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Abstract
Learning occurs when an outcome differs from expectations, generating a reward prediction error

signal (RPE). The RPE signal has been hypothesized to simultaneously embody the valence of an

outcome (better or worse than expected) and its surprise (how far from expectations). Nonethe-

less, growing evidence suggests that separate representations of the two RPE components exist in

the human brain. Meta-analyses provide an opportunity to test this hypothesis and directly probe

the extent to which the valence and surprise of the error signal are encoded in separate or overlap-

ping networks. We carried out several meta-analyses on a large set of fMRI studies investigating

the neural basis of RPE, locked at decision outcome. We identified two valence learning systems

by pooling studies searching for differential neural activity in response to categorical positive-

versus-negative outcomes. The first valence network (negative>positive) involved areas regulating

alertness and switching behaviours such as the midcingulate cortex, the thalamus and the dorsolat-

eral prefrontal cortex whereas the second valence network (positive>negative) encompassed

regions of the human reward circuitry such as the ventral striatum and the ventromedial prefrontal

cortex. We also found evidence of a largely distinct surprise-encoding network including the ante-

rior cingulate cortex, anterior insula and dorsal striatum. Together with recent animal and

electrophysiological evidence this meta-analysis points to a sequential and distributed encoding of

different components of the RPE signal, with potentially distinct functional roles.
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1 | INTRODUCTION

Effective decision-making depends upon accurate outcome representa-

tions associated with potential choices. These representations can be

defined through reinforcement learning (RL) (Rescorla & Wagner, 1972;

Sutton, 1998), a modelling framework that uses the reward prediction

error (RPE), the difference between actual and expected outcomes, as

a learning signal to update future outcome expectations. In this frame-

work, RPE is a signed quantity and learning is driven by two separate

components of the RPE signal: its valence (i.e., the sign of the RPE, rep-

resenting whether an outcome is better [1] or worse [2] than

expected) and its surprise (i.e., the modulus of the RPE, representing

the degree [high or low] of deviation from expectations). Whereas the

valence informs an agent whether to reinforce or extinguish a certain

behaviour (Fouragnan, Retzler, Mullinger, & Philiastides, 2015;

Fouragnan, Queirazza, Retzler, Mullinger, & Philiastides, 2017; Frank,

Seeberger, & O’reilly, 2004), the surprise component determines the

extent to which the strength of association between outcome and

expectations needs to be adjusted (Collins & Frank, 2016; Niv et al.,

2015; den Ouden, Kok, & de Lange, 2012).

This modelling framework has received considerable attention in

neuroscience since the early 90s when animal neurophysiological studies

identified dopaminergic neurons in the midbrain, in particular in the ven-

tral tegmental area (VTA), the substantia nigra pars compacta (SNc) and

reticulata (SNr), whose tonic response profile appears to simultaneously

capture both components of the RPE signal outlined above (Montague,

Dayan, & Sejnowski, 1996; Schultz, Apicella, & Ljungberg, 1993; Schultz,

Dayan, & Montague, 1997). Specifically, these neurons show anticipa-

tory increase and suppression of their tonic activity in response to posi-

tive and negative RPE, respectively. While the anticipatory increase is
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proportional to the magnitude of positive RPE, the magnitude of nega-

tive RPE is encoded by the duration of the basal tonic suppression.

This discovery was a breakthrough in the field of learning and deci-

sion making and has continued to be influential in the field over the

past two and a half decades (see Schultz, 2016a; Schultz, 2016b for a

review). As a result, this neurophysiological work has strongly moti-

vated human functional magnetic resonance imaging (fMRI) research to

identify the corresponding macroscopic blood-oxygen-level-dependent

(BOLD) pattern of the signed RPE. This pattern of activity was

expected to be such that the strength of the BOLD would proceed

from high positive RPEs> low positive RPEs> low negative

RPEs>high negative RPEs. More specifically, studies have employed a

model-based fMRI approach, whereby different types of

reinforcement-learning models are first fitted to subjects’ behaviour to

yield parametric predictors for signed RPE against which fMRI data are

subsequently regressed (Daw, Gershman, Seymour, Dayan, & Dolan,

2011; Fouragnan et al., 2013; Gläscher, Daw, Dayan, & O’Doherty,

2010; O’Doherty et al., 2004; O’Doherty, Hampton, & Kim, 2007;

Queirazza, Fouragnan, Steele, Cavanagh, & Philiastides, 2017).

