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Abstract
Correlation in functional MRI activity between spatially separated brain regions can fluctuate

dynamically when an individual is at rest. These dynamics are typically characterized temporally by

measuring fluctuations in functional connectivity between brain regions that remain fixed in space

over time. Here, dynamics in functional connectivity were characterized in both time and space.

Temporal dynamics were mapped with sliding-window correlation, while spatial dynamics were

characterized by enabling network regions to vary in size (shrink/grow) over time according to the

functional connectivity profile of their constituent voxels. These temporal and spatial dynamics

were evaluated as biomarkers to distinguish schizophrenia patients from controls, and compared

to current biomarkers based on static measures of resting-state functional connectivity. Support

vector machine classifiers were trained using: (a) static, (b) dynamic in time, (c) dynamic in space,

and (d) dynamic in time and space characterizations of functional connectivity within canonical

resting-state brain networks. Classifiers trained on functional connectivity dynamics mapped over

both space and time predicted diagnostic status with accuracy exceeding 91%, whereas utilizing

only spatial or temporal dynamics alone yielded lower classification accuracies. Static measures of

functional connectivity yielded the lowest accuracy (79.5%). Compared to healthy comparison

individuals, schizophrenia patients generally exhibited functional connectivity that was reduced

in strength and more variable. Robustness was established with replication in an independent data-

set. The utility of biomarkers based on temporal and spatial functional connectivity dynamics

suggests that resting-state dynamics are not trivially attributable to sampling variability and head

motion.
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1 | INTRODUCTION

Over the past two decades, blood oxygenation-level dependent (BOLD)

functional magnetic resonance imaging (fMRI) acquired during rest has

emerged as a promising approach to understand complex brain function.

Spatially separated brain regions that exhibit correlation in their BOLD

activity are said to be functionally connected (Friston 1994; Friston 2011).

Functional connectivity (FC) persists even when the brain is at rest and

not engaged in an explicit task, giving rise to spatial maps of functionally

connected regions called resting state networks (RSNs). These networks

are consistently found in healthy individuals, both during rest (Fox et al.,

2005) as well as during task performance, with only minimal reconfigura-

tion of network architecture between task and rest (Calhoun, Kiehl, &

Pearlson, 2008; Cole, Bassett, Power, Braver, & Petersen, 2014; Sonuga-

Barke & Castellanos, 2007; Smith et al., 2009). RSNs have yielded insight

into the brain’s functional organization (Fox et al., 2005; Raichle et al.,

2001; Raichle 2010), maturation (Doria et al., 2010; Fair et al., 2008),

effects of ageing (Damoiseaux et al., 2008), and characterization of many

neurological and neuropsychiatric disorders (reviewed in Fox & Greicius

2010; Greicius 2008; Fornito, Zalesky, & Breakspear, 2015).

Using resting-state fMRI, RSNs can be mapped with seed-based

methods (Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995; Biswal,
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Kylen, & Hyde, 1997; Cordes et al., 2000; Jiang, He, Zang, & Weng,

2004) or independent component analysis (ICA; Beckmann, DeLuca,

Devlin, & Smith, 2005; Calhoun, Adali, Pearlson, & Pekar, 2001; De

Luca et al., 2005; van de Ven, Formisano, Prvulovic, Roeder, & Linden,

2004). With the former method, a seed (region of interest, ROI) is

defined based on previous studies or atlases and the average time

course from this region is correlated with other brain voxels. While

these methods rely on prior knowledge about the network architecture,

ICA based methods do not require any such information and networks

are defined in a data-driven manner under the assumptions of spatial

or temporal independence among voxel time courses. These initial

studies assumed functional connections and RSNs to be invariant over

time, implying that a single connectivity measure over the whole scan

duration provides a sufficient characterization, which we refer to as

static FC hereafter. However, it has been demonstrated both empiri-

cally and with simulation that resting-state FC exhibits rich dynamics

and temporal structure (Chang & Glover, 2010; Allen et al., 2014;

Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013b); giving rise to

the currently very active field of dynamic FC (Hutchison et al., 2013a;

Tagliazucchi & Laufs, 2015; Preti, Bolton, & Van De Ville, 2016; Kara-

hano�glu & Van De Ville, 2017). While several studies have sought to

identify the neural basis of dynamic FC (Tagliazucchi, von Wegner,

Morzelewski, Brodbeck, & Laufs, 2012; Chang, Liu, Chen, Liu, & Duyn,

2013; Thompson et al., 2013), its functional underpinnings (Kucyi &

Davis, 2014; Chen, Chen, Xie, & Li, 2011; Zalesky, Fornito, Cocchi,

Gollo, & Breakspear, 2014; Yang, Craddock, Margulies, Yan, & Milham,

2014) and aberrant dynamics of FC in disease (Rashid, Damaraju, Pearl-

son, & Calhoun, 2014; Damaraju et al., 2014; Jones et al., 2012; Liao

et al., 2014), the field remains hotly disputed, with suggestions that

observed dynamics might be trivially due to nuisance physiological and

head motion covariates that have not been adequately removed (Lau-

mann et al., 2016). Additional contention is owing to ambiguity in the

core definition of dynamic FC (Liegeois, Laumann, Snyder, Zhou, &

Yeo, 2017) and ongoing debate about the utility of sliding-window

analyses and the choice of null model (Hindriks et al., 2016; Zalesky &

Breakspear, 2015; Leonardi & Van De Ville, 2015).

Single-subject prediction of diagnosis, illness outcome and treat-

ment response offers significant potential to influence clinical decision

making in neuropsychiatry (Koutsouleris et al., 2009; Koutsouleris &

Kambeitz, 2016). To date, single-subject predictions inferred from fMRI

have largely focussed on static FC and other static properties of the

BOLD response. In particular, multivariate pattern-recognition techni-

ques (machine learning) applied to static FC measures have been

trained to distinguish psychiatric patients from healthy controls with

accuracies ranging between 60% and 80%, depending on the disorder

and illness severity (Woo, Chang, Lindquist, & Wager, 2017). To be

useful for clinical practice, biomarkers with improved accuracy, reliabil-

ity and predictive value are essential (Abi-Dargham & Horga, 2016).

Recent evidence suggests that neuropsychiatric disorders are associ-

ated with marked abnormalities in dynamic FC and that these dynamic

biomarkers can distinguish patients from healthy comparison individu-

als with greater accuracy than predictions based on static FC alone (Jin

et al., 2017; Wee et al., 2012; Price, Wee, Gao, & Shen, 2014).

Therefore, the dynamic properties of functional brain networks merit

further study in the context of candidate biomarkers for clinically useful

predictive models in psychiatric disorders such as schizophrenia.

Studies of dynamic FC have invariably focussed on characterizing

the temporal dynamics of FC, with little consideration given to any pos-

sible dynamics in the spatial layout of RSNs. The spatial extent of func-

tional networks is typically defined using a parcellation atlas or with

ICA, both of which enforce anatomical boundaries that are fixed in

space over all time. Here, we aim to establish whether resting-state FC

exhibits meaningful spatial dynamics and whether spatial dynamics can

improve single-subject prediction of schizophrenia diagnosis. While it is

known that functional brain networks exhibit spatial dynamics during

task performance (Calhoun et al., 2008; Fransson 2006; Sonuga-Barke

& Castellanos, 2007; Kelly, Uddin, Biswal, Castellanos, & Milham,

2008), little is known about whether these spatial dynamics persist in

rest or whether they are altered in disease. In addition, neuropsychiat-

ric disorders such as schizophrenia are typically characterized by reduc-

tions in gray matter volume and these reductions can remain even

after registration to a standard template. Allowing the spatial extent of

functional network boundaries to vary between individuals and over

time can in principle account for reductions in gray matter volume,

since the spatial extent of a functional network is inherently reduced to

match the extent of atrophy. While some studies have sought to char-

acterize the spatio-temporal dynamics of RSNs in healthy subjects

(Kiviniemi et al., 2011) and in schizophrenia patients (Ma, Calhoun,

Phlypo, & Adalı, 2014), these studies assume spatial independence

among networks; further, they have not evaluated the extent to which

dynamic FC can improve single-subject prediction of diagnostic status.

The aim of this study is to evaluate the extent to which biomarkers

characterizing both the spatial and temporal dynamics of key RSNs can

improve the accuracy of machine-based single-subject prediction of

schizophrenia diagnosis. We hypothesize that spatio-temporal dynam-

ics in resting-state FC is altered in schizophrenia patients and that

these dynamics distinguish patients from healthy controls with greater

precision compared to static characterizations of RSNs. To address this

hypothesis, we developed a novel sliding-window based method to

map both spatial and temporal fluctuations in RSNs defined relative to

a seed region. Unlike complementary ICA-based methods, our method

does not enforce temporal or spatial independence between RSNs,

meaning that RSNs can potentially overlap and share common regions

at any time. Using two independent datasets, we evaluated the accu-

racy with which schizophrenia patients can be distinguished from

healthy comparison individuals with a support vector machine (SVM)

classifier trained on: (a) static, (b) dynamic in time, (c) dynamic in space,

and (d) dynamic in time and space characterizations of FC in key RSNs.

