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Abstract
Neural circuit dysfunction underlies the biological mechanisms of suicidal ideation (SI). However,

little is known about how the brain’s “dynome” differentiate between depressed patients with and

without SI. This study included depressed patients (n548) with SI, without SI (NSI), and healthy

controls (HC, n530). All participants underwent resting-state functional magnetic resonance imag-

ing. We constructed dynamic and static connectomics on 200 nodes using a sliding window and

full-length time–series correlations, respectively. Specifically, the temporal variability of dynamic

connectomic was quantified using the variance of topological properties across sliding window.

The overall topological properties of both static and dynamic connectomics further differentiated

between SI and NSI, and also predicted the severity of SI. The SI showed decreased overall topo-

logical properties of static connectomic relative to the HC. The SI exhibited increases in overall

topological properties with regard to the dynamic connectomic when compared with the HC and

the NSI. Importantly, combining the overall topological properties of dynamic and static connec-

tomics yielded mean 75% accuracy (all p< .001) with mean 71% sensitivity and mean 75%

specificity in differentiating between SI and NSI. Moreover, these features may predict the severity

of SI (mean r5 .55, all p< .05). The findings revealed that combining static and dynamic connec-

tomics could differentiate between SI and NSI, offering new insight into the physiopathological

mechanisms underlying SI. Furthermore, combining the brain’s connectome and dynome may be

considered a neuromarker for diagnostic and predictive models in the study of SI.
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1 | INTRODUCTION

Sixteen percent of patients with major depressive disorder (MDD) have

attempted suicide at least once during their lifetime (Brådvik, Mattis-

son, Bogren, & Nettelbladt, 2008). MDD patients with suicidal ideation

(SI) are particularly predisposed to suicide attempts or suicidal behav-

iors (Pfaff & & Almeida, 2004). Thus, SI can be considered as the first

step on the pathway to suicide (Klonsky & May, 2014). As such, it is

critical to gain a more thorough understanding of the underlying neural

circuity to diminish the risks posed by SI.

Multimodal neuroimaging studies revealed brain morphometric

and functional abnormalities in MDD with suicide attempts. The

accumulated evidence suggested that the fronto-striato-limbic circuitry

(Johnston et al., 2017; Wagner et al., 2011)—which included the stria-

tum dorsolateral, orbitomedial prefrontal and anterior cingulate corti-

ces, amygdala, and hippocampus—was implicated in the neurobiology

of those who attempted suicide (Cox Lippard, Johnston, & Blumberg,

2014; van Heeringen, Bijttebier, & Godfrin, 2011; van Heeringen, Bijt-

tebier, Desmyter, Vervaet, & Baeken, 2014; Zhang, Chen, Jia, & Gong,

2014). However, few studies have focused on MDD with SI. The verbal

fluency task-related functional near-infrared spectroscopy study sug-

gested that depressed patients with SI showed reduced hemodynamic

activation in the prefrontal and temporal cortices compared to healthy

controls (Pu et al., 2015). Moreover, depressed patients with SI showed
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a reduction in the severity of SI following ketamine infusion. Such

reductions in SI severity were correlated with decreased regional cere-

bral glucose metabolism in the infralimbic cortex (Ballard et al., 2015).

These neuroimaging findings have recently demonstrated that SI is

meidated by neurobiological processes within separate brain regions

(Fried & Nesse, 2015). However, the question pertaining to whether

MDD with and without SI indicates alterations of topological properties

with regard to the underlying functional connectivity and connectomics

remains largely unknown (Serafini, Pardini, Pompili, Girardi, & Amore,

2016).

With regard to brain disorders, the evolving domain of human con-

nectomics recently considered the whole brain as a set of an anatomi-

cally and/or functionally interconnected network as opposed to

distinct units (Fornito, Bullmore, & Zalesky, 2017). MDD patients evi-

denced alterations in the topological properties of large-scale brain

connectomics (Korgaonkar, Fornito, Williams, & Grieve, 2014; Zhang

et al., 2011a). Thus, these disrupted system-level pathologic networks

provide an integrative perspective on the pathophysiological mecha-

nisms and potentially valuable neuromarkers for early detection and

risk assessment in cases of depression. Recently, resting-state (absence

of the stimulus) functional magnetic resonance imaging (fMRI) studies

have reported that depressed patients with SI exhibited disrupted func-

tional connectivity between the rostral anterior cingulate cortex and

orbitomedial prefrontal cortex, that is, brain regions associated with

decision-making and emotional processing in SI (Du et al., 2017). In

addition to the aforementioned seed-based analysis of functional con-

nectivity, recent functional connectomic study suggested that MDD

with SI is characterized by decreased functional connectivity in the

orbitofrontal-thalamic circuits (Kim et al., 2017b). Moreover, an ana-

tomical connectomic study suggested that MDD with SI was associated

with a reduction of the anatomical connectivity in frontal–subcortical

circuits (Myung et al., 2016). Both studies outlined earlier have more

recently examined connectivity as fundamental property of brain con-

nectomic. While considering the advantages of brain connectomics in

terms of topological properties, the current study utilized system-level

pathological connectomic detection to examine different patterns of

functional connectomics, particularly with regard to the topological

properties in MDD patients with and without SI.

Conventional functional connectomic assumes that functional con-

nectivity remains stationary throughout the entire duration of the fMRI

scan. Moreover, functional connectivity is dynamic and associated with

ongoing rhythmic activity, rather than remaining stationary over time

(Allen et al., 2014). Emerging methods recognize the dynamics of con-

nectivity and/or the dynamics of networks, which can be investigated

by measuring the variability of characteristics including the strength or

spatial dynamic properties (Bassett & Sporns, 2017; Hutchison,

Womelsdorf, Gati, Everling, & Menon, 2013). Further pathophysiologi-

cal studies may elaborate upon an understanding of the brain’s dynome

(Kopell, Gritton, Whittington, & Kramer, 2014). Many psychiatric and

neurological diseases—such as MDD (Kaiser et al., 2016), schizophrenia

(Braun et al., 2016), and epilepsy (Li et al., 2018; Liao et al., 2014b; Liu

et al., 2017)—involve dysfunction of the brain’s dynome. Such collec-

tive studies offer support for the hypothesis that dynamics of networks

are critical to gaining a more thorough understanding of the brain’s bio-

logical configuration.