These fMRI studies have employed different algorithms to derive

the signed RPE, ranging from the simple formulation of the temporal

difference learning algorithm to incorporating action learning, notably

using the Q-learning and SARSA (‘state, action, reward, state and

action’) algorithms (Schonberg et al., 2010; Seymour, Daw, Dayan,

Singer, & Dolan, 2007; Tanaka et al., 2006). According to qualitative

reviews of this previous findings (O’Doherty et al., 2007) as well as

quantitative, coordinate-based meta-analyses of these studies, the

regions correlating with the different formulations of signed RPE have

been found to be predominantly subcortical, including the striatum and

amygdala, with some cortical regions, such as the ventromedial pre-

frontal cortex and the cingulate cortex also reported (Bartra, McGuire,

& Kable, 2013; Garrison, Erdeniz, & Done, 2013; Liu, Hairston, Schrier,

& Fan, 2011). Additionally, substantial effort has been undertaken to

identify how different types of outcomes (primary rewards such as

food, or secondary rewards such as monetary outcomes) can modulate

the signed RPE in the same regions and the extent to which it can be

considered a domain-general, common currency signal (Sescousse,

Cald�u, Segura, & Dreher, 2013).

While using trial-by-trial estimates of signed RPE from

reinforcement-learning models has provided an enormously productive

framework for understanding learning and decision-making, a growing

number of studies have also discussed the complementary role of sur-

prise, namely the unsigned RPE, which can also be estimated at the

single-trial level. These include, but are not limited to, the use of trial-

by-trial estimates of the modulus of RPE or Bayesian surprise according

to Bayesian learning theory (Hayden, Heilbronner, Pearson, & Platt,

2011; Iglesias et al., 2013). Additionally, human electroencephalogra-

phy (EEG) studies, attempting to offer a temporal account of the corti-

cal dynamics associated with RPE processing, did not find a systematic

monotonic response profile consistent with a single RPE representation

but instead offered evidence suggestive of separate representations

for valence and surprise at the macroscopic level of responses recorded

on the scalp. Specifically, multiple recent EEG studies combining

model-based RPE estimates with single-trial analysis of the EEG

revealed an early outcome stage reflecting a purely categorical valence

signal and a later processing stage reflecting separate representations

for valence and surprise (Fouragnan et al., 2015, 2017; Philiastides,

Biele, Vavatzanidis, Kazzer, & Heekeren, 2010b). These later valence

and surprise signals appeared in spatially distinct but temporally over-

lapping neural signatures.

These findings suggest that, in addition to the fully monotonic fir-

ing pattern of midbrain neurons, there exist individual representations

for valence and surprise, potentially subserving different functional

roles during reward-based learning (e.g., approach–avoidance behav-

iour and the speed of learning via varying degrees of attentional

engagement, respectively). Here, we conducted an fMRI meta-analysis

to more directly explore the possibility that there exist separate neuro-

nal representations encoding valence and surprise promoting reward

learning in humans. We discuss the findings of our work in the context

of recent reports from animal neurophysiology and human neuroimag-

ing experiments that provide evidence toward a distributed coding of

the different facets of the RPE signal (Brischoux, Chakraborty, Brierley,

& Ungless, 2009; Fouragnan et al., 2015, 2017; Matsumoto & Hiko-

saka, 2009).

2 | MATERIALS AND METHODS

2.1 | Literature search

We selected fMRI studies using the Pubmed database (http://www.

ncbi.nlm.nih.gov/pubmed) with the following search keywords: ‘(fMRI

OR neuroimaging) AND (prediction error OR reward OR surprise)’ along

with three initial filters preselecting studies in which participants were

human adults of over 19 years of age and excluding reviews. This initial

selection resulted in 724 candidates for inclusion to which a further 64

articles were added from existing in-house reference libraries. Note

that previous meta-analyses used the terms ‘prediction error’ or

‘reward’ but we are the first to include ‘surprise’ in our systematic

search for relevant articles (Bartra et al., 2013; Garrison et al., 2013;

Sescousse et al., 2013).

Abstracts from the 788 candidate-articles identified were then

evaluated for inclusion in the corpus according to the following criteria.