2 | MATERIALS AND METHODS

2.1 | Data

2.1.1 | Dataset 1

Participants included 41 patients with treatment-resistant schizophrenia

(TRS; mean age 40.9 years, r 5 10.0 years, 28 males) and 41
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age-matched healthy controls (mean age 38.3 years, r 5 10.5 years, 24

males). TRS patients did not respond to at least two different antipsy-

chotics in at least two trials (Suzuki et al., 2012) and were taking cloza-

pine (Kane, Honigfeld, Singer, & Meltzer, 1988; Siskind, McCartney,

Goldschlager, & Kisely, 2016). Clinical and demographic characteristics

are shown in Table 1. The study was approved by the Melbourne Health

Human Research Ethics committee (MHREC ID 2012.069) and all partici-

pants provided written informed consent, prior to participation.

Magnetic resonance images were collected on a Siemens Avanto

3T Magnetom TIM Trio scanner. All participants were instructed to

keep their eyes closed and not to fall asleep while scanning. T1

weighted anatomical images were acquired using an optimized

Magnetization-Prepared Rapid acquisition Gradient Echo (MPRAGE)

sequence with the following parameters: 176 sagittal slices of 1 mm

thickness without gap, field of view (FOV) 5 250 3 250 mm2, repeti-

tion time (TR) 5 1980 ms, echo time (TE) 5 4.3 ms, flip angle 5 158

and resolution 5 0.98 3 0.98 3 1.0 mm. Resting-state fMRI data was

acquired for 8 min (234 volumes) using a T2*-weighted echo-planar

imaging (EPI) sequence with TR 5 2 s, TE 5 40 ms, voxel

dimensions5 3.3 3 3.3 3 3 mm and matrix size 643 64.

2.1.2 | Dataset 2 (replication cohort)

The replication dataset comprised 15 healthy volunteers (mean age

33.3 years, r 5 9.2 years, 14 male) and 12 patients with chronic schizo-

phrenia (mean age 32.8 years, r 5 9.2 years, 10 male). The two groups

were matched for age, pre-onset IQ and years of education. The

patients were diagnosed as per the standard operational criteria in the

Diagnostic and Statistical Manual of Mental Disorders IV (the official

manual of American Psychiatric Association). All patients were treated

with antipsychotic medication; in addition, four patients were receiving

psychotropic drugs. To reduce the acute effects of antipsychotic medi-

cation on the day of scanning, patients were asked to abstain from their

usual medication regime. The study protocol was approved by the

Addenbrooke’s NHS Trust Local Research Ethics Committee and all

subjects provided informed consent in writing before participation.

All scans were acquired using a 1.5 Tesla GE Signa scanner (Gen-

eral Electric, Milwaukee, WI) located at the BUPA Lea Hospital, Cam-

bridge, UK. Resting-state functional images were acquired using T2*-

weighted EPI sequence, as participants laid quietly in the scanner with

eyes closed. Imaging parameters were: TR 5 2 s, TE 5 40 ms, flip

angle 5 708, voxel size 5 3.05 3 3.05 3 7 mm, slice gap 5 0.7 mm

and number of volumes 5 512. Further details on the demographics

and acquisition of this dataset can be found in a previous study (Zale-

sky, Fornito, & Bullmore, 2010).

2.2 | Data preprocessing

2.2.1 | Dataset 1

Scans from individual subjects were preprocessed using FSL (FMRIB

software Library, https://fsl.fmrib.ox.ac.uk/fsl/) and SPM8 (www.fil.ion.

TABLE 1 Demographic and clinical characteristics of participants (Dataset 1)

TRS patients (n 5 41) Healthy volunteers (n 5 41) Between group differences

Gender (Male/Female) 28/13 24/17 v2(1, N 5 82) 5 0.97, p 5 .32

Age (years) 40.9 6 10.0 38.3 6 10.5 t(82) 5 1.1, p 5 .27

Illness duration (years) 17.9 6 9.3 – –

IQ 86.1 6 18.7 111.2 6 13.6 t(75) 5 6.70, p 5 .0000*

Education (years) 12.0 6 0.55 16.4 6 0.47 t(79) 5 26.35, p 5 .0000*

GAF 45.9 6 13.0 79.5 6 10.6 t(79) 5 212.79, p 5 .0000*

SOFAS 46.5 6 14.8 79.5 6 11.0 t(80) 5 211.49, p 5 .0000*

Clozapine dosage (mg/day) 393.24 6 24.6 – –

Chlorpromazine equivalent
dosage (mg/day)

615.4 6 55.84 – –

PANSS scores

Positive 15.6 6 6.58 – –

Negative 16.4 6 5.18 – –

Disorganized 12.4 6 4.09 – –

Excited 6.3 6 2.66 – –

Depressed 8.3 6 3.84 – –

Total 59.1 6 13.1 – –

Mean 6 SD of each measure is shown. Note that the degrees of freedom are smaller for some measures, as not all information was available for every subject.
Abbreviations: TRS, treatment-resistant schizophrenia; IQ, intelligence quotient; GAF, the global assessment of functioning; SOFAS, Social and Occupa-
tional Functioning Assessment Scale; PANSS, Positive and Negative Syndrome Scale.
*Significant p < .01.
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ucl.ac.uk/spm). For every subject, the functional images were slice-time

corrected, realigned to the mean functional volume to correct for head

motion and co-registered to the respective T1-weighted anatomical

image via rigid-body registration and then spatially normalized to the

Montreal Neurological Institute (MNI) 152 template with isotropic

2 mm resolution via non-linear transformation. Motion parameters

(Friston 24-parameter model; Friston, Williams, Howard, Frackowiak, &

Turner, 1996) and signals from the white matter and the ventricles

were regressed from each voxel time course, to account for head

motion and physiological noise.

The residuals from this regression were spatially smoothed using a

Gaussian kernel of full-width at half-maximum (FWHM) of 4mm. Any

linear trend was removed from each voxel time course and temporal

band-pass filtering (0.01–0.1 Hz) was performed to reduce the effects

of low frequency drifts and high frequency physiological noise (Cordes

et al., 2001). The resulting time courses were used for further analyses.

Given that the regression of motion parameters is not sufficient to

eliminate variance related to head motion (Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012; Van Dijk, Sabuncu, & Buckner, 2012; Yan

et al., 2013), further motion correction was performed by censoring high-

motion volumes in each individual (Power et al., 2012). Specifically, vol-

umes with a frame-wise displacement (FD) exceeding 0.5 mm were

censored, where FD measures the extent of head movement from one

volume to the next, and is calculated as the sum of the absolute values of

the differentiated realignment estimates (Power et al., 2012).

2.2.2 | Dataset 2

These data were preprocessed as a part of a prior study (Zalesky et al.,

2010). The pre-processing steps were comparable as that described

above for Dataset 1, except that these images were normalized to a

resampled MNI template with a voxel resolution of 3 3 3 3 7 mm and

spatial smoothing was performed using a Gaussian kernel of

FWHM5 6 mm; further details can be found in (Zalesky et al., 2010).

2.3 | Networks and regions

FC was measured between pairs of regions comprising several canonical

RSNs. We considered 14 previously delineated RSNs (Shirer, Ryali, Rykh-

levskaia, Menon, & Greicius, 2012). Each RSN comprised multiple spa-

tially contiguous cortical and/or subcortical regions, resulting in a total of

90 regions across the 14 RSNs. While mutual exclusivity among regions

was not explicitly enforced, most regions did not share common voxels.

The 14 RSNs and their constituent regions are listed in Table 2 and

shown in Figure 1. Network regions are shown in green and orange,

TABLE 2 Regions comprising each of the 14 resting-state networks (RSNs) between which functional connectivity was mapped

Network Abbreviation Areas
No. of
nodes

Seed region
chosen

Anterior salience network ASN BA – 9, 46, 48, 47, 24, 32, 8, 6; left lobule VI,
right lobule VI, crus I

7 Left middle frontal gyrus

Auditory network AUD BA – 22, 48, 38, 42; right thalamus 3 Left superior temporal gyrus

Basal ganglia network BGN BA – 45, 48; pons, left thalamus, left caudate,
right thalamus, right caudate, putamen

5 Left thalamus

Dorsal default mode network dDMN BA – 9, 10, 24, 32, 11, 39, 23, 30, 39, 20, 36;
left and right thalamus

9 Posterior cingulate cortex

Higher visual network hVIS BA – 17, 18, 19 2 Left middle occipital gyrus

Language network LAN BA – 45, 47, 21, 37, 39, 22, 42, 40; left crus I 7 Left inferior frontal gyrus

Left executive control network LECN BA – 8, 9, 10, 45, 47, 7, 40, 39, 20, 37; right crus
I, left thalamus

6 Left inferior parietal gyrus

Precuneus network PRE BA – 7, 19, 23, 40 4 Precuneus

Posterior salience network PSN BA – 46, 40, 5, 23, 7, 5, 2, 40, 48; left thalamus,
left lobule VI, right thalamus, right lobule VI

12 Right supramarginal gyrus

Primary visual network pVIS BA – 17; left thalamus 2 Calcarine sulcus

Right executive control network RECN BA – 46, 8, 9, 10, 7, 40, 39, 8; left crus I, left
crus II, lobule VI, right caudate

6 Right inferior parietal gyrus

Sensorimotor network SMN BA – 3, 4, 6; left thalamus, right thalamus,
bilateral lobule IV, V and VI

6 Left precentral gyrus

Ventral default mode network vDMN BA – 29, 30, 23, 8, 6, 37, 20, 19, 39, 7, 5, 9; right
lobule IX

10 Left middle occipital gyrus

Visuo-spatial network VSN BA – 2, 6, 40, 7, 44, 48, 45, 37; left lobule VIII
and VIIb; right lobule VI, VIII and VIIb; right
crus I

11 Left superior frontal gyrus

The number of network nodes involved and the seed region chosen to define the network are listed. BA – Broadmann Area. Note that nodes can span multiple
BAs and regions; not all voxels comprising a BA or region are necessarily included as part of a node. The fourteen RSNs are shown in Figure 1.
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ucl.ac.uk/spm). For every subject, the functional images were slice-time
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volume to the next, and is calculated as the sum of the absolute values of
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resampled MNI template with a voxel resolution of 3 3 3 3 7 mm and

spatial smoothing was performed using a Gaussian kernel of

FWHM5 6 mm; further details can be found in (Zalesky et al., 2010).