With regard to the brain’s dynome, the present research proposed

that static and dynamic connectomics may generate diagnostic models

capable of differentiating between MDD patients with and without SI,

and furthermore provide predictive models to indicate the severity of

SI. The researchers examined (i) whether the SI and NSI groups exhibit

different alterations in topological properties of static and dynamic

connectomics relative to healthy controls; (ii) whether these altered

overall topological properties constitute potential neuromarkers for

diagnostic models regarding the classification of SI and NSI groups; and

(iii) whether these altered overall topological properties indicate the

severity of SI and offer a predictive model.

2 | MATERIALS AND METHODS

2.1 | Participants

This study was approved by the Local Medical Ethics Committee of the

First Affiliated Hospital of Chongqing Medical University. Written

informed consent was obtained from all participants. Patients included

a total of 51 drug-naïve MDD patients with only one depressive epi-

sode. The diagnosis of MDD was conducted using a Structured Clinical

Interview from the Diagnostic and Statistical Manual of Mental Disor-

ders (SCID-I/P, Chinese version) with a cutoff score �16 on the 17-

item Hamilton Depression Rating Scale (HAMD). Participants were

excluded if they had (i) neurological or other psychiatric disorders; (ii) a

history of substance, drug or alcohol dependence; (iii) observable brain

abnormalities as evidence using MRI; (iv) metal devices such as elec-

tronic implants; or (v) excessive head movements during the scan.

None of the participants had a history of suicidal, self-harm behaviors,

or suicide attempts during their current depressive episodes.

In addition, healthy controls (HC) comprised 30 participants,

matched for age, gender, and education. These participants had no life-

time psychiatric disorder, no history of neurological disorders, and no

gross abnormalities as confirmed using MRI. Additionally, participants

in the HC group were interviewed to confirm that there was no history

of psychiatric illness among their first-degree relatives. The exclusion

criteria also required that participants have no history of substance,

drug, or alcohol dependence. Following the exclusion of participants

who exhibited excessive head motion, 48 patients and 30 HCs were

included in the final analyses.

2.2 | Assessment of depression and SI

Depression severity was evaluated using the 17-item HAMD scale. The

severity of SI was determined using the Scale for Suicide Ideation (SSI)

(Beck, Kovacs, & Weissman, 1979), a 19-item clinical research instru-

ment designed to quantify the intensity of current conscious suicidal

intent. Item 4 and item 5 were used to estimate participants’ current

suicidal thoughts and to classify the patients according to those who

were currently suicidal (SI group) and those with no suicidal ideation

(NSI group) (Du et al., 2017).
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2.3 | Data acquisition

Functional images were acquired using 3.0 T MRI scanners from GE

Medical Systems (Waukesha, WI) at the First Affiliated Hospital of

Chongqing Medical University. Functional images were obtained using

an echo-planar imaging sequence with the following parameters: repe-

tition time (TR)52,000 ms; echo time530 ms; flip angle5 908; field

of view5240 3 240 mm2; in-plane matrix564 3 64; voxel

size53.75 3 3.75 3 5 mm3; 33 axial slices without slice gap, and a

total of 240 volumes were collected for each participant. All

participants were required to keep their eyes closed without thinking

of anything in particular, to keep the head still, and not to fall asleep

during the resting-state fMRI scanning.

2.4 | Data preprocessing

A schematic of the analyses is shown in Figure 1. Functional images

were preprocessed using the DPARSF (V3.2, www.restfmri.net) and

SPM8 toolkits (www.fil.ion.ucl.ac.uk/spm). The first 10 volumes were

excluded. Slice-timing correction and realignment were applied to

FIGURE 1 A schematic illustration of the analysis approach. The preprocessed resting-state BOLD fMRI time series are extracted using a
functional atlas with 200 nodes. Static connectomic is constructed using a full-length time series (230 TRs, 460 s) for each pair of two nodes.
The topological properties (i.e., network strength, network efficiency, small-worldness, and nodal efficiency) are calculated on series sparsity
thresholded (0.11� sparsity�0.31) weighted matrices for each participant. The area under curve (AUC) of each topological property is com-
puted for subsequent statistical analysis. Dynamic connectomic is constructed using a sliding-window analysis with sliding-window length of
50 TRs (100 s), and shifted with a step size of 5 TRs (10 s). The topological properties (i.e., network strength, network efficiency, small-
worldness, and nodal efficiency) are calculated on series sparsity thresholded (0.11� sparsity�0.31) weighted matrices in each sliding-window
for each participant. The AUC of each network property is computed for each sliding-window. The variance of the AUC is then computed
across 37 sliding-windows for temporal variability of dynamic connectomic for subsequent statistical analysis. The overall topologies of both
static and dynamic connectomics are used as features to distinguish the SI group from the NSI group using support vector machine (SVM) and
to predict the severity of SI group using support vector regression (SVR) [Color figure can be viewed at wileyonlinelibrary.com]
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the remaining volumes. Three out of all 51 participants (i.e., one NSI

and two SI) were excluded as head motion exceeded 2.5 mm of

translation or >2.5 degrees of rotation during the scan. The mean

framewise-displacement (FD) was then calculated for each partici-

pants (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). Func-

tional images were spatially normalized to the Montreal Neurologic

Institute (MNI) space and resampled to 3 3 3 3 3 mm3. To avoid

introducing artificial local spatial correlations between voxels, spatial

smoothing was not applied, as previously suggested (Ji et al., 2017;

Zhang et al., 2011b). Following normalization, several spurious var-

iances—including head motion parameters (Friston 24-parameter

model; Friston, Williams, Howard, Frackowiak, & Turner, 1996), cere-

brospinal fluid signals, white matter signals, and global signals—were

regressed out using multiple linear regression analysis. Subsequently,

linear trends were removed from the time courses. Temporal band-

pass filtering was performed between 0.01 and 0.10 Hz. Finally, as

functional connectivity is sensitive to the confounding factor of

head motion, scrubbing was performed for motion correction to

reduce the negative influence (Power et al., 2012). If the FD

exceeded 0.5 mm, the value of the signal at that point was interpo-

lated using piecewise cubic Hermite (Ji et al., 2015).

