., (2015) and (a) our components or (b) our clusters. There are some
notably high similarities between our brain maps (which were generated conditional to the latent semantic space) and the Yeo et al., (2015)
maps, such as the Yeo components 11 and 12 with our Component 2 (see a), and the Yeo components 1 and 7 with our Cluster 3 (see b)
[Color figure can be viewed at wileyonlinelibrary.com]
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resting-state fMRI measurements (Yeo et al., 2011; Power et al., 2011)

or using massive multimodal data (Glasser et al., 2016).

Using the meta-analytic cognitive component maps from Yeo et al.

(2015) as a reference point to compare with our maps, we showed a

substantial overlap between many of our maps and maps from Yeo

et al. (2015). However, our meta-analytic maps were predicted from

the semantic space (i.e., abstracts) of the functional neuroimaging litera-

ture, whereas other authors took a more brain-centric approach, for

examples: network- and meta-maps generated by with resting state

fMRI (Yeo et al., 2011; Power et al., 2011) or via meta-analysis of data

from hundreds or even thousands of studies (Poldrack et al., 2012; de

la Vega et al., 2016; Yang et al., 2015, 2016).

Our components explain the primary sources of variance of lan-

guage used: in the field at large (i.e., Component 1), for methodological

tools (i.e., Component 2), in various aspects of cognition (i.e., Compo-

nent 3), and in relatively new studies with highly-specific terminology

(i.e., Components 4 and 5). With supplementary projections we also

showed that these language-based components are frequently associ-

ated with particular reported brain regions. While the components indi-

cate language variation and gradients, our clusters define the

boundaries of functional neuroimaging into specific—albeit large—sub-

domains. Furthermore, our analyses revealed that there are, perhaps,

biases or preferentially studied brain areas per domain (i.e., clusters).

Parts of our semantic space also reflect, to a degree, current

debates such as the distinctions between “neurological versus psychiat-

ric brain disorders” (White, Rickards, & Zeman, 2012). For example,

Crossley, Scott, Ellison-Wright, and Mechelli (2015) recently used

CBMA of voxel-based morphometric (VBM) studies to show a

“neuroimaging-based” evidence for the biological distinctions between

neurological versus psychiatric disorders (Crossley et al., 2015). Our

components show that neuroimaging studies in neurology and psychia-

try do not use the same terminology and thus could be a source of the

“versus” argument between neurological and psychiatric studies with

respect to reported brain regions. As an illustration of this contention,

we have selected some of the same neurology and psychiatry related

terms used by Crossley et al., (2015) to highlight particular features of

our components. First, all the words related to psychiatric or neurologi-

cal disorders (Supporting Information, Table 15) appear on the negative

side of Component 1—a configuration that supports our interpretation

of a spectrum from basic science to applied and clinical neuroimaging.

Furthermore, the neurological and psychiatric terms from Crossley

et al., (2015) oppositely load on both Components 2 and 4 (Supporting

Information, Table 15): a configuration that reflects overall differences

in patterns of terminology between neurological and psychiatric studies

and thus expresses a dissociation of neurological studies and their

regions (such as sensorimotor cortices and insula; in red) from psychiat-

ric studies and their regions (such as limbic and prefrontal areas; in

blue) as seen in Figure 3b. Further discrepant terminology can be seen

in Supporting Information, Table 16.

Furthermore, the positions—and contents—of our clusters reveal a

broad configuration of the neuroimaging literature. Cluster 4 (cognition

and psychology) is the closest to the barycenter (origin of the axes

across all components) and thus represents the average or most

common neuroimaging study. This interpretation is supported by Clus-

ter 4 (cognition and psychology) because it contains a substantial propor-

tion of words and studies (�33% of words and �29% of studies, see

Table 1). Thus, much of the neuroimaging literature has been—and

appears to still be—rooted in the approaches from cognitive and psy-

chological domains. Summed peak activations of studies in this cluster

(shown in Figure 4d) show a high association with a wide set of cortical

areas in the medial and bilateral frontal, occipital and subcortical regions

that are associated with task performance. We also see opposition of

clusters and this suggests that these are the sources of variance for our

components. For example, Cluster 5 (decision, emotion, and substance use)

is opposed to all other clusters on Component 2 (Figure 2a,b)—a pattern

that further supports the neurological vs. psychiatric dissociation of Com-

ponent 2. Summed peak activations of studies in this cluster (shown in

Figure 4e) show high association with the subcortical areas and medial

frontal regions that are generally associated with emotional processing

and decision-making process. Similarly, Cluster 3 (sensation, movement,

and action) is opposed to all other clusters on Component 3 (Figure 2c,d)