2.3 | Networks and regions

FC was measured between pairs of regions comprising several canonical

RSNs. We considered 14 previously delineated RSNs (Shirer, Ryali, Rykh-

levskaia, Menon, & Greicius, 2012). Each RSN comprised multiple spa-

tially contiguous cortical and/or subcortical regions, resulting in a total of

90 regions across the 14 RSNs. While mutual exclusivity among regions

was not explicitly enforced, most regions did not share common voxels.

The 14 RSNs and their constituent regions are listed in Table 2 and

shown in Figure 1. Network regions are shown in green and orange,

TABLE 2 Regions comprising each of the 14 resting-state networks (RSNs) between which functional connectivity was mapped

Network Abbreviation Areas
No. of
nodes

Seed region
chosen

Anterior salience network ASN BA – 9, 46, 48, 47, 24, 32, 8, 6; left lobule VI,
right lobule VI, crus I

7 Left middle frontal gyrus

Auditory network AUD BA – 22, 48, 38, 42; right thalamus 3 Left superior temporal gyrus

Basal ganglia network BGN BA – 45, 48; pons, left thalamus, left caudate,
right thalamus, right caudate, putamen

5 Left thalamus

Dorsal default mode network dDMN BA – 9, 10, 24, 32, 11, 39, 23, 30, 39, 20, 36;
left and right thalamus

9 Posterior cingulate cortex

Higher visual network hVIS BA – 17, 18, 19 2 Left middle occipital gyrus

Language network LAN BA – 45, 47, 21, 37, 39, 22, 42, 40; left crus I 7 Left inferior frontal gyrus

Left executive control network LECN BA – 8, 9, 10, 45, 47, 7, 40, 39, 20, 37; right crus
I, left thalamus

6 Left inferior parietal gyrus

Precuneus network PRE BA – 7, 19, 23, 40 4 Precuneus

Posterior salience network PSN BA – 46, 40, 5, 23, 7, 5, 2, 40, 48; left thalamus,
left lobule VI, right thalamus, right lobule VI

12 Right supramarginal gyrus

Primary visual network pVIS BA – 17; left thalamus 2 Calcarine sulcus

Right executive control network RECN BA – 46, 8, 9, 10, 7, 40, 39, 8; left crus I, left
crus II, lobule VI, right caudate

6 Right inferior parietal gyrus

Sensorimotor network SMN BA – 3, 4, 6; left thalamus, right thalamus,
bilateral lobule IV, V and VI

6 Left precentral gyrus

Ventral default mode network vDMN BA – 29, 30, 23, 8, 6, 37, 20, 19, 39, 7, 5, 9; right
lobule IX

10 Left middle occipital gyrus

Visuo-spatial network VSN BA – 2, 6, 40, 7, 44, 48, 45, 37; left lobule VIII
and VIIb; right lobule VI, VIII and VIIb; right
crus I

11 Left superior frontal gyrus

The number of network nodes involved and the seed region chosen to define the network are listed. BA – Broadmann Area. Note that nodes can span multiple
BAs and regions; not all voxels comprising a BA or region are necessarily included as part of a node. The fourteen RSNs are shown in Figure 1.

4 | KOTTARAM ET AL.

while the yellow border encapsulating each region represents neighboring

voxels. Neighboring voxels include all voxels within a �6 mm distance

outer to every network region, in all directions. This neighborhood delin-

eates a space in which regions can dynamically shrink/grow as a function

of time. Each RSN is associated with a single seed region (green) that was

used for conventional seed-based connectivity analyses (Biswal et al.,

1995; Biswal et al., 1997; Cordes et al., 2000; Jiang et al., 2004).

2.4 | Measurement of functional connectivity

Four distinct classes of FC were evaluated: (I) static in time and space;

(II) dynamic in time; (III) dynamic in space; and (IV) dynamic in time and

space. Class I is the conventional method of measuring FC and results

in a temporally and spatially averaged representation of all variations

during the acquisition interval. Class II represents the typical definition

of dynamic FC as temporal variations in the interactions between spa-

tially separated regions. Class III provides a novel conceptualization

involving spatial dynamics in which region size can vary dynamically

over time. Finally, Class IV provides a characterization of FC that com-

bines temporal (Class II) and spatial (Class III) dynamics.

Figure 2 shows the salient features that differ between the four

classes. In the following, we describe how FC was computed for each

of the four classes.

2.4.1 | Class I: Static in time and space

This is the simplest class in which variations in space and time during

the acquisition interval are characterized in terms of their averages.

The number of pairs of regions considered was varied according to a

feature selection heuristic (see Section 2.5). FC was computed inde-

pendently for each pair of regions. Pairs comprising regions from two

distinct RSNs were permitted. The pre-processed fMRI data was spa-

tially averaged over the voxels comprising each region to yield an aver-

age time course for each region. The Pearson cross-correlation

coefficient was then calculated for each pair of regions to yield a mea-

sure of static FC. In Class I, a single correlation coefficient thus charac-

terized the FC between a pair of regions for the entire acquisition

interval, precluding the representation of any spatial or temporal

dynamics. The number of features used for classification was simply

the total number of pairs of regions considered, denoted by M.

2.4.2 | Class II: Dynamic in time and static in space

This class corresponds to the conventional definition of dynamic FC

based on temporal variations that remain fixed in space. To study tem-

poral variations, we employed rectangular, overlapping sliding windows

of fixed duration. The window was successively progressed in time by

the duration of one TR (sampling interval) to yield a series of FC maps

spanning the acquisition interval. Previous studies have considered

window lengths varying from 13 s up to 4 min (Chang & Glover, 2010;

Handwerker, Roopchansingh, Gonzalez-Castillo, & Bandettini, 2012;

Hutchison et al., 2013b; Lee, Zahneisen, Hugger, LeVan, & Hennig,

2013; Leonardi et al., 2013; Allen et al., 2014; Majeed et al., 2011).

Here, we evaluated a variety of window lengths, and a length of

W520 s (10 TRs) was chosen. The effect of different window lengths

was also assessed (see Section 2.6). For a window length of W and an

acquisition comprising T time points, the total number of windows was

given by J5T2W11.

For each pair of regions, the Pearson correlation coefficient was

used to compute FC within each of the J windows to yield a time series

of correlation coefficients qij tð Þ, t51; . . . ; J, where i and j denote regions.

The mean and standard deviation of qij tð Þ were computed over time,

lij5
1
J

XJ

t51

qij tð Þ; rij5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J21

XJ

t51

qij tð Þ2lij
� �2

vuut ;

to provide summary statistics of temporal FC dynamics for each pair of

regions. It is important to note that lij is not necessarily equal to the

static FC between regional pair i; jð Þ computed under Class I. Standard

deviation provides a simple characterization of dynamics that has been

extensively used as a test statistic for dynamic behavior (Lee et al., 2013;

Kucyi, Salomons, & Davis, 2013; Kucyi & Davis, 2014; Laufs et al., 2014;

Morgan, Abou-Khalil, & Rogers, 2015; Falahpour et al., 2016). In Class II,

the total possible number of features used for classification was 2M,

namely, the mean and standard deviation of qij tð Þ forM pairs of regions.

2.4.3 | Class III: Static in time and dynamic in space

In this class, rather than computing FC between pairs of regions that

are spatially fixed based on a predefined atlas, we used a seed-based

correlation approach to define a distribution of FC that varied in space.

Each RSN comprised a set of spatially contiguous regions, otherwise

referred to as nodes. The number of regions varied between 2 and 12

across the 14 RSNs. For each RSN, a single region was chosen to serve

FIGURE 1 Fourteen resting-state networks delineated by Shirer et al.

(2012). (1) anterior salience, (2) auditory, (3) basal ganglia, (4) dorsal
default mode, (5) higher visual, (6) language, (7) left executive control,
(8) precuneus, (9) posterior salience, (10) primary visual, (11) right exec-
utive control, (12) sensorimotor, (13) ventral default mode and (14)
visuospatial. Seed regions are shown in green and other (non-seed)
regions are shown in orange. When characterizing spatial dynamics,
the spatial extent of each region can shrink/grow within the confines
of the yellow zone, which is a �6 mm neighborhood encapsulating
each region [Color figure can be viewed at wileyonlinelibrary.com]
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as the seed region. Seed regions are colored in green in Figure 1 and

listed in Table 2. For each RSN, along with the seed region, we defined

a mask comprising voxels within a �6 mm neighborhood of each region

of the RSN (yellow) as well as the voxels within each region (orange).

For each voxel comprising the mask, the Pearson correlation coefficient

was computed between the seed region and the voxel’s pre-processed

fMRI time course, resulting in a spatial connectivity map that varied

dynamically across voxels. In this way, FC between the seed region and

other regions of each particular RSN varied from voxel to voxel in a spa-

tially dynamic manner. This was repeated independently for each individ-

ual and each RSN. Finally, the spatial map for each RSN was converted

into a histogram. The histogram was discretised into 20 uniformly spaced

bins on the interval 21;1½ � and each seed-to-voxel correlation coefficient

was assigned to a unique bin. The number of voxels assigned to each his-

togram bin was used to characterize the spatial distribution of FC for

each individual. The total possible number of features used for classifica-

tion was 20N, where N514 is the number of RSNs.