2.5 | Construction of static and dynamic networks

2.5.1 | Node definition

To define the brain nodes, gray matter (including cerebral and cerebel-

lar cortices) parcellation was used to delineate 200 network nodes via

a spatially constrained spectral clustering method (Craddock, James,

Holtzheimer, Hu, & Mayberg, 2012) (www.nitrc.org/projects/cluster_

roi/). This approach ensured the same number of voxels in each node,

while optimizing within-cluster similarity and between-cluster

dissimilarity.

2.5.2 | Static functional connectomic construction

The time series were calculated by averaging the signal of all voxels

within each node. Pearson’s correlation coefficients (r) were evaluated

using the full-length time-series of each pair of two nodes. Subse-

quently, a 200 3 200 raw matrix was obtained for each participant.

Network analysis was processed on the basis of a weighted graph.

wij5
jrijj; if jrijj>rthr

0; otherwise
;

(

where wij expresses the weighted edge between the ith node and the

jth node in the graph; rij expresses the raw correlation coefficient

between the ith node and the jth node; rthr represents a predefined cor-

relation threshold.

2.5.3 | Dynamic functional connectomic construction

The dynamic connectomic were calculated using sliding-window analy-

sis in the DynamicBC toolbox (Liao et al., 2014a) (V2.0, www.restfmri.

net/forum/DynamicBC). The “rule of thumb” is that the minimum win-

dow length should be no less than 1/fmin, as short time segments can

introduce spurious fluctuations. According to this rationale, fmin was

deemed the minimum frequency of the time series (Leonardi & Van De

Ville, 2015). Therefore, the final sliding-window length of 50 TRs

(100 s) was selected to optimize the balance between capturing rapidly

shifting dynamic relationships (with shorter windows) and achieving

reliable estimates of the correlations between regions (with longer win-

dows) (Liao et al., 2014b). The full-length time-series was segmented

into sliding windows of 50 TRs (100 s) and shifted with a step size of 5

TRs (10 s). This procedure produced 37 windows for each participant.

For each sliding window, the Pearson’s correlation coefficient (r) matrix

was obtained. Subsequently, 37 raw matrices (200 3 200) were

obtained for each participant. Network analysis was processed on the

basis of a weighted graph that was defined as the same as that for

static connectomic.

2.6 | Network analysis

2.6.1 | Threshold selection

The network comparison needs to be ensured the same number of

edges and nodes (Bullmore & Bassett, 2011). To this end, we applied

the same sparsity levels to the weighted matrix corresponding to each

participant. A sparsity threshold (S) was defined as the ratio of the

existing number of edges divided by the maximum possible number of

edges in a given network at a rthr. Specifically,

0 � S � 15
Erthr

N N21ð Þ=2 ;

where Erthr expresses the existing number of edges generated by

thresholding at rthr, and N N21ð Þ=2 represents the maximum possible

number of edges existing in a given network of N nodes (Bullmore &

Bassett, 2011). In this case, when rthr50, S51; when rthr51, S50. At

present, there is no formal consensus regarding the selection of a single

sparsity threshold. As such, a range of sparsity threshold (S)

(0.11� S�0.31, interval50.01) was preselected as below.

Each participant had one static weighted matrix and 37 dynamic

weighted matrices. The minimal S was defined across all participants as

follows: (i) the mean degree of a node (the number of connections to

the node) over all nodes in thresholded weighted matrices was >2 3

log(N); N expresses the number of nodes, N5200; (ii) the largest com-

ponent size of thresholded weighted matrices was more than N 3

80%5160, where N expresses the number of nodes, N5200. The

maximal S ensured correlation coefficients p< .05 for all thresholded

static and dynamic matrices across all participants.

2.6.2 | Topological properties of static and dynamic

connectomics

The overall and nodal topological properties of both static and dynamic

connectomics were estimated using Gretna software (V1.2.0, www.

nitrc.org/projects/gretna/) (Wang et al., 2015). The overall topologies

included network strength (representing the connectivity capacity of

the entire network), network efficiency (measuring the efficiency of

information exchanges), and small-worldness (processing both segre-

gated/specialized and distributed/integrated information). To explore

the nodal topologies, we evaluated nodal efficiency, which constituted
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an important control regarding information flow. These network topol-

ogies were computed as follows (Rubinov & Sporns, 2010):

2.6.3 | Small-worldness

Sigma5
Cnet=Crandom

Lnet=Lrandom
;

where Cnet of a network expresses the mean weighted correlation

coefficient across all nodes; Lnet of a network represents the mean

weighted shortest path length between all possible node pairs; for each

participant network, a set of 100 comparable random networks with

similar degree sequence and symmetric adjacency matrix were formed;

Crandom and Lrandom were defined as the average weighted clustering

coefficient and weighted path length of the comparable random

networks.

2.6.4 | Network strength

S Gð Þ5 1
N

X
i2G

Si;

where G expresses a network; N represents the number of nodes; i

expresses a node in this network G; and Si constitutes the ith node

strength, which was computed using the sum of weighted correlation

coefficients between the ith node and its links.

2.6.5 | Network efficiency

E Gð Þ5 1
N N21ð Þ

X
i 6¼j; i;j2G

Li;j;

where G expresses a network; N represents the number of nodes; Li,j

expresses the weighted shortest path length between the ith node and

the jth node.