—a component that, as we previously noted, expresses a spectrum from

low-to-high level processing. Summed peak activations of studies in this

cluster (shown in Figure 4c) show high association with the bilateral

somatosensory areas and the thalamus. Furthermore, Cluster 6 (imaging

genetics) is almost entirely defined by the unique configuration of both

Components 4 and 5 (Figure 2e,f). Not only does Cluster 6 reflects a

unique subfield of neuroimaging, but it also indicates that “imaging genet-

ics” uses an almost exclusive set of words, different from the vocabulary

of the rest of neuroimaging (cf., the 458 angle from Components 4 and

5). Summed peak activations of Cluster 6 (Figure 4f) are almost entirely

associated with subcortical areas. Finally, both Clusters 4 (cognition and

psychology) and 5 (decision, emotion, and substance use) proportionally

explain over half of the literature at any given time (Figure 5).

Our clusters and their respective brain maps are consistent with

results of other meta-analysis. The activation map of Cluster 1 (knowl-

edge representation and language processing; Figure 4a) is similar to other

published meta-analytic maps and reviews of language processing and

semantic representation (Binder, Desai, Graves, & Conant, 2009; Book-

heimer, 2002; Fedorenko & Thompson-Schill, 2014; Price, 2010, 2012).

The activation map of Cluster 3 (Sensation, Movement and Action; Figure

4c) is similar to other maps from studies investigating pain localization

(Amanzio, Benedetti, Porro, Palermo, & Cauda, 2013; Friebel, Eickhoff, &

Lotze, 2011; Perini, Bergstrand, & Morrison, 2013; Schomers & Pulver-

m€uller, 2016; Vierck, Whitsel, Favorov, Brown, & Tommerdahl, 2013) in

addition to the somatosensory co-activation network (Smith et al.,

2009). Finally, the activation map of Cluster 5 (decision, emotion, and sub-

stance use; Figure 4e) is also highly similar to the map of the structures

involved in different aspects of emotional processing and decision-

making (Bartra, McGuire, & Kable, 2013; Buhle et al., 2014; Etkin &

Wager, 2007; Lindquist, 2010; Phan, Wager, Taylor, & Liberzon, 2002).

Many meta-analyses and meta-analytic tools for neuroimaging

have a common (even if unstated) goal: to help homogenize our under-

standing of the literature and through this homogenization help define

ontologies (Poldrack & Yarkoni, 2016; Poldrack et al., 2011) so that we

can relate brain function to cognition. However, with many tools at our
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disposal, there are known biases in neuroimaging (Jennings & Van

Horn, 2012) and the language we use can make building such ontolo-

gies difficult. With a well-defined common language and homogeniza-

tion of reporting results, fields such as genomics can provide a more

robust assessment of the relationship between studies and the roles of

particular genetic effects (Ailem et al., 2016).

Based on the analysis of term co-occurrences in the abstracts of

10,898 neuroimaging articles, we have identified a highly reliable set of

dimensions and subfields that define the underlying semantic space of

the neuroimaging field. Most researchers tend to stay within their spe-

cialized domain (by using specific key terms common to their field) and

this behavior may restrict what they can conclude and how they report

their findings, because they use a preferred or required terminology. In

fact, Clusters 2 (development, lifespan, and disorders) and 5 (decision,

emotion, and substance use), and Components 1 and 2 show that there

are language barriers between different types of clinical and experi-

mental studies that could preclude thorough reviews of relevant litera-

ture (see examples in Supporting Information, Table 16).

Because such diverse terminologies and highly specialized fields

could cause researchers to overlook relevant work in domains related

and unrelated to their own, two recent approaches—in addition to our

own—have been proposed: Papr (McGowan et al., 2017) and MAPBOT

(Yuan, Taylor, Alvarez, Mishra, & Biswal, 2017). In general, our

approach, Papr, and MAPBOT all aim to help users navigate literature

in an easier way and to better understand the relationships between

studies. Furthermore, all these techniques use multivariate tools based

on the singular value decomposition. We describe and then compare

each to our approach below.

Papr was recently released to help researchers find preprints on

bioRxiv that may be of interest to them. With Papr, users can move

through a semantic subspace to find articles whose abstract is similar

to a target abstract, as well as locate other users with similar interest.2

Papr provides for bioRxiv some of the mechanisms (e.g., similarity and

recommendation of studies) that our approach does for Neurosynth.