2.4.4 | Class IV: Dynamic in time and space

In this class, dynamics were characterized in both time and space, rep-

resenting a combination of Classes II and III. This enabled the regions

of each RSN to vary in size (shrink/grow) during the acquisition

interval. As with Class III, for each RSN, we defined a seed region and a

mask comprising voxels in the other regions of the RSN as well as vox-

els within a �6 mm neighborhood of all regions in the network. The

Pearson correlation coefficient was then computed between the seed

region and each voxel’s pre-processed fMRI time course, resulting in a

spatial connectivity map that varied dynamically across voxels. Unlike

Class III, where a single spatial map characterized the entire acquisition

interval, we now computed a distinct spatial connectivity map for each

time point. In particular, the same temporal sliding window scheme

defined in Class II was employed and a spatial map was computed for

each window. Each spatial map was converted to a histogram, as

described under Class III. For a given RSN, let hi tð Þ be the number vox-

els assigned to histogram bin 211 i21
10 ;211 i

10

� �
; i51; . . . ;20 for win-

dow t51; . . . ; J. Recall that for a window length of W and an

acquisition comprising T time points, the total number of windows is

given by J5T2W11. For each histogram bin i51; . . . ;20, the mean

and standard deviation of hi tð Þ were computed over time,

l�i 5
1
J

XJ

t51

hi tð Þ; r�
i 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J21

XJ

t51

hi tð Þ2l�i
� �2

vuut ;

to provide summary statistics of temporal variations in the spatially

varying FC map for each RSN. The total possible number of features

FIGURE 2 Schematic of four different classes of functional connectivity. R1 and R2 denote two distinct nodes, while R1_ext and R2_ext
denote the same two nodes in addition to their spatial neighborhoods (shown in yellow). (a) Class I – Static in both time and space, in
which case, regionally-averaged time courses were correlated to yield a single correlation value. (b) Class II – Static in space, dynamic in
time; in this class, correlations were defined between windowed time courses from the two regions. (c) Class III – Dynamic in space, static
in time, where a histogram of correlations was obtained by correlating the seed time course with individual voxel time courses from nodes
as well as their neighborhood (d) Class IV – Dynamic in both space and time, where a histogram of correlations was defined from each slid-
ing window [Color figure can be viewed at wileyonlinelibrary.com]
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as the seed region. Seed regions are colored in green in Figure 1 and

listed in Table 2. For each RSN, along with the seed region, we defined

a mask comprising voxels within a �6 mm neighborhood of each region

of the RSN (yellow) as well as the voxels within each region (orange).

For each voxel comprising the mask, the Pearson correlation coefficient

was computed between the seed region and the voxel’s pre-processed

fMRI time course, resulting in a spatial connectivity map that varied

dynamically across voxels. In this way, FC between the seed region and

other regions of each particular RSN varied from voxel to voxel in a spa-

tially dynamic manner. This was repeated independently for each individ-

ual and each RSN. Finally, the spatial map for each RSN was converted

into a histogram. The histogram was discretised into 20 uniformly spaced

bins on the interval 21;1½ � and each seed-to-voxel correlation coefficient

was assigned to a unique bin. The number of voxels assigned to each his-

togram bin was used to characterize the spatial distribution of FC for

each individual. The total possible number of features used for classifica-

tion was 20N, where N514 is the number of RSNs.

2.4.4 | Class IV: Dynamic in time and space

In this class, dynamics were characterized in both time and space, rep-

resenting a combination of Classes II and III. This enabled the regions

of each RSN to vary in size (shrink/grow) during the acquisition

interval. As with Class III, for each RSN, we defined a seed region and a

mask comprising voxels in the other regions of the RSN as well as vox-

els within a �6 mm neighborhood of all regions in the network. The

Pearson correlation coefficient was then computed between the seed

region and each voxel’s pre-processed fMRI time course, resulting in a

spatial connectivity map that varied dynamically across voxels. Unlike

Class III, where a single spatial map characterized the entire acquisition

interval, we now computed a distinct spatial connectivity map for each

time point. In particular, the same temporal sliding window scheme

defined in Class II was employed and a spatial map was computed for

each window. Each spatial map was converted to a histogram, as

described under Class III. For a given RSN, let hi tð Þ be the number vox-

els assigned to histogram bin 211 i21
10 ;211 i

10

� �
; i51; . . . ;20 for win-

dow t51; . . . ; J. Recall that for a window length of W and an

acquisition comprising T time points, the total number of windows is

given by J5T2W11. For each histogram bin i51; . . . ;20, the mean

and standard deviation of hi tð Þ were computed over time,

l�i 5
1
J

XJ

t51

hi tð Þ; r�
i 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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to provide summary statistics of temporal variations in the spatially

varying FC map for each RSN. The total possible number of features

FIGURE 2 Schematic of four different classes of functional connectivity. R1 and R2 denote two distinct nodes, while R1_ext and R2_ext
denote the same two nodes in addition to their spatial neighborhoods (shown in yellow). (a) Class I – Static in both time and space, in
which case, regionally-averaged time courses were correlated to yield a single correlation value. (b) Class II – Static in space, dynamic in
time; in this class, correlations were defined between windowed time courses from the two regions. (c) Class III – Dynamic in space, static
in time, where a histogram of correlations was obtained by correlating the seed time course with individual voxel time courses from nodes
as well as their neighborhood (d) Class IV – Dynamic in both space and time, where a histogram of correlations was defined from each slid-
ing window [Color figure can be viewed at wileyonlinelibrary.com]
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used for classification was 23203N, namely, 20 means (l�i ) and 20

standard deviations (r�
i ) for each of N RSNs. While we did not explicitly

quantify region size as a function of time, this could be achieved by

counting the number of voxels at each time point with a seed-to-voxel

correlation coefficient exceeding a given threshold. This kind of binar-

ization with respect to a given threshold squanders the rich spatial vari-

ation in FC within regions, and thus we characterized spatial dynamics

with a histogram rather than region size.

2.5 | Single-subject prediction of schizophrenia

diagnosis

Support vector machine (SVM) classifiers were trained to classify indi-

viduals according to diagnostic status (patients or controls) based on

four distinct classes of FC. A separate classifier was trained and eval-

uated for each class. We evaluated the performance of different kernel

functions and found that a linear kernel consistently provided the high-

est classification accuracy. A linear kernel was therefore employed for

all experiments. Classification performance was measured in terms of

classification accuracy, sensitivity, specificity and area under the

receiver operating characteristic curve (AUC). Training and evaluation

was undertaken according to the following three cross-validation (CV)

schemes.

2.5.1 | Analysis 1: Network selection through exhaustive

evaluation

The aim of this analysis was to comprehensively quantify the variation

in classification accuracies across different combinations of RSNs.

Some RSNs might provide minimal discriminatory power and thus their

exclusion may enhance classification accuracy. Note that a total of 14

RSNs was considered, and thus 21421516;383 combinations of

RSNs were evaluated, where each combination consisted of a selected

subset of networks. For each combination, ten-fold cross-validation

was used to evaluate classification accuracy. The mean and standard

deviation of accuracy, sensitivity, specificity and AUC was then com-

puted across all combinations. This was repeated independently for

each of the four classes of FC to determine which class provided the

most accurate classification performance on average across all combi-

nations of RSNs.

In practice, a feature selection heuristic would typically be

employed to identify a single combination of RSNs, rather than under-

taking an exhaustive search. However, the objective of this analysis

was to comprehensively characterize average performance across all

possible combinations, without any dependence on a particular feature

selection strategy.

Ten-fold CV: Individuals (patients and controls) were randomly

divided into 10 equally-sized samples. The SVM was then trained using

9 of the 10 samples and the remaining held-out sample was used to

evaluate classification accuracy. This was repeated 10 times, each time

holding out a different sample to evaluate accuracy. Classification accu-

racy, specificity, sensitivity and AUC were averaged across the 10 folds.

For each chosen combination of RSNs, ten-fold CV was per-

formed 30 times, each time with a different (random) partition of

the dataset into 10 folds. Between two separate runs of ten-fold

CV, none of the folds contained exactly the same subjects, avoiding

potential sampling bias. This CV procedure was repeated independ-

ently for each of the four classes of FC, yielding a distribution of

classification accuracy, sensitivity and specificity across combina-

tions of RSNs for each class. For a given class of FC and a chosen

network combination, the mean and standard deviation of accuracy,

sensitivity and specificity were calculated over 30 runs of ten-

fold CV.

2.5.2 | Analysis 2: Ranked feature selection

In this analysis, we firstly implemented a feature selection step to

identify the most distinguishing features and these features were

then used for classification. The total number of features that

were ranked differed between classes: Class I comprised 4005

features corresponding to unique cross-correlations between 90

regions spanning 14 RSNs; Class II comprised 4005 means and

4005 standard deviations of unique cross-correlations over sliding

windows; Class III comprised 280 features (20 histogram bins

from each of 14 RSNs); and Class IV comprised 280 means and

280 SDs of histogram bin heights over sliding windows. Impor-

tantly, features were selected based on a training sample. Individ-

uals (patients and controls) were partitioned into two mutually

exclusive sets—a training sample comprising 90% of individuals

and an evaluation sample comprising the remaining 10% of indi-

viduals. Using the training data, a two-sample t test was computed

for each feature to assess the null hypothesis of equality between

patients and controls. Features were then ranked in descending

order according to the absolute value of each t-statistic. The clas-

sifier was trained using the top-ranked K features and tested on

the evaluation sample, where K510;20; . . . ;100 was considered.