2.6.6 | Nodal efficiency

Enodal Gð Þ5 1
N21

X
i 6¼j; i;j2G

Li;j;

where G represents a network; N expresses the number of nodes; Li,j

represents the weighted shortest path length between the ith node and

the jth node.

For static connectomic, the area under curve (AUC) of each topo-

logical property (i.e., network strength, network efficiency, small-

worldness, and nodal efficiency) was calculated in a series of sparsity

from 0.11 to 0.31 (interval50.01) for each participant. The integrated

AUC property was used in subsequent statistical analysis.

For dynamic connectomic, each participant had 37 weighted matri-

ces corresponding to windows. The AUC of each topological property

was calculated (i.e., network strength, network efficiency, small-

worldness, and nodal efficiency) in a series of sparsity from 0.11 to

0.31 (interval50.01) for each window. The variance of AUC across 37

windows was computed for each participant utilizing the as following

formula (Liao et al., 2014a; Liu, Liao, Xia, & He, 2018; Preti, Bolton, &

Van De Ville, 2017):

P37
win51

AUCwin2AUC
� �2

3721
;

where AUC represents the mean value across 37 windows. Conse-

quently, the variance of the AUC was used to define the temporal vari-

ability of both overall topological properties and nodal efficiency in

dynamic connectomic unless otherwise specified.

2.7 | Classification model

The linear Support Vector Machine (SVM) was selected as the classifier

to classify SI and NSI patients using LIBSVM toolbox (V3.22, www.csie.

ntu.edu.tw/~cjlin/libsvm/). Based on one-way ANCOVA analysis, we

used overall topological properties (AUC of overall topological proper-

ties in static connectomic and the variance of AUC of overall topologi-

cal properties in dynamic connectomic), which showed significant

group differences, to determine the classification features. In an effort

to produce a robust and reliable model, a six-fold cross-validation was

adopted (i.e., each fold involved eight participants) to evaluate classifi-

cation performance (Varoquaux et al., 2017). The dataset was randomly

divided into six folds. Among them, one fold was selected as the testing

set, and the remaining five folds were used as training sets. As the

dataset was imbalanced (28 SI vs 20 NSI), the F1-score was used as a

proxy for classification accuracy to obtain an optimistic estimation

(Goutte & Gaussier, 2005). The F1-score formula was as follows:

F15
2TP

2TP1FP1FN
;

where TP expresses the number of true-positive results; FP expresses

the number of false-positive results; FN expresses the number of false-

negative results.

To assess the statistical significance of accuracy in validation, the

null distribution was obtained by conducting nonparametric permuta-

tion tests (5,000 times). F1-scores were obtained across permutations.

The p value was computed as the number of times the accuracy

obtained from the permuted labels that was equal to or greater than

the value of the estimated accuracy obtained from the true labels, then

divided by the total number of permutations.

To test which overall topological properties showed high classifica-

tion power, we computed the classification weight from the model to

obtain a weight of each overall topological property (i.e., network

strength and network efficiency) for static and dynamic connectomics.

The six-fold cross-validation was then performed 50 times to avoid

bias introduced by fold randomness. Finally, the mean F1-scores across

50 times were considered as representative of the final accuracy. Addi-

tionally, the mean weights across 50 times for each overall topological

property and 50 p values were obtained.

2.8 | Prediction model

To investigate the relationship between altered overall topological

properties and the SI severity, we performed the prediction of SSI

score for each participant in the SI group using linear Support Vector

Regression (SVR). Similarly, overall topological properties were
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considered (the AUC of overall topological properties in static connec-

tomics and the variance of the AUC of overall topological properties in

dynamic connectomics), which showed significant group differences

and constituted features in prediction model. We utilized six-fold

cross-validation methods to develop this prediction model. The dataset

was randomly divided into six folds. Among them, one fold was

selected as the testing set, and the remaining five folds were used as

training sets. For each trail of cross-validation, the predictive SSI score

was obtained for each participant in SI group to determine the correla-

tion coefficient between the real SSI score and predicted SSI score. We

calculated the predictive weight for each overall topological property

(i.e., network strength and network efficiency) for static and dynamic

connectomics. Finally, the six-fold cross-validation was repeated 50

times, thus enabling the researchers to acquire 50 correlation coeffi-

cients and the mean of predictive weights for each overall topological

property (i.e., network strength and network efficiency). In addition, a

correlation analysis was performed between the SSI score and one of

the overall topological properties.

3 | STATISTICAL ANALYSIS

3.1 | Demographic and clinical characteristics

Demographic and clinical characteristics were evaluated among the

three groups. A v2 test was used to compare the gender among the

three groups. Age, education, and mean FD parameters were compared

using one-way ANOVA among the three groups. Illness duration and

the 17-item HAMD were tested using Mann–Whitney U tests (i.e., val-

ues were not obtained from a Gaussian distribution) and two-sample t

tests (i.e., values were obtained from a Gaussian distribution) between

the SI and NSI group, respectively.

3.2 | Edge comparisons

For static connectomic, the weighted connectivity matrix was averaged

(following Fisher r to z transformation) across participants in each group

(HC, NSI, and SI, separately). For visual inspection, we showed static

connectivity matrix (no thresholding) and connectomics

(sparsity50.11) for the three groups.

For dynamic connectomic, 37 weighted matrices were gathered for

each participant. The variance of 37 weighted matrices was computed

(following Fisher r to z transformation) across sliding windows to obtain

the dynamic matrix corresponding to the participant. Subsequently, the

dynamic matrix was averaged for participants in each group (HC, NSI,

and SI, separately). For visual inspection, a dynamic matrix (no thresh-

olding) and connectomics was compiled (sparsity50.11).