We required studies of healthy human adults, reporting changes in

BOLD as a function of three different components of RPE: the categor-

ical valence, surprise and signed RPE, including statistical comparisons

either in the form of binary contrasts or continuous parametric analy-

ses. Because the main objective of the present meta-analysis is to

examine the neural coding of RPE processing at decision outcome, we

also imposed the restriction that fMRI analyses were time-locked to

the presentation of outcomes (feedback). We used studies involving

outcomes consisting of abstract points, monetary payoffs, consumable

liquids and arousing pictures but excluded articles in which outcomes

consisted of social feedback. We also required that studies used func-

tional brain imaging and did not use pharmacological interventions and

ensured that the reported coordinates were either in Montreal Neuro-

logical Institute (MNI) or Talairach space. Finally, we excluded articles
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in which results were derived from region of interest (ROI) since our

meta-analytic statistical methods assume that foci are randomly distrib-

uted in the whole brain under the null hypothesis. After applying these

constraints our meta-analysis comprised 102 publications with a total

of 2’,316 participants, 144 contrasts and 991 activation foci. The num-

ber of participants per study ranged from 8 to 66 (median524, inter-

quartile range [IQR]57).

2.2 | Study categorization

The goal of this meta-analysis was to separately categorize studies

along the three components of RPE, locked at time of outcome, in

order to: (1) identify the extent to which there exist distinct neural rep-

resentations for valence and surprise and (2) identify whether the neu-

ral correlates of the signed RPE simply intersect those of valence and

surprise (possibly due to colinearities across these components) or

appear as unique clusters of activation reflecting the true combined

influence of the two measures.

To group the relevant articles according to the three main RPE

components we used the following definitions: (1) valence represents

the sign of the RPE and as such it is positive when an outcome is better

than expected and negative when worse than expected, (2) surprise

represents the absolute degree of deviation from expectations and is

treated as an unsigned quantity and (3) signed RPE simultaneously

reflects the influence of both valence and surprise and appears as a

fully signed parametric signal. According to these definitions, we identi-

fied several fMRI statistical analyses conducted in the original studies

that fall under each of the three RPE components (Table 1). The main

assumptions of these fMRI analyses, with regard to the BOLD signal as

a function of each RPE component, are presented schematically in Fig-

ure 1.

For the valence components, the literature has looked at neural

responses which vary categorically along positive-negative axes, as rep-

resented in patterns A (i) and (ii) of Figure 1. We therefore extracted

activations exhibiting a relative BOLD signal increase for negative rela-

tive to positive outcomes (NEG>POS: pattern A [i]) and greater BOLD

for positive relative to negative outcomes (POS>NEG: pattern A [ii]),

respectively. We considered six types of fMRI statistical comparisons

which reported coordinate results from either: (1) a contrast associated

with negative>positive outcomes, (2) a contrast associated with nega-

tive>no outcomes, (3) a negative correlation with a trial-by-trial

regressor modulated by [11] for positive outcomes and [21] for nega-

tive outcomes, (4) the positive correlation with the regressor described

in (3), (5) a contrast associated with positive>negative outcomes and

(6) a contrast associated with positive>no outcomes. We grouped

results from contrasts 1–3 (i.e., NEG>POS) and contrasts 3–6 (i.e.,

POS>NEG) to capture regions yielding greater BOLD activity for neg-

ative relative to positive outcomes and a greater activity for positive

relative to negative outcomes, respectively (Table 1).

While the fMRI literature on RPE processing has produced a large

amount of theoretical and empirical evidence for the valence and the

signed RPE components, comparatively little has been done to directly

investigate surprise as a separate component. Fewer studies have used

fMRI regressors that were parametrically modulated by trial-to-trial

changes in surprise using the unsigned RPE (Fouragnan et al., 2017;

Hayden et al., 2011; Iglesias et al., 2013). These studies used the terms

‘surprise’, ‘unsigned RPE’ or outcome ‘salience’ to refer to the mathe-

matical modulus of RPE from computational learning models. In addi-

tion to these articles, our literature search has revealed a number of

other measures (see below), which are highly correlated with outcome

surprise, as defined by learning theory. We therefore used these meas-

ures as proxies of surprise to gain insights into the spatial extent of the

relevant neural responses and the degree to which they overlap with

those associated with valence.

Specifically, a recent line of research has investigated the neural

basis of ‘Bayesian surprise’ or ‘volatility’, computed as the direct mod-

ulus of Bayesian predictive error (Ide, Shenoy, Yu, & Li, 2013; Iglesias

et al., 2013; Mathys et al., 2014; O’Reilly et al., 2013) which corre-

sponds to the absolute difference between categorical outcomes and

the probabilistic expectation of these outcomes, estimated using

Bayesian inference. In the framework of Bayesian learning, the abso-

lute Bayesian RPE plays an important role in learning from rapid

changes in behavioural exploration (Courville, Daw, & Touretzky,

2006). Finally, other studies used the term ‘associability’ which is a

parameter in the Pearce-Hall model (Hall & Pearce, 1979; Pearce &

Hall, 1980) defined as the degree of divergence between an actual

outcome and the original expectation (e.g., the associative strength

between a choice and an outcome - we note that in the RL frame-

work, associability can also refer to the learning rate). It is clear from

these reports that there is a lack of consistent terminology to refer to

unsigned RPE, which emphasizes the need for a more unified frame-

work for studying RPE processing.