This ranking and classification was repeated for 30 different parti-

tions of the dataset.

2.5.3 | Analysis 3: Nested CV

To evaluate classifier generalizability, we augmented the exhaustive

approach undertaken in Analysis 1 with nested CV. The dataset was

partitioned randomly into two groups—60% training sample and 40%

test sample. Using the training data, an exhaustive grid search was per-

formed, where a 10-fold CV was implemented for each of the possible

network combinations. The top-50 network combinations that pro-

vided the highest classification accuracy were then selected. For each

of these combinations, a classifier was trained using the training data,

and the test data was used to evaluate the performance of the trained

classifier. The final prediction outcome was decided via majority voting

based on predictions from the 50 classification results. This process

was repeated 30 times, each time with a different random partition of

data into training and test subsets. Thus, in Analysis 3, feature selection

and classifier training was performed using training data alone (60%),

and the test data (40%) was used only to evaluate the trained classifier.

This analysis assessed classifier generalizability and performance on

new, unseen data.
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2.6 | Effect of varying window length, neighborhood,

scrubbing, and seed regions

The choice of window length, seed region and neighborhood size are

rather subjective, and thus we evaluated the sensitivity of classification

performance to variations in these key parameters. For reasons of com-

putational tractability, these sensitivity analyses were performed with

respect to Analysis 2. The window length was varied from two TR

points (4 s) to 234 TR points (7.8 min, the static case for Dataset 1).

A new classifier was trained for each window length using the top-100

features selected according to the scheme described in Analysis 2 (Sec-

tion 2.5). Classifier performance was then plotted as a function of win-

dow length for both the dynamic-in-time classes (Class II and IV). The

same process was used to evaluate the impact of variation in neighbor-

hood size, where size varied from 0 mm (no neighboring voxels) to

10 mm. Variation in neighborhood size was only relevant to Classes III

and IV, where the spatial extent of each region was permitted to

shrink/grow within its neighborhood.

Finally, Analysis 2 was performed with and without high-motion

volumes censored (scrubbing), to evaluate the impact of motion correc-

tion on classifier performance. Previously, it has been shown that the

networks defined via seed-based correlation are dependent on the

choice of seed location (Cole, Smith, & Beckmann, 2010; Sohn et al.,

2015). Hence, we repeated our Analysis 2 with a different set of seed

locations chosen from the network templates (Shirer et al., 2012); these

regions are reported in Supporting Information Figure S1.

3 | RESULTS

Four different classes of static and dynamic FC were inferred from

resting-state fMRI data acquired in schizophrenia patients and healthy

controls. We independently trained a SVM for each class of FC to per-

form single-subject prediction of diagnostic status. As detailed below,

classifiers incorporating both the temporal and spatial dynamics of

resting-state FC consistently achieved substantially higher classification

performance than classifiers based on static connectivity characteriza-

tions. SVMs were trained using three distinct schemes: Analysis 1

exhaustive evaluation of classification performance across all possible

feature combinations; Analysis 2 selection of a single set of discrimina-

tory features, followed by training and evaluation using cross-

validation; and, Analysis 3 nested cross-validation. Analysis 1 enabled

evaluation of average classification performance, independent of a fea-

ture selection heuristic, whereas Analyses 2 and 3 quantified classifier

generalizability.

3.1 | Functional connectivity analyses

Figure 3 shows the distribution of functional connectivity across voxels

for two representative subjects (control and patient), in the case of the

dorsal default mode network (dDMN). For Class III (Figure 3a,b), func-

tional connectivity measurements across voxels of this network are

approximately Gaussian distributed, with truncated left tail, indicating

relative scarcity of negative correlation coefficients. In contrast, for

Class IV (Figure 3c–f), functional connectivity values are distributed

more uniformly (i.e., increased kurtosis, heavier tails), although the dis-

tribution remains positively skewed. The distributions are more uniform

for Class IV because fewer degrees of freedom (i.e., fewer time sam-

ples) were used to compute functional connectivity within each sliding

window, resulting in increased dispersion in correlation coefficient esti-

mates. Supporting Information Figure S2 shows the distribution of

functional connectivity values for the auditory network, where similar

differences appear between Classes III and IV.

Supplementary Information includes two videos that characterize

the spatio-temporal dynamics of the dDMN for a representative control

subject (Video S1) as well as a patient (Video S2). In these videos, the

plot that evolves as a function of time is the number of voxels within

each sliding window with a functional connectivity value exceeding 0.3.

The topography of the corresponding voxels is also shown for an axial

slice. The videos show the contraction/expansion of the spatial extent

of regions comprising the dDMN as a function of time. The improve-

ment in single-subject prediction is achieved by taking into account the

dynamics of this regional contraction/expansion, as quantified by the

distribution of functional connectivity values across voxels of the net-

work. By comparing these two videos, a qualitative observation can be

made that there are fewer correlated voxels in the patient dDMN on

average (Video S2), and there are relatively more fluctuations between

high and low connected states, compared to that in control subject

(Video S1).

3.2 | Classification performance

Figure 4 shows the distribution of classification accuracy, sensitivity,

specificity and AUC across the 21421 different combinations of RSNs

(Analysis 1), evaluated on Dataset 1. A separate boxplot is shown for

each class of FC. For Class I, mean classification accuracy (average

across all possible network combinations) was 72.5%. For Class II and

Class III, mean accuracy was 77.3% and 77.5%, respectively. Class IV

yielded the highest mean accuracy (86.3%), providing an improvement

of �14% compared to Class I. This indicates that dynamic FC analyses

(Classes II, III, and IV) provide improved classification accuracy com-

pared to static FC (Class I); in particular, Class IV, which captures

dynamics in both spatial and temporal domains, provided the most

accurate classification performance.

Table 3 shows the combinations of networks that were found with

Analysis 1 to provide the maximum predictive power for each of the four

different classes. These represent the optimal combinations from a total

of 16,383 possible network combinations. Interestingly, the BGN is the

only network to feature across all three dynamic classes, but the static

functional connectivity of this network was not advantageous to Class I.

This suggests that the spatio-temporal dynamics of the BGN are particu-

larly valuable in improving single-subject prediction of schizophrenia diag-

nosis. It can also be seen that visual networks, either pVIS, hVIS or both

consistently feature in most of the cases, and thus both static and

dynamic connectivity attributes of the visual system appear to be impor-

tant to single-subject prediction. Despite prevalent implication of the

DMN in schizophrenia pathophysiology (Garrity et al., 2007; Bluhm et al.,
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2.6 | Effect of varying window length, neighborhood,

scrubbing, and seed regions

The choice of window length, seed region and neighborhood size are

rather subjective, and thus we evaluated the sensitivity of classification

performance to variations in these key parameters. For reasons of com-

putational tractability, these sensitivity analyses were performed with

respect to Analysis 2. The window length was varied from two TR

points (4 s) to 234 TR points (7.8 min, the static case for Dataset 1).

A new classifier was trained for each window length using the top-100

features selected according to the scheme described in Analysis 2 (Sec-

tion 2.5). Classifier performance was then plotted as a function of win-

dow length for both the dynamic-in-time classes (Class II and IV). The

same process was used to evaluate the impact of variation in neighbor-

hood size, where size varied from 0 mm (no neighboring voxels) to

10 mm. Variation in neighborhood size was only relevant to Classes III

and IV, where the spatial extent of each region was permitted to

shrink/grow within its neighborhood.

Finally, Analysis 2 was performed with and without high-motion

volumes censored (scrubbing), to evaluate the impact of motion correc-

tion on classifier performance. Previously, it has been shown that the

networks defined via seed-based correlation are dependent on the

choice of seed location (Cole, Smith, & Beckmann, 2010; Sohn et al.,

2015). Hence, we repeated our Analysis 2 with a different set of seed

locations chosen from the network templates (Shirer et al., 2012); these

regions are reported in Supporting Information Figure S1.

3 | RESULTS

Four different classes of static and dynamic FC were inferred from

resting-state fMRI data acquired in schizophrenia patients and healthy

controls. We independently trained a SVM for each class of FC to per-

form single-subject prediction of diagnostic status. As detailed below,

classifiers incorporating both the temporal and spatial dynamics of

resting-state FC consistently achieved substantially higher classification

performance than classifiers based on static connectivity characteriza-

tions. SVMs were trained using three distinct schemes: Analysis 1

exhaustive evaluation of classification performance across all possible

feature combinations; Analysis 2 selection of a single set of discrimina-

tory features, followed by training and evaluation using cross-

validation; and, Analysis 3 nested cross-validation. Analysis 1 enabled

evaluation of average classification performance, independent of a fea-

ture selection heuristic, whereas Analyses 2 and 3 quantified classifier

generalizability.

3.1 | Functional connectivity analyses

Figure 3 shows the distribution of functional connectivity across voxels

for two representative subjects (control and patient), in the case of the

dorsal default mode network (dDMN). For Class III (Figure 3a,b), func-

tional connectivity measurements across voxels of this network are

approximately Gaussian distributed, with truncated left tail, indicating

relative scarcity of negative correlation coefficients. In contrast, for

Class IV (Figure 3c–f), functional connectivity values are distributed

more uniformly (i.e., increased kurtosis, heavier tails), although the dis-

tribution remains positively skewed. The distributions are more uniform

for Class IV because fewer degrees of freedom (i.e., fewer time sam-

ples) were used to compute functional connectivity within each sliding

window, resulting in increased dispersion in correlation coefficient esti-

mates. Supporting Information Figure S2 shows the distribution of

functional connectivity values for the auditory network, where similar

differences appear between Classes III and IV.