To investigate differences in static and dynamic connectomics among

the three groups, a one-way ANCOVAwas performed on the participant’s

weighted static and dynamic matrices (following Fisher r to z transforma-

tion) edge-by-edge. Age, gender, education, and mean FD were included

as covariates. The significance threshold was set at p< .001. The results

were presented on inflated surface maps using BrainNet Viewer (V1.60,

www.nitrc.org/projects/bnv) (Xia, Wang, & He, 2013).

3.3 | Topological properties comparisons

We compared the AUC of overall topological properties of static con-

nectomic and the variance of the AUC of overall topological properties

of dynamic connectomic using a one-way ANCOVA among the three

groups. Age, gender, education, and mean FD were included as covari-

ates. The significance threshold was set at a Bonferroni correction of

p< .05. Similarly, we compared the AUC of nodal efficiency in static

connectomic and the variance of the AUC of nodal efficiency in

dynamic connectomic using a one-way ANCOVA (values obtained

from a Gaussian distribution) or nonparametric Kruskal–Wallis test (val-

ues were not obtained from a Gaussian distribution) among the three

groups (covariates: age, gender, education, and mean FD). We cor-

rected the statistical significance for multiple comparisons using a

false-positive correction (Lynall et al., 2010), which was specific to mul-

tiple exploratory analyses at nodal properties (Fornito, Yoon, Zalesky,

Bullmore, & Carter, 2011; Ji et al., 2017; Liao et al., 2013). Specifically,

the significance threshold was set at p< (1/N), where N5200 corre-

sponded to the number of comparisons. Post hoc comparisons were

then performed using two-sample t tests (values were obtained from a

Gaussian distribution) or nonparametric Mann–Whitney U tests (values

were not obtained from a Gaussian distribution) on topological proper-

ties. We clarified which nodal efficiency statistic was analyzed with

nonparameter statistical tests and the others were parameter statistical

tests unless otherwise specified in the results section. The significance

threshold was set at p< .05, Bonferroni corrected for three times

planned comparisons. Due to the small sample size in each group,

effect size (Cohen’s d) was calculated to reveal group differences in

overall topological properties.

3.4 | Validation analysis

To validate our findings, we carried out auxiliary analyses as follows:

Sliding-window length: Two additional sliding-window lengths were

utilized: 30 TRs (60 s) and 80 TRs (160 s) to estimate the reproducibility

of results.

Split-half: The NSI, SI, and HC groups were divided into two sub-

groups. The differences within both subgroups were tested to evaluate

whether the results were affected by the sample population.

HAMD score regression: Results were reanalyzed by regressing out

HAMD scores to test the difference between the SI and NSI groups

with respect to the variance of the AUC of overall topological proper-

ties (i.e., network strength and network efficiency) in dynamic

connectomic.

4 | RESULTS

4.1 | Demographic and clinical characteristics

The final analysis included data obtained from 48 participants, including

28 SI, 20 NSI, and 30 HCs. No differences in age (p5 .27), education

(p5 .83), gender (p5 .26), or head motion (p5 .54) were found among

the three groups. The results revealed a significant difference in the

HAMD score (p5 .002; Table 1).
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4.2 | Edge comparisons

Static matrices (no thresholding) and connectomics (sparsity50.11)

were compiled for the three groups (Figure 2a). The significant differ-

ent edges among the three groups primarily included connectivity

between the putamen, temporal, and frontal cortices in static

connectomics (Figure 2a, right column). Additionally, dynamic matrices

(no thresholding) and connectomics (sparsity50.11) were compiled for

the three groups (Figure 2b). The different temporal variability of edge

among the three groups mainly included connectivity between the cau-

date nucleus, precuneus, and frontal cortices in dynamic connectomic

(Figure 2b, right column).

TABLE 1 Participant demographic and clinical information

Demographics SI NSI HC Statistical Evaluation

Group size (n) 28 20 30 NA NA

Handedness (left/right) 0/28 0/20 0/30 NA NA

Gender (male/female) 7/21 4/16 12/18 v252.73 p5 .26

Age (years) 32.56 9.9 37.16 10.6 35.76 10.2 F(2,75)51.33 p5 .27

Education (years) 13.36 2.6 13.36 2.4 12.96 3.2 F(2,75)50.19 p5 .83

Illness duration (months) 16.66 20.0 19.26 20.0 N.A. U5272.0 p5 .87

HAMD score 26.06 4.0 22.2 63.8 2.86 1.3 t(46)5 3.38* p5 .002

SSI score 46.56 9.6 06 0 06 0 NA NA

Mean FD 0.096 0.04 0.106 0.06 0.106 0.05 F(2,75)50.63 p5 .54

Note. Abbreviations: FD5 framewise-displacement; HAMD517-item Hamilton Depression Scale; HC5healthy controls; NA5not available;
NSI5major depression disorder patients without suicidal ideation; SI5major depression disorder patients with suicidal ideation; SSI519-item Scale
for Suicide Ideation.
Values are mean6 SD.
p, between-group or among-group test p value; t(df), between-group t statistic and degrees of freedom; F(dfn, dfd), one-way ANOVA test and degrees of
freedom numerator and degrees of freedom denominator. *t statistic between SI and NSI.

FIGURE 2 Comparison of raw regional connectivity among groups. (a) Static connectomic results. (b) Dynamic connectomic results. To
illustrate, the static matrix (no thresholding) and connectomics (sparsity50.11) are depicted for the three groups (the left side of dotted
line). The right side illustrates group differences in connectomics among the three groups (HC, NSI, and SI). Abbreviations: HC5healthy
controls; NSI5major depressive disorder without suicidal ideation; SI5major depressive disorder with suicidal ideation [Color figure can be
viewed at wileyonlinelibrary.com]
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4.3 | Static overall topological alterations

In a series of sparsity range from 0.11 to 0.31, the AUC of network

strength (one-way ANCOVA: F54.44, p5 .015) and network effi-

ciency (one-way ANCOVA: F54.79, p5 .011) in static connectomic

showed group differences (Figure 3); while small-worldness did not

(Table 2). Post hoc analysis revealed a significant decrease in network

strength (two-sample t tests, t522.63, p5 .0109, Bonferroni cor-

rected, Cohen’s d50.73) and efficiency (two-sample t tests, t522.72,

p5 .009, Bonferroni corrected, Cohen’s d50.76) within the SI group

compared to the HC group.