To test for consistencies in the neuronal responses across these

different reports, and provide initial support for a unified representa-

tion of surprise, we grouped fMRI analyses which reported outcome-

locked activations resulting from: (1) a positive correlation with a trial-

by-trial regressor of the modulus (unsigned) RPE resulting from RL

models across both positive and negative outcomes (‘surprise’ or

‘unsigned RPE’), (2) a positive correlation with a trial-by-trial regressor

of the unsigned RPE resulting from Bayesian modelling (‘Bayesian Sur-

prise’ or ‘volatility’), (3) a positive correlation with a trial-by-trial regres-

sor of the free parameter of the Pearce-Hall model (‘associability’ term),

(4) a contrast associated with (high positive outcomes and high nega-

tive outcomes)> (low positive outcomes and low negative outcomes

OR no outcomes), (5) a positive correlation with a parametric regressor

of surprising positive RPE alone and (6) a positive correlation with a

parametric regressor of surprising negative RPE alone (Table 1). Figure

1 illustrates the hypothesized pattern of BOLD signal predicted by

these contrasts (pattern B), exhibiting a V-shaped response profile that

is maximal for both highly surprising negative and positive RPEs.

Despite possible subtle differences in the definition of these measures

we expected that only foci consistently correlating with deviations

from reward expectations would be revealed in this analysis.

One reason the surprise component has not been looked at closely

in isolation is because the literature has focused primarily on signed

RPE representations instead. This approach was motivated by
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neurophysiology experiments showing monotonic responses as a func-

tion of both valence and surprise and by a theoretical framework sug-

gesting that learning is driven by a single signed RPE representation. To

identify the spatial extent of these representations we also looked at

fMRI data reporting positive correlations with signed RPE (negative

correlation were discarded). Specifically, we combined four types of

fMRI analyses, which estimated trial-by-trial signed RPE from different

computational models. We used fMRI reports from (1) model-free and

(2) model-based RL methods. Model-free methods include Markov

Chain Monte Carlo and temporal difference methods (Samson, Frank,

& Fellous, 2010; Seymour et al., 2007). Model-based methods include

dynamic programming and certainty equivalent methods (Daw, Niv, &

TABLE 1 Categorisation of fMRI studies into the three RPE components (valence, surprise, signed RPE) and broken down by the relevant
fMRI contrast/regressor

Statistical comparisons Number Total Reference

Valence
Pattern A i (NEG>POS)

32 (de Bruijn, de Lange, Cramon, & Ullsperger, 2009; Daniel et al., 2011; Demos,
Heatherton, & Kelley, 2012; van Duijvenvoorde et al., 2014; Elward, Vilberg,
& Rugg, 2015; Ferdinand & Opitz, 2014; Fouragnan et al., 2015; Gläscher,
Hampton, & O’Doherty, 2009; Haruno et al., 2004; Häusler, Oroz Artigas,
Trautner, & Weber, 2016; Jocham et al., 2016; Kahnt, Heinzle, Park, &
Haynes, 2010; Katahira et al., 2015; Klein-Fl€ugge, Hunt, Bach, Dolan, &
Behrens, 2011; Klein-Fl€ugge et al., 2011; Knutson, Westdorp, Kaiser, &
Hommer, 2000; Knutson, Adams, Fong, & Hommer, 2001; Koch et al., 2008;
Leknes, Lee, Berna, Andersson, & Tracey, 2011; Losecaat Vermeer, Boksem,
& G Sanfey, 2014; Marsh et al., 2010; Mattfeld, Gluck, & Stark, 2011;
Noonan, Mars, & Rushworth, 2011; O’Doherty, Kringelbach, Rolls, Hornak, &
Andrews, 2001; O’Doherty, Critchley, Deichmann, & Dolan, 2003; Rodri-
guez, 2009; Rolls, Grabenhorst, & Parris, 2008; Scholl et al., 2015; Seymour
et al., 2007; Spicer et al., 2007; Spoormaker et al., 2011; Ullsperger &
Cramon, 2003; Yacubian et al., 2006)