Supplementary Information includes two videos that characterize

the spatio-temporal dynamics of the dDMN for a representative control

subject (Video S1) as well as a patient (Video S2). In these videos, the

plot that evolves as a function of time is the number of voxels within

each sliding window with a functional connectivity value exceeding 0.3.

The topography of the corresponding voxels is also shown for an axial

slice. The videos show the contraction/expansion of the spatial extent

of regions comprising the dDMN as a function of time. The improve-

ment in single-subject prediction is achieved by taking into account the

dynamics of this regional contraction/expansion, as quantified by the

distribution of functional connectivity values across voxels of the net-

work. By comparing these two videos, a qualitative observation can be

made that there are fewer correlated voxels in the patient dDMN on

average (Video S2), and there are relatively more fluctuations between

high and low connected states, compared to that in control subject

(Video S1).

3.2 | Classification performance

Figure 4 shows the distribution of classification accuracy, sensitivity,

specificity and AUC across the 21421 different combinations of RSNs

(Analysis 1), evaluated on Dataset 1. A separate boxplot is shown for

each class of FC. For Class I, mean classification accuracy (average

across all possible network combinations) was 72.5%. For Class II and

Class III, mean accuracy was 77.3% and 77.5%, respectively. Class IV

yielded the highest mean accuracy (86.3%), providing an improvement

of �14% compared to Class I. This indicates that dynamic FC analyses

(Classes II, III, and IV) provide improved classification accuracy com-

pared to static FC (Class I); in particular, Class IV, which captures

dynamics in both spatial and temporal domains, provided the most

accurate classification performance.

Table 3 shows the combinations of networks that were found with

Analysis 1 to provide the maximum predictive power for each of the four

different classes. These represent the optimal combinations from a total

of 16,383 possible network combinations. Interestingly, the BGN is the

only network to feature across all three dynamic classes, but the static

functional connectivity of this network was not advantageous to Class I.

This suggests that the spatio-temporal dynamics of the BGN are particu-

larly valuable in improving single-subject prediction of schizophrenia diag-

nosis. It can also be seen that visual networks, either pVIS, hVIS or both

consistently feature in most of the cases, and thus both static and

dynamic connectivity attributes of the visual system appear to be impor-

tant to single-subject prediction. Despite prevalent implication of the

DMN in schizophrenia pathophysiology (Garrity et al., 2007; Bluhm et al.,
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FIGURE 3 Distribution of correlation coefficients for the dorsal default mode network (dDMN) for two representative subjects (#1 is a
control and #2 is a patient). (a and b) – Histograms of correlations corresponding to Class III; (c and d) – Histograms from a few of the
sliding windows corresponding to Class IV; (e and f) – Average of histograms across all sliding windows with error bars representing the
standard deviations of bin heights. These histograms were calculated via seed-based correlation; the average seed time course was corre-
lated to every voxel in the network as well as a 6 mm neighborhood and a histogram of these correlations was determined. For Class III
(a and b), correlations were defined based on the entire scan duration, whereas for Class IV (c and d), a separate histogram was obtained
from each window [Color figure can be viewed at wileyonlinelibrary.com]
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2007; Zhou et al., 2007; Whitfield-Gabrieli et al., 2009; Jang et al., 2011;

Fornito et al., 2015), this network only features in two of the four classes,

with its spatial dynamics not used in Class III.

According to the measures of sensitivity, specificity and AUC (Fig-

ure 4), Class IV consistently outperformed the other three classes,

while Class I yielded the poorest performance.

Figure 5 shows classification accuracy for the four classes of con-

nectivity when using a feature selection step to identify the features

with the strongest discriminatory power based on a training sample

(Analysis 2) and then training a single classifier based on the selected

features. This is in contrast to Figure 4 (Analysis 1), which shows aver-

age performance across all possible combinations of RSNs. In Figure 5,

classification performance was evaluated for the top-K features, where

K is shown between 10 and 100 in increments of 10. Consistent with

Figure 4 (Analysis 1), Figure 5 indicates that Class IV consistently yields

superior classification performance relative to static FC, as well as the

classes that account for either temporal or spatial dynamics.

In Analysis 3, for each partition of the dataset into test and train-

ing, the top-50 network combinations were identified based on ten-

fold CV on the training data. A separate classifier trained for each of

these combinations was used to evaluate the performance on the test

data and the best performance was noted. This was repeated for 40

different partitions of the dataset and the average of the accuracies

and other measures are as shown in Table 4. In agreement with Analy-

ses 1 and 2, here also, Class IV yielded the highest classification

accuracy.

Figure 6 shows the classification performance of each individual

RSN, in contrast to the previous results that considered combinations

of RSNs. For 13 of the 14 RSNs, it can be seen that incorporating both

spatial and temporal dynamics (Class IV) improved classification per-

formance at the level of individual networks.

3.3 | Analysis of features

In Analysis 2, a group-level comparison was performed to rank features.

Features that significantly differed between the two groups are shown

in Figures 6 and 7. For Class I, this involves correlation strengths

between different nodes, while for Class II, this involves means and

standard deviations of the correlations from different windows. Figure

7 shows connections that are significantly different between the two

groups after correcting for multiple comparisons using false discovery

rate correction (FDR), with an FDR threshold of 0.001. More connec-

tions significantly differed between patients and controls in the

dynamic class of FC (Class II) compared to the static class (Class II).

FIGURE 4 Performance of single-subject prediction of schizophre-
nia diagnosis compared across four functional connectivity classes.
Accuracy, sensitivity, specificity and area under the receiver opera-
tor characteristic curve (AUC) were evaluated for all possible net-
work combinations (Analysis 1). Each box represents the
distribution of these performance measures across 21421 different
combinations of RSNs. Boxplot legend: upper (lower) box
edge 5 25th (75th) percentile; central red line 5 median; dotted
whisker lines: 1.53 interquartile length; outliers indicated by red
“1”. Classes are: Class I – Static in both time and space, Class II –
Dynamic in time and static in space, Class III – Static in time and
dynamic in space, Class IV – Dynamic in both time and space. Sig-
nificant differences between classes are indicated by ***(p < .001)
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Combinations of resting-state networks providing maxi-
mum predictive power

FC Class Network combination
Number
of networks

Class I AUD, hVIS, LAN, pVIS, SMN, and VSN 6

Class II AUD, BGN, dDMN, LECN, RECN, SMN,
vDMN, and VSN

8

Class III ASN, BGN, hVIS, LECN, PRE, and SMN 6

Class IV ASN, BGN, dDMN, hVIS, PSN, and pVIS 6

As part of Analysis 1, the predictive power of every possible network
combination (16,383) was evaluated for each of the four classes of FC.
For each class, the combination which provided maximum classification
accuracy is listed. The abbreviations are as per Table 2.
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rate correction (FDR), with an FDR threshold of 0.001. More connec-
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dynamic class of FC (Class II) compared to the static class (Class II).
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tor characteristic curve (AUC) were evaluated for all possible net-
work combinations (Analysis 1). Each box represents the
distribution of these performance measures across 21421 different
combinations of RSNs. Boxplot legend: upper (lower) box
edge 5 25th (75th) percentile; central red line 5 median; dotted
whisker lines: 1.53 interquartile length; outliers indicated by red
“1”. Classes are: Class I – Static in both time and space, Class II –
Dynamic in time and static in space, Class III – Static in time and
dynamic in space, Class IV – Dynamic in both time and space. Sig-
nificant differences between classes are indicated by ***(p < .001)
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TABLE 3 Combinations of resting-state networks providing maxi-
mum predictive power

FC Class Network combination
Number
of networks

Class I AUD, hVIS, LAN, pVIS, SMN, and VSN 6

Class II AUD, BGN, dDMN, LECN, RECN, SMN,
vDMN, and VSN

8

Class III ASN, BGN, hVIS, LECN, PRE, and SMN 6

Class IV ASN, BGN, dDMN, hVIS, PSN, and pVIS 6

As part of Analysis 1, the predictive power of every possible network
combination (16,383) was evaluated for each of the four classes of FC.
For each class, the combination which provided maximum classification
accuracy is listed. The abbreviations are as per Table 2.
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For Class III, the features are 20 histogram bins for each of the net-

work. These were compared across the group to identify those bin

heights that were significantly different (p < .05) between the groups.

For Class IV, both means and standard deviations of histogram bins

were compared. These comparisons were performed for every net-

work; Figure 8 demonstrates the specific case of dDMN, where group

level averages of each feature are shown. Figure 8a stands for Class III;

Figure 8b shows the group averages of means of bins and Figure 8c

shows the averages of standard deviations of each bin. For the control

group, there were significantly more voxels in many of the positive cor-

relation bins, whereas in patients, negative correlations were more

dominant. Again, the dynamic case (Class IV) had a greater number of

significantly different bins compared to the static case (Class III). While

only the case of dDMN is presented here, a similar trend was observed

in the case of other RSNs as well.

3.4 | Validation of results

Results from Analysis 1 applied to the validation dataset (Dataset 2) are

shown in Figure 9. While classification accuracies for all classes are

generally reduced in the validation dataset, it is evident that Class IV

once again provides the greatest classification accuracy.