4.4 | Dynamic overall topological alterations

In a series of sparsity range from 0.11 to 0.31, the variance of the AUC

of network strength (one-way ANCOVA: F55.10, p5 .008, Bonferroni

corrected) and network efficiency (one-way ANCOVA: F56.28,

p5 .003, Bonferroni corrected) in dynamic connectomic showed group

differences (Figure 3); while small-worldness did not (Table 2). The

results of post hoc analysis showed a significant increase in the var-

iance of the AUC of network strength (two-sample t tests, t52.87,

p5 .0059, Bonferroni corrected, Cohen’s d50.77) and efficiency (two-

sample t tests, t53.24, p5 .0021, Bonferroni corrected, Cohen’s

d50.87) within the SI group compared to the HC group. The SI group

also showed an increase in the variance of the AUC of network

strength (two-sample t tests, t52.19, p5 .0337, uncorrected, Cohen’s

d50.65) and efficiency (two-sample t tests, t52.20, p5 .0327, uncor-

rected, Cohen’s d50.66) compared to the NSI group.

4.5 | Nodal efficiency of static and dynamic

connectomics

To evaluate the centers of information flow, the researchers identified

brain regions with disrupted nodal efficiency among the three groups.

For static connectomic, the results largely revealed transdiagnostic

FIGURE 3 Distribution of topological properties in static and dynamic connectomics. The horizontal and vertical axes represent the overall
topological properties of static connectomics and the variability of overall topological properties of dynamic connectomics (adjusted by age,
sex, education, and mean FD), respectively. Black, blue, and red dots and lines represent the HC, NSI, and SI groups, respectively.
Abbreviations: FD5 framewise-displacement; HC5 healthy control; NSI5major depressive disorder without suicidal ideation; SI5major
depressive disorder with suicidal ideation [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Summary of overall topological properties differences among three groups

Comparisons
Overall topologies ANOVA SI vs HC SI vs NSI NSI vs HC

Network strength Static � #
3 3

Dynamic � " "
3

Network efficiency Static � #
3 3

Dynamic � " "
3

Small-worldness Static
3 3 3 3

Dynamic
3 3 3 3

Note. Abbreviations: HC5 healthy controls; NSI5major depressive disorder without suicidal ideation; SI5major depressive disorder with suicidal
ideation.
� and 3 denote significant and nonsignificant groups differences, respectively; " and # denote increased and decreased overall topological properties,
respectively.
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FIGURE 4 The distribution of brain regions with significant group effects in nodal efficiency of static and dynamic connectomics. (a) Static
connectomics results. (b) Dynamic connectomics results. Abbreviations: CAU.L5 left caudate; FFG.R5 right fusiform gyrus; IFGtri.L5 left
inferior frontal gyrus, triangular; IFGtri.R5 right inferior frontal gyrus, triangular; IFGorb.L5 left inferior frontal gyrus, orbital; INS.L5 left
insula; INS.R5 right insula; IPG.L5 left inferior parietal gyrus; MFG.L5 left middle frontal gyrus; PCUN.L5 left precuneus; PoCG.R5 right
postcentral gyrus; SFGmed.L5 left superior frontal gyrus, medial; SPG.R5 right superior parietal gyrus. *p< .05 (uncorrected); **p< .05
(Bonferroni corrected) [Color figure can be viewed at wileyonlinelibrary.com]
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alterations in the SI and NSI groups compared to the HC group. These

alterations were found within the bilateral inferior frontal gyrus, trian-

gular (IFGtri), bilateral insula (INS) (Kruskal–Wallis test), left precuneus

(PCUN), caudate (CAU), inferior parietal gyrus (IPG), and right superior

parietal gyrus (SPG) (Kruskal–Wallis test) (Figure 4a). Post-hoc analysis

revealed that the NSI and SI groups showed a significant decrease in

nodal efficiency within the bilateral IFGtri, left CAU, IPG, INS (Mann–

Whitney U test), PCUN, and right SPG (Mann–Whitney U tests) com-

pared to the HC group. The SI group showed a decrease in nodal effi-

ciency within the right INS compared with the NSI (Mann–Whitney U

test) and HC groups. The results were presented on inflated surface

maps using BrainNet Viewer (www.nitrc.org/projects/bnv; Xia et al.,

2013).

For dynamic connectomic, the results showed alterations in the

variance of the AUC of nodal efficiency across the three groups with

regard to the left middle frontal gyrus (MFG) (Kruskal-Wallis test), left

inferior frontal gyrus, orbital (IFGorb), left superior frontal gyrus, medial

(SFGmed), right postcentral gyrus (PoCG), right SPG (Kruskal–Wallis

test), and right fusiform gyrus (FFG) (Kruskal–Wallis test) (Figure 4b).

For the NSI and SI groups, post hoc analysis revealed transdiagnostic

alterations within the left SFGmed. The NSI group showed specific-

diagnostic alterations within the left MFG (Mann–Whitney U test), left

IFGorb, right SPG (Mann–Whitney U test), right PoCG, and right FFG

(Mann–Whitney U test) compared to SI and HC groups. The results

were presented on inflated surface maps using BrainNet Viewer (www.

nitrc.org/projects/bnv; Xia et al., 2013).

4.6 | Classification and prediction based on overall

topological properties

Based on one-way ANCOVA results, we used the AUC of overall topo-

logical properties (i.e., network strength and network efficiency) of

static connectomic and the variance of the AUC of overall topological

properties (i.e., network strength and network efficiency) of dynamic

connectomic as features in the linear SVM and linear SVR.