There are, however, several major differences between our approach

and Papr. First, Papr is a tool for bioRxiv while our study and many of

our analyses are specifically tailored to the functional neuroimaging lit-

erature (covered by Neurosynth). Second, Papr emphasizes only study

similarity. While our approach emphasizes study similarity and high-

level organization of the functional neuroimaging literature, we also use

the terms. The difference between Papr and our approach stems from

the choice of multivariate method used: Papr uses PCA, whereas we

use CA. CA is a bifactor technique suited to jointly accommodate the

rows (studies) and columns (terms) of a matrix comprising positive val-

ues. Also we took the analysis of the semantic subspace further than

Papr by clustering the literature into high-level domains in order to

illustrate the broad configuration of the functional neuroimaging

literature.

Similar to our study, MAPBOT utilized the Neurosynth database.

MAPBOT helps researchers navigate relevant studies in Neurosynth,

but conditional to a region of interest. For example, in their paper,

Yuan et al., (2017) use a thalamic mask to generate a voxel 3 term

matrix. MAPBOT extracts only the studies in Neurosynth that report

voxels within an a priori mask to create a voxel 3 term matrix. MAP-

BOT then decomposes that voxel 3 term matrix with non-negative

matrix factorization (a technique, like CA, that was designed for use

with strictly positive values). MAPBOT’s goal is to provide better parcel-

lation of regions, with richer content (i.e., terms) to help researchers

understand, for examples, the functional or behavioral associations of

parcellations within a mask. There are several major differences between

our approach and MAPBOT. First is that MAPBOT analyzes voxel 3

term content. However, MAPBOT is restricted to a priori masks; that is,

users must select a specific partition of voxel space. By doing so, MAP-

BOT cannot detect similar semantic content across voxel content. Our

approach first analyzes studies 3 term content, and then projects (pre-

dicts) voxel content. Our approach incorporates studies, terms, and vox-

els for all available studies as opposed to a specific subset.

In summary, Papr is a tool to assess semantic similarity between

abstracts in bioRxiv, MAPBOT parcellates a priori defined brain regions

by using semantic content, whereas our approach first assesses seman-

tic similarity, then partitions (clusters) the semantic subspace, next it

predicts voxel data from the semantic subspace, and finally assigns vox-

els to particular clusters. While both Papr and MAPBOT provide some

tools to better navigate and search the literature, both are lacking the

key features and information we provide here. We believe that our

approach to structuring the functional neuroimaging literature, and our

current version of a recommendation engine, is critical to both help

organize the field and to help researchers navigate the literature.

5 | CONCLUSIONS

To conclude, our work shows that different domains use different pat-

terns of words, and that studies within these domains also report (or per-

haps only study specific but) common brain areas. We believe that

neuroimaging—and all of the domains that use and contribute to neuroi-

maging—would benefit from a broader harmonization of their terminol-

ogy (�a la the COBIDAS appendix on how to report routine fMRI

analyses; Nichols et al., 2016) to put the field on the path toward formal

ontologies (Poldrack & Yarkoni, 2016). However, there are barriers to

achieve such ontologies (see examples in Supporting Information, Table

16). One such barrier is time and it poses difficult questions, such as

should we go back to older papers and “correct” terminology (e.g., addic-

tion vs. substance use disorder). Another barrier is language itself

because many terms have a variety of uses across disciplines (e.g., to rec-

ollect) and the same concepts could have multiple terms and used in dif-

ferent ways depending on factors such as stylistic choices by the authors

(e.g., marijuana vs. cannabis). Another limitation is that some of the auto-

mated language tools commonly used (including by us) cannot always

detect that certain stems have the same meaning (hippocampi vs. hippo-

campus). Formal and more rigorous ontologies—such as those in

genomics—and tools more sensitive to the peculiarities of language will

2Currently there is an offline version of Papr here: https://github.com/

jtleek/papr. During the writing of our manuscript, a “live” version of Papr

was available but may no longer be “live”: https://jhubiostatistics.shinyapps.
io/papr/
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be required as our field moves forward and connects brain imaging to a

variety of other modalities (e.g., genetics; Cioli, Abdi, Beaton, Burnod, &

Mesmoudi, 2014; Rizzo et al., 2016), but will require effort from a variety

of disciplines to harmonize and standardize terminology.
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