3.5 | Varying window length, neighborhood and seed

regions

The effect of varying window length for the cases with dynamic tem-

poral FC (Classes II and IV) in Analysis 2 is depicted in Supporting

Information Figure S3. It is observed that for a wide range of window

lengths from 10 to 70 TRs (20–140 s), the performance of the classi-

fier is robust, whereas the accuracy decreases for window lengths

above and below this range. Supporting Information Figure S4

delineates the effect of varying neighborhood levels on the classifier

performance under Analysis 2. Incorporating a neighborhood of 2–

6 mm is shown to increase (by �6%) the classification accuracy com-

pared to not considering any neighborhood voxels. Varying the

extent of the neighborhood to 10 mm did not significantly affect

classifier performance.

When scrubbing was performed to correct for head motion, classi-

fication accuracies remained largely unchanged for all FC classes (Sup-

porting Information Figure S5, Analysis 2). Scrubbing resulted in an

overall slight improvement in classification accuracy, while the relative

differences between the four classes were preserved. This suggests

that intra-scan head micro-movements are unlikely to account for the

substantially improved performance achieved with dynamic classes of

FC. Repeating Analysis 1 for an alternative set of seed regions indi-

cated that classifier performance was insensitive to seed region choice

(Supporting Information Figures S1 and S6).

FIGURE 5 Classification performance evaluated as a function of the number of features selected (Analysis 2). Performance was evaluated
independently across four functional connectivity classes. Rather than exhaustively evaluating all network combinations (Analysis 1), a

feature selection step was first performed to identify the top-K features and then a classifier was independently trained for each class of
FC. Feature selection was performed as described in Analysis 2 (Section 2.5). The error bars show the SDs of accuracies across 30 different
partitions of the data into training and test samples [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Classification performance evaluated using Analysis 3.
60% of data was used to build classifiers, which was then used to
classify the remaining data

FC
Class

Accuracya

(%)
Sensitivitya

(%)
Specificitya

(%) AUCa

Class I 79.5 6 5.5 86.8 6 8.9 78.6 6 9.2 0.74 6 0.06

Class II 84.5 6 5.4 85.7 6 7.9 84.0 6 7.9 0.81 6 0.08

Class III 86.2 6 5.3 85.2 6 8.0 87.5 6 8.6 0.83 6 0.07

Class IV 91.1 6 4.3 90.0 6 7.4 92.2 6 6.5 0. 87 6 0.07

Mean 6 SD of performance measures were calculated over classifica-
tions using 30 different partitions of dataset.
Abbreviation: AUC, area under the receiver operating characteristic
curve.
aMeasures are significantly different between any two classes of FC
compared, with p < .001.
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4 | DISCUSSION

Single-subject prediction of diagnosis, illness outcome and treatment

response is important to clinical decision-making in psychiatry and neu-

rology. While non-invasive neuroimaging has long been foreshadowed

as a technology to enable optimization of individualized care, this

potential has yet to be realized in clinical practice, primarily due to the

lack of accurate and reliable predictive biomarkers. The development

of reliable neuroimaging biomarkers that provide high predictive value

at the single-subject level is therefore crucial to enable the field of psy-

chiatry to progress to an era of precision medicine.

Here, we focussed on developing reliable and accurate machine

classifiers to predict the diagnosis of schizophrenia in individuals based

on their resting-state fMRI scan. We demonstrated that the prediction

of diagnostic status can be substantially improved by modeling the

dynamic properties of FC within key resting-state networks. In particu-

lar, we were able to reliably predict diagnostic status with accuracy

exceeding 90% when both temporal and spatial dynamics of FC were

taken into account by the machine classifier (Class IV). In contrast,

when only static measures of FC were utilized by the classifier, accu-

racy plummeted to below 80% (Class I).

These findings draw attention to the utility of characterizing both

the temporal and spatial dynamics of resting-state FC in schizophrenia.

The dynamics of FC are classically construed and analyzed as statistical

dependencies that unfold in time (Hutchison et al., 2013a). A novel con-

tribution of this study is to provide a methodology to enable mapping

FC dynamics that unfold in space and time, such that the spatial extent

of each region is permitted to shrink/grow within a local neighborhood.

It is common practice in FC studies to define regions of interest either

using atlases, functional parcellations or in a meta-analytical manner in

which a spherical ROI is defined around the peak activation coordi-

nates, followed by averaging the time courses from all voxels in the

ROI to obtain a representative time course for the ROI. Both this

approach and alternative ICA based methods impart a fixed spatial lay-

out on the RSNs. In contrast, we developed a simple methodology to

accommodate spatial variability in FC.

The importance of characterizing variability in the spatial layout of

resting-state functional networks has been indicated in a few recent

studies. In particular, Gopal and colleagues (2015, 2016) report differ-

ences in the spatial layout of RSNs between healthy controls and schiz-

ophrenia patients, but this study did not characterize spatial dynamics

that unfold over time. Furthermore, Kiviniemi and colleagues (2011)

used a combination of temporal sliding-window and ICA in healthy sub-

jects to provide evidence for dynamic variations in the spatial topology

of the default mode network. Ma and colleagues (2014) extended this

ICA approach to study spatio-temporal variations in RSNs between

healthy individuals and schizophrenia patients. However, none of these

studies consider single-subject prediction of diagnostic status and they

mandate an underlying assumption of spatial independence among

networks.

Our findings also provide novel evidence against recent claims sug-

gesting that dynamic properties of resting-state FC are largely attribut-

able to sampling error and/or head motion (Laumann et al., 2016). We

calculated the average of FD over time for all subjects and these mean

values were then compared between the patient and control groups

via two-sample t-test; the differences were not significantly different

(p > .1). Given this fact, the spatio-temporal FC dynamics that we have

found to improve prediction performance are unlikely to represent a

trivial characterization of head motion. In addition, despite rigorous cor-

rection for intra-scan head motion, we found that modeling spatial and

temporal dynamics in FC resulted in significant improvements in classi-

fication accuracy compared to a static characterization. Indeed, the

improvement in classification performance achieved with the inclusion

of dynamic properties increased slightly when data scrubbing was

employed to correct for head motion. While contention remains about

the core definition and neural origins of dynamic FC (Liegeois et al.,

FIGURE 6 Classification accuracy achieved with individual networks. All 14 networks (as described in Section 2.3) were considered one at
a time and with the features from the chosen network, a classifier was trained under 10-fold CV. The classification accuracies are shown
for the four classes (Section 2.4) of FC. Each bar represents the mean of the accuracies obtained from 30 independent runs of 10-fold CV
and the error bar shows the SD [Color figure can be viewed at wileyonlinelibrary.com]
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2017), our findings provide a practical and clinically relevant demon-

stration of the utility in modeling spatial and temporal FC dynamics

with a simple sliding-window approach.

Identifying the specific dynamic properties of resting-state FC that

enhanced classification performance is an important line of inquiry.

Comparing features between the two groups revealed that the

dynamic cases are characterized by a larger number of features that

are significantly different. In particular, for Class I, the connections of

the frontal lobe regions to other parts of the brain were not signifi-

cantly different between the patient and control groups (Figure 7a),

whereas in Class II, several of these connections appeared to be signifi-

cantly different (Figure 7b). Similarly, comparisons of Class III and IV

reveal that there are more significantly different bins in the dynamic

case (Figure 8a,b) and for many of the bins, the variability of bin heights

is significantly greater in the patient group (Figure 8c). This indicates

lesser integration in networks and more diversity of connections for

the patient group. Supporting Information Figures S7 and S8 show the

distribution of functional connectivity values across voxels for each

network, for Classes III and IV respectively, in the case of a representa-

tive subject. Asterisks indicate correlation bins that comprise the top-

10 most predictive features. For Class III, the majority of features com-

prised the RECN network (5 of top-10), whereas for Class IV, the

majority comprised the hVIS network (6 of top-10). This suggests that

the spatial dynamics of the RECN network are particularly informative,

but when spatial and temporal dynamics are considered jointly, the

hVIS network provides the greatest predictive power. Interestingly,

many of the top-10 features of Class IV were the standard deviations

of bin heights across the sliding windows, implying the significance of

FIGURE 7 Static and dynamic connections those are significantly different between control and patient groups. (a) Connections that are
significantly different for Class I: Static in space and time. (b) Connections for which mean strength is significantly different for Class II:
Static in space and dynamic in time. (c) Connections for which variability is significantly different for Class II. Compared to Class I, Class II
comprises more connections that are significantly different between the two groups. Purple spheres represent the network nodes, with the
size of each sphere scaled according to the spatial volume of the corresponding node. The colour and thickness of each connection
represents the t statistic, as per the color bars. s.d. – standard deviation. BrainNet Viewer (Xia, Wang, & He, 2013) was used to visualize
these connections [Color figure can be viewed at wileyonlinelibrary.com]
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the temporal variability in connections. The increased temporal variabil-

ity in network connections for the patient group (Figure 8c), especially

in visual and auditory networks, has previously been reported to be

potentially endophenotypic to schizophrenia (Li et al., 2017), due to the

lack of sensory gating (Freedman et al., 1987; Mayer et al., 2009).