Negative>Positive 19
Negative>No outcomes 9
Negative correlation with a regres-
sor defining valence RPE (with a
binary modulation whereby positive
RPE5 1, and negative RPE521)

4

Valence
Pattern A ii (POS>NEG)

33 (Amiez, Sallet, Procyk, & Petrides, 2012; Aron et al., 2004; Bickel, Pitcock, Yi, &
Angtuaco, 2009; de Bruijn et al., 2009; Canessa et al., 2013; Daniel et al.,
2011; van Duijvenvoorde et al., 2014; Elliott, Friston, & Dolan, 2000; Ernst
et al., 2004; Forster & Brown, 2011; Fouragnan et al., 2015; Fujiwara, Tobler,
Taira, Iijima, & Tsutsui, 2009; Häusler et al., 2016; Hester, Barre, Murphy,
Silk, & Mattingley, 2008; Hester, Murphy, Brown, & Skilleter, 2010; Jocham
et al., 2016; Katahira et al., 2015; Knutson et al., 2000; Knutson et al., 2001;
Knutson et al., 2001; Kurniawan, Guitart-Masip, Dayan, & Dolan, 2013;
Losecaat Vermeer et al., 2014; Luking, Luby, & Barch, 2014; Paschke et al.,
2015; Sarinopoulos et al., 2010; Scholl et al., 2015; Schonberg et al., 2010;
Seymour et al., 2007; Späti et al., 2014; Spoormaker et al., 2011; Ullsperger
& Cramon, 2003)

Positive>Negative 18
Positive>No outcomes 9
Positive correlation with a regressor
defining valence RPE (with a binary
modulation whereby positive
RPE5 1, and negative RPE521)

6

Surprise
Pattern B

41 (Allen et al., 2016; Amado et al., 2016; Amiez et al., 2012; Boll, Gamer, Gluth,
Finsterbusch, & B€uchel, 2013; Browning, Holmes, Murphy, Goodwin, &
Harmer, 2010; Chumbley et al., 2014; Daw et al., 2011; Dreher, 2013;
Ferdinand & Opitz, 2014; Forster & Brown, 2011; Fouragnan et al., 2015;
Fouragnan et al., 2017; Fujiwara et al., 2009; Ide et al., 2013; Iglesias et al.,
2013; Jensen et al., 2007; Knutson et al., 2001; Kotz, Dengler, & Wittfoth,
2015; Leong, Radulescu, Daniel, DeWoskin, & Niv, 2017; Losecaat Vermeer
et al., 2014; Manza et al., 2016; McClure, Berns, & Montague, 2003;
Metereau & Dreher, 2013; Metereau & Dreher, 2015; Meyniel & Dehaene,
2017; Nieuwenhuis, Slagter, von Geusau, Heslenfeld, & Holroyd, 2005;
O’Reilly et al., 2013; den Ouden et al., 2012; Poudel, Innes, & Jones, 2013;
Rodriguez, 2009; Rohe, Weber, & Fliessbach, 2012; Rohe & Noppeney,
2015; Rohe & Noppeney, 2015; Rolls et al., 2008; Schwartenbeck,
FitzGerald, & Dolan, 2016; Silvetti & Verguts, 2012; Tobia, Gläscher, &
Sommer, 2016; Watanabe, Sakagami, & Haruno, 2013; Wunderlich et al.,
2009; Wunderlich, Symmonds, Bossaerts, & Dolan, 2011; Yacubian et al.,
2006; Zalla et al., 2000; Zhang, Mano, Ganesh, Robbins, & Seymour, 2016)

Unsigned RPE (‘RL surprise’) 12
Unsigned Bayesian RPE (‘Volatility’,
‘Bayesian surprise’)

13

Positive and Negative outco-
mes>No or low outcomes

9

‘Associability’ term of the Pearce et
Hall model

2

Parametric changes in magnitude of
surprising positive RPE (unsigned)

3

Parametric changes in magnitude of
surprising negative RPE (unsigned)