A six-fold cross-validation method was repeated 50 times to obtain

classification accuracy (F1-score) (mean6 SD: 7561.3%, all p< .001),

sensitivity (mean6 SD: 7163.0%, all p< .001) and specificity (mean6

SD: 7563.5%, all p< .001). In addition, we demonstrated that these

features would distinguish the SI group from HC with classification

accuracy (F1-score) (mean6 SD: 7361.6%, all p< .01), sensitivity

(mean6 SD: 7064.8%), and specificity (mean6 SD: 8064.7%), and

furthermore differentiate between the NSI group and HC with classifi-

cation accuracy (F1-score) (mean6 SD: 6262.9%, all p< .05), sensitiv-

ity (mean6 SD: 6264.5%), and specificity (mean6 SD: 7461.5%).

The mean classification weight of overall topological properties was

expressed as follows: network strength (mean6 SD: 0.1160.025) and

network efficiency (mean6 SD: 0.1560.032) in static connectomic;

while network strength (mean6 SD: 0.3060.029) and network effi-

ciency (mean6 SD: 0.2760.083) in dynamic connectomic.

The mean correlation coefficient was obtained following cross-

validation, repeated 50 times, between the observed SSI score and pre-

dictive SSI score (mean6 SD: r5 .5560.05, all p< .05). One of the

correlations between the observed and predictive SSI score is pre-

sented (Figure 5). The mean predictive weight of overall topological

properties was expressed as follows: the variability of network strength

(mean6 SD: 3.9561.10) and network efficiency (mean6 SD: 0.016

0.004) in static connectomic; while the variability of network strength

(mean6 SD: 4.7061.39) and network efficiency (mean6 SD: 0.036

0.01) in dynamic connectomic. There were no significant correlation

coefficients between the SSI score and one of the overall topological

property (i.e., network strength and network efficiency) values for static

and dynamic connectomics (Supporting Information, Figure S1).

4.7 | Validation results

Having analyzed the reproducibility of the findings, the researchers

obtained the following results:

(i) Using different sliding-window lengths, the results yielded simi-

lar findings with regard to network efficiency (Supporting Information,

Figure S2).

(ii) The findings of the split-half analysis showed that the con-

structed split-half subgroups were similar in network strength and net-

work efficiency. Differences between subgroups were consistent with

previous findings regarding network efficiency and network strength

(Supporting Information, Figure S3).

(iii) Regardless of whether or not HAMD scores were regressed

out, differences were found between the SI and NSI groups regarding

the variance of the AUC of network strength and network efficiency in

dynamic connectomic (Supporting Information, Figure S4).

5 | DISCUSSION

This study demonstrated that static and dynamic connectomics are

capable of generating diagnostic and predictive models. The SI group

FIGURE 5 Overall topological properties predict the severity of
suicidal ideation. Scatter plots show one of the 50 correlations
between observed and predicted scale for suicidal ideation (SSI)
scores. We combine overall topological properties (i.e., network
strength and network efficiency) of static and dynamic
connectomics as features, using a support vector regression (SVR)
model to obtain the predictive score. Filled circles denote the
analyzed points to fit the correlation line; open circles denote
outliers. Abbreviation: SSI5 Scale for Suicidal Ideation score [Color
figure can be viewed at wileyonlinelibrary.com]
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showed decreased overall topological properties (i.e., network strength

and network efficiency) of static connectomic compared to the HC

group and increased topological properties (i.e., network strength and

network efficiency) of dynamic connectomic compared to the HC and

the NSI groups. Importantly, the overall topological properties (i.e., net-

work strength and network efficiency) of dynamic and static connec-

tomics yielded high accuracy when differentiating between SI and NSI

participants. Moreover, such features may also predict the severity

of SI.

Just one previous static connectomic study has found that MDD

with SI reduced functional connectivity in the orbitofrontal-thalamic

network (Kim et al., 2017b). In addition, the nodal properties (i.e., nodal

strengths, nodal clustering coefficients, and nodal efficiency) of the left

orbital part of the superior frontal and the bilateral thalamus gyrus

were significantly correlated with SSI scores (Kim et al., 2017b). Con-

sistent with previous findings on static connectomic, we found that the

putamen, temporal, and frontal cortices showed group differences.

More broadly, for the first time, this study examined the temporal vari-

ability of dynamic connectomic on MDD with SI. At resting state, the

brain’s dynome reflects underlying temporal changes in topological

properties (Liao et al., 2014b; Liao, Cao, Xia, & He, 2017), which are

anatomically constrained by white matter connectivity (Liao et al.,

2015). It is noteworthy that dynamic connectomic could successfully

identify, with high accuracy, healthy individuals and could furthermore

significantly predict individual high-level cognitive behaviors (Liu et al.,

2018). In a clinical setting, dynamic connectomic may reflect aspects of

the functional capacity of the neural system (Liu et al., 2018), and thus,

may serve as a novel physiological neuromarker of brain disease (Kim

et al., 2017a).

Relative to the HC group, only the SI group showed a decrease in

the overall topological properties (i.e., network strength and network

efficiency) of static connectomic. The decreased network strength of

static connectomic is consistent with previous connectomic-level dif-

ferences (Kim et al., 2017b). Rather unexpectedly, the SI group exhib-

ited an opposite (increased) variability in network strength and

efficiency (variance of the AUC as a proxy) in dynamic connectomic rel-

ative to the HC and the NSI groups. Increased variability within

dynamic functional connectivity potentially facilitates brain information

integration and greater flexibility in selectively switching between cog-

nitive processes (Cohen, 2017; Liao et al., 2014a, 2017). Alterations in

clinical conditions, excessive variability (increased temporal variance) or

excessive stability (decreased temporal variance; Christoff, Irving, Fox,

Spreng, & Andrews-Hanna, 2016) could occur at different times,

thereby contributing to alterations in cognitive function and particular

pathological states (Preti, Bolton, & Van De Ville, 2016). As such, these

findings suggested that the connectivity capacity and efficiency of

information exchanges within the entire network were excessively vari-

able in MDD with SI. In light of the discrepancies found with reference

to alterations in static and dynamic connectomics in MDD with SI,

combining them may assist in differentiating between SI and NSI (see

discussion on classification section below).