While the difference in correlation distribution of RSNs is a new

observation, it is in line with the theory of “dysconnectivity” among

brain regions in schizophrenia (Friston & Frith, 1995; Friston 1999),

which has consistently been supported by evidence from studies using

multiple imaging modalities (Kim et al., 2003; Calhoun et al., 2006;

Zalesky et al., 2011; Ganella et al., 2016). Our observation of more vox-

els remaining negatively connected in patient group would present as a

reduction in FC in the case of fixed region analysis (equivalent to taking

average correlation among voxels), as reported in Classes I and II, and

in previous studies (Lynall et al., 2010; Nelson, Bassett, Camchong,

Bullmore, & Lim, 2017). However, this averaging reduces classification

accuracy from 91.1% (Class IV) to 84.5% (Class II, dynamic in time case)

and further to 79.5% (Class I, static in time case), as listed in Table 4. In

addition, we have provided new insights into aberrant spatio-temporal

FC dynamics in schizophrenia, which build on previous studies that

exclusively investigate static FC in the disorder (Liang et al., 2006; Kim

et al., 2005; Zhou et al., 2007; Bluhm et al., 2007).

It is worth mentioning that by definition, Classes I and II consider

both intra and inter-network dynamics whereas Classes III and IV incor-

porate only intra-network dynamics. Previously, many studies on tem-

poral dynamic FC have analyzed between-network interactions in

schizophrenia. Damaraju et al. (2014) reported hyperconnectivity

between thalamic and sensory networks in patients; Su et al. (2016)

observed hypoconnectivity among default mode occipital and cingulo-

opercular networks; whereas Rashid et al. (2014) reported both hyper

and hypoconnectivities among different RSNs. On the other hand,

within-network dynamics have been studied to a lesser extent; Du

et al. (2016) reported reduced interactions among default mode sub-

networks in the case of schizophrenia patients. We also have observed

the same (Figure 8b,c) in addition to reporting such dynamics in other

networks as well.

Due to the inherent differences in class definitions (Sections 2.4

and 2.5), the total number of features differed between classes. Specifi-

cally, the maximum possible number of features for Class I–IV was

4005, 8010, 280, and 560, respectively. Despite an augmented feature

space that comprised both intra- and inter-network dynamics, Class I

and II did not provide superior performance. In general, classifier per-

formance does not necessarily increase with feature space cardinality

(Domingos, 2012) and in fact, here we found that the class with the

least number of features (Class IV) performed best in all analyses. Fur-

thermore, when the four classes were forced to comprise the same

number of features (Analysis 2, top-K features for all classes), Class IV

remained optimal. This suggests that the unique attributes of intra-

network spatio-temporal FC dynamics underlie the improvement in

prediction accuracy, but not the number of features. Performance may

potentially be improved by additionally considering the spatial dynam-

ics of inter-network interactions.

While the relative differences in classification performance

between the four FC classes were largely preserved in an independent

dataset, performance was overall reduced (Figure 9). This reduction in

classifier performance might be due to one or more differences

between the two datasets: Dataset 1 comprised more subjects

(N 5 82), whereas Dataset 2 had only 27 subjects; this may induce

truncation errors in performance measures. Also, Dataset 1 was of a

higher spatial resolution than Dataset 2 and was acquired at a higher

field strength, both of which impact on the signal-to-noise ratio of

measured time courses. Another consideration is that the datasets

comprise schizophrenia patients with distinct clinical characteristics;

namely, Dataset 1 comprised only TRS patients, while patients in Data-

set 2 were responsive to antipsychotic medication and showed milder

positive and negative symptoms. Out of the differences listed above,

the only one that can be addressed post-acquisition is the difference in

resolutions of the two datasets. To test the influence of resolution, we

down-sampled images from Dataset 1 to 4 mm isotropic resolution and

FIGURE 8 Mean 6 SD histograms at the group level for the
dorsal default mode network (dDMN). (a) Class III: Static in time

and dynamic in space. (b) Class IV: Dynamic in both time and
space, feature5mean. (c) Class IV: feature5 standard deviation.
Yellow: controls, Cyan: patients. The * indicates bins that are
significantly different (p < .05) in height between the two groups
(two-sample t test) [Color figure can be viewed at
wileyonlinelibrary.com]
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the temporal variability in connections. The increased temporal variabil-

ity in network connections for the patient group (Figure 8c), especially
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els remaining negatively connected in patient group would present as a
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FC dynamics in schizophrenia, which build on previous studies that

exclusively investigate static FC in the disorder (Liang et al., 2006; Kim

et al., 2005; Zhou et al., 2007; Bluhm et al., 2007).

It is worth mentioning that by definition, Classes I and II consider
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within-network dynamics have been studied to a lesser extent; Du

et al. (2016) reported reduced interactions among default mode sub-

networks in the case of schizophrenia patients. We also have observed

the same (Figure 8b,c) in addition to reporting such dynamics in other

networks as well.

Due to the inherent differences in class definitions (Sections 2.4

and 2.5), the total number of features differed between classes. Specifi-

cally, the maximum possible number of features for Class I–IV was

4005, 8010, 280, and 560, respectively. Despite an augmented feature

space that comprised both intra- and inter-network dynamics, Class I

and II did not provide superior performance. In general, classifier per-

formance does not necessarily increase with feature space cardinality

(Domingos, 2012) and in fact, here we found that the class with the

least number of features (Class IV) performed best in all analyses. Fur-

thermore, when the four classes were forced to comprise the same

number of features (Analysis 2, top-K features for all classes), Class IV

remained optimal. This suggests that the unique attributes of intra-

network spatio-temporal FC dynamics underlie the improvement in

prediction accuracy, but not the number of features. Performance may

potentially be improved by additionally considering the spatial dynam-

ics of inter-network interactions.

While the relative differences in classification performance

between the four FC classes were largely preserved in an independent

dataset, performance was overall reduced (Figure 9). This reduction in

classifier performance might be due to one or more differences

between the two datasets: Dataset 1 comprised more subjects

(N 5 82), whereas Dataset 2 had only 27 subjects; this may induce

truncation errors in performance measures. Also, Dataset 1 was of a

higher spatial resolution than Dataset 2 and was acquired at a higher

field strength, both of which impact on the signal-to-noise ratio of

measured time courses. Another consideration is that the datasets

comprise schizophrenia patients with distinct clinical characteristics;

namely, Dataset 1 comprised only TRS patients, while patients in Data-

set 2 were responsive to antipsychotic medication and showed milder

positive and negative symptoms. Out of the differences listed above,

the only one that can be addressed post-acquisition is the difference in

resolutions of the two datasets. To test the influence of resolution, we

down-sampled images from Dataset 1 to 4 mm isotropic resolution and

FIGURE 8 Mean 6 SD histograms at the group level for the
dorsal default mode network (dDMN). (a) Class III: Static in time

and dynamic in space. (b) Class IV: Dynamic in both time and
space, feature5mean. (c) Class IV: feature5 standard deviation.
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(two-sample t test) [Color figure can be viewed at
wileyonlinelibrary.com]
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performed Analysis 1. We found that down-sampling voxel resolution

did not worsen classification performance by more than �4%.

While we have developed a new method to evaluate both spatial

and temporal dynamics of connectivity and shown that this method pro-

vides more disease-specific information compared to other FC analyses,

there are a few methodological limitations that warrant further research.

Firstly, we define RSNs based on templates from a previous study (Shirer

et al., 2012) and have not investigated other modes of network defini-

tion. Secondly, the influence of medication on classifier performance is

unknown. All the patients were diagnosed with schizophrenia and medi-

cated for several years, which is a potential confound. Physiological con-

founds or the effects of antipsychotic medication can potentially impact

resting-state FC dynamics, and thereby impact classifier performance.

Thirdly, the possibility of intra-scan sleep cannot be excluded. As shown

previously (Tagliazucchi & Laufs, 2014), sleep can influence resting state

dynamics. In the present study, participants were given detailed instruc-

tions to stay awake; beyond that, no measures had been employed to

identify or control any potential effects of sleep.

Methodologically, we employed a sliding window of fixed duration

to assess temporal fluctuations in connection strengths. Interactions

among different brain regions can have different durations at different

times; therefore the approach of a fixed window length may not be

optimal in capturing these variations. Despite the criticism leveled at

the sliding window method (Hindriks et al., 2016; Lindquist, Xu, Nebel,

& Caffo, 2014), in line with many other studies (Jin et al., 2017; Damar-

aju et al., 2014; Price et al., 2014), we have shown that this method

can be effective in delineating disease states. For Analysis 2, feature

selection was performed by ranking features according to t statistic

magnitude. This could have resulted in the selection of correlated and

thus redundant features. Multivariate feature selection heuristics such

as minimum-redundancy-maximum-relevance (MRMR) can alleviate

this problem (Ding & Peng, 2005) and potentially improve classification

performance.

5 | CONCLUSION

We have demonstrated that characterizing the dynamics of resting-

state FC in both time and space can provide substantially improved

single-subject prediction of schizophrenia diagnosis compared to con-

ventional static characterizations of FC. Our novel methodology

involves jointly mapping temporal and spatial dynamics in FC and com-

bines sliding-window and seed-based correlation analyses. Our findings

provide complementary evidence that suggests dynamic fluctuations in

resting-state connectivity are of clinical utility and cannot be trivially

ascribed to sampling variability and/or intra-scan head movement.

Rather than employing carefully constructed null models to address the

vexed question of whether FC is dynamic and non-stationary (Hindriks

et al., 2016; Laumann et al., 2016; Liegeois et al., 2017), we have

explicitly demonstrated that spatio-temporal dynamics in the resting

state can effectively characterize disease pathology in a serious psychi-

atric disorder. Our work establishes the utility of studying spatio-

temporal dynamics in resting-state fMRI, at least in psychiatric disor-

ders, irrespective of whether these dynamics satisfy statistical tests of

non-stationarity.
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