2

Signed RPE
Pattern C

38 (Abler, Walter, Erk, Kammerer, & Spitzer, 2006; Behrens et al., 2007; van den
Bos, Cohen, Kahnt, & Crone, 2012; Cohen & Ranganath, 2007; Daw et al.,
2011; Delgado et al., 2000; Delgado, 2007; Diederen et al., 2017; Diuk, Tsai,
Wallis, Botvinick, & Niv, 2013; Dunne, D’Souza, & O’Doherty, 2016;
Gläscher et al., 2010; Guo et al., 2016; Hare, O’Doherty, Camerer, Schultz, &
Rangel, 2008; Ide et al., 2013; Katahira et al., 2015; Leong et al., 2017; Li &
Zhang, 2006; Lin, Adolphs, & Rangel, 2012; Mattfeld et al., 2011; McClure
et al., 2003; Metereau & Dreher, 2013; Metereau & Dreher, 2015;
O’Doherty et al., 2003; Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006;
Pessiglione et al., 2008; Ribas-Fernandes et al., 2011; Rolls et al., 2008;
Schlagenhauf et al., 2013; Schonberg et al., 2010; Scimeca, Katzman, &
Badre, 2016; Seymour et al., 2007; Takemura, Samejima, Vogels, Sakagami,
& Okuda, 2011; Tanaka et al., 2004; Tanaka et al., 2006; Valentin &
O’Doherty, 2009; Watanabe et al., 2013; Wunderlich et al., 2011)

Signed RPE (from model-free RL
models)

16

Signed RPE (from model-based RL
models)

8

Signed Bayesian RPE 10
High positive RPEs> low positive
RPEs> low negative
RPEs> high negative RPEs

4
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Dayan, 2005; Doya, Samejima, Katagiri, & Kawato, 2002). More on

these algorithms can be found in the review by (Kaelbling, Littman, &

Moore, 1996). We also included continuous parametric analyses using

trial-by-trial signed RPE from (3) Bayesian RL framework described

above (Iglesias et al., 2013; Mathys et al., 2014; den Ouden et al.,

2012). Finally, our analysis for signed RPE also contained one type of

parametric analysis that employed fixed RPE values (not estimated

from RL models) ranked on a scale such that (4) high positive

RPEs> low positive RPEs> low negative RPEs>high negative RPEs

(Table 1). Figure 1 illustrates the hypothesized pattern of BOLD signal

predicted by these contrasts (pattern C) and it is assumed to increase

linearly as a function of signed RPE.

Crucially, we note that an issue requiring closer scrutiny pertains

to the difficulty in disambiguating the signed RPE pattern of activity

from those associated with valence and surprise. Specifically, pattern C

(signed RPE) is generally highly correlated with pattern A (ii), (POS-

>NEG valence) and in studies in which only positive RPEs are consid-

ered, pattern C (signed RPE) and pattern B (surprise) are perfectly

correlated. Nonetheless, comparing clusters of activations across the

three RPE components could potentially reveal whether or not there

exist unique clusters of activations associated with signed RPE.

2.3 | Activation likelihood estimation analysis

We conducted the meta-analysis using the GingerALE software (ver-

sion 2.3.6) (Eickhoff et al., 2009) that employs a revised (and rectified;

Eickhoff, Laird, Fox, Lancaster, & Fox, 2017) version of the activation

likelihood estimation (ALE) algorithm (Laird et al., 2005; Turkeltaub,

Eden, Jones, & Zeffiro, 2002), which identifies common areas of activa-

tion across studies. This method performs coordinate based meta-

analysis which considers each reported foci as a 3D Gaussian probabil-

ity distribution, centred at the coordinates provided by each study

reflecting the spatial uncertainty associated with each reported set of

coordinates. Note that each contrast provided to the ALE algorithm is

treated as a separate experiment. The probabilities distributions are

then combined to create a modelled activation map, namely an ALE

map for that contrast. Studies are weighted according to the number of

subjects they contain by adjusting the full width at half maximum of

the Gaussian distributions. The convergence of results across the

whole brain is obtained by computing the union of all resulting voxel-

wise ALE scores. To distinguish meaningful convergence from random

noise, statistics are computed by comparing ALE scores with an empiri-

cal null-distribution representing a random spatial association between

studies. To infer true convergence, a random-effect inference is applied

to capitalize on the differences between studies rather than between

foci within a particular study. The null-hypothesis is modelled by ran-

domly sampling voxels from each of the ALE maps from which the

union is obtained. The ALE maps are assessed against the null distribu-

tion using a cluster level threshold of specific p values. Contrast analy-

ses between categories of the entire dataset are determined by ALE

subtraction method, including a correction for differences in sample

size between the categories.

Here, we manually extracted all coordinates from the studies

shown in Table 1 and entered them into separate files for each of the

three RPE components in preparation for the ALE analyses. Any studies

that provided coordinates in Talairach space were converted into MNI

space by the Matlab (MathWorks