In addition to examining overall topological properties, this study

investigated alterations in nodal efficiency for both static and dynamic

connectomics. The differences between the SI and NSI groups with

respect to nodal efficiency were found in dynamic (including the SPG,

PoCG, FFG, and left IFGorb), and static (the right INS) connectomics.

This finding suggested that dynamic connectomic predominantly con-

tributed to detecting diagnosis-specific (Buckholtz & Meyer-

Lindenberg, 2012) brain alterations. The transdiagnostic alterations

(Buckholtz & Meyer-Lindenberg, 2012) (SI and NSI groups showed

common alterations relative to HC group) were found in dynamic (the

left SFGmed) and static (the left IFGtri, CAU, and PCUN) connectomics

(Figure 4). This finding suggested that static connectomic highly con-

tributed to exploring transdiagnostic features. In combination, static

and dynamic connectomics are complementary in differentiating

between SI and NSI patients. Moreover, these findings indicate the lim-

itations of using static and dynamic connectomics separately to differ-

entiate SI, particularly as the brain must strike a balance between

stability (static connectomics) and variability (dynamic connectomics)

(Liu, Chen, Dan, McKeown, & Wang, 2016). As such, a combination of

both static and dynamic connectomics has been applied in schizophre-

nia (Rashid et al., 2016). Nevertheless, the precise means by which to

combine static and dynamic connectomics remains an open issue. The

coefficient of variation (Gonzalez-Castillo et al., 2014) used both varia-

tion and mean values across sliding-windows and the joint inference of

time-invariant connections (Liu et al., 2016).

The measurement of static functional connectomic holds great

promise for the diagnosis of MDD (Zeng et al., 2012), but requires

more reliable measurements for the classification of MDD with and

without SI. The current work performed a classification analysis to dis-

tinguish between the SI and NSI groups using the overall topological

properties of both static and dynamic connectomics. Importantly, using

combined overall topological properties of static and dynamic connec-

tomics as classification features has been proven to successfully differ-

entiate between schizophrenia and bipolar patients (Rashid et al.,

2016). The classification approach outlined in the present research was

based on SVM and evaluated using a six-fold cross-validation method.

The classification accuracy for distinguishing SI from NSI was 75%, sug-

gesting that utilizing a combination of both static and dynamic connec-

tomics is useful in the identification between SI and NSI. However, the

classification features from dynamic connectomics proved more power-

ful in terms of classification relative to static connectomics, suggesting

that the brain’s dynome is more sensitive to classification. In addition,

the researchers demonstrated that these features would be generaliz-

able in differentiating between SI, NSI, and HC. Future research may

examine whether such neuromarkers can differentiate between

patients with and without to prevent suicide attempts in MDD patients

and establish whether early intervention can diminish the possibility of

suicidal thoughts.

The results of this study also suggest that a model based on a com-

bination of static and dynamic connectomics is powerful, as it success-

fully predicted the SI severity in the SI group. Although previous

studies have demonstrated that some neuroimaging features are corre-

lated with the SI severity (Ballard et al., 2015; Myung et al., 2016; Pu

et al., 2015), the researchers are not aware of any studies that have

demonstrated the use of a connectomic model based on both static
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and dynamic topological features for utilization in the more accurate

prediction of SSI scores for the SI group, as opposed to analyzing these

topological features in isolation (Supporting Information, Figure S4).

Moreover, the network strength of static and dynamic connectomics

showed strong predictive power relative to network efficiency, sug-

gesting that the combination of both static and dynamic network

strength is more sensitive for use in predictive models.

There were some methodological limitations. First, there are

trends in the differences of network strength (t521.70, p5 .09)

and network efficiency (t521.69, p5 .09) between the NSI and

the HC groups with respect to static connectomic. These results

may be attributed to the small size of the NSI group and different

brain parcellation schemes which affect brain topological properties

(Wang et al., 2009) compared with previous study (Zhang et al.,

2011a). In addition, although the group size is relatively small, the

power analysis showed a large effect size for abnormal functional

brain networks within the SI and NSI groups, suggesting the gener-

alizability of the findings to a large sample size. Moreover, the cur-

rent work lacked the other independent validation data to test the

generality of classification and prediction models. Second, window

length is an important parameter to describe dynamic connectomic.

The researchers selected the window size according to the filter

bandwidth (0.01–0.1 Hz) utilized in a previous study, which recom-

mended that the minimum window length should be not less than

1/fmin (1/0.015100 s) (Leonardi & Van De Ville, 2015). Similar,

albeit less reliable, results from the utilization of different sliding

window lengths suggest that the findings of this study are less influ-

enced by this factor. Third, in this study, in fact, we used a rela-

tively low sampling rate (TR52 s). Under this sampling rate,

respiratory and cardiac fluctuations may still pose a problem for

resting-state fMRI time series, despite utilization of a band-pass filter

in the range of 0.01–0.08 Hz to counter this. These respiratory and

cardiac fluctuations may reduce the specificity of low-frequency

fluctuations to functional connected regions (Murphy, Birn, & Ban-

dettini, 2013). Finally, the researchers did not include follow-up data

as they were unable to examine whether these neuromarkers can

predict subsequent SI.

In conclusion, we investigated the dynamic connectomic on MDD

with and without SI for the first time. The current findings of overall

topological properties highlighted that combining static and dynamic

connectomics could differentiate between SI and NSI patients, offering

novel insight into the physiopathological mechanisms of SI. Further-

more, the brain’s connectome and dynome may be considered as a

neuromarker for the utilization and generation of diagnostic and predic-

tive models in cases of SI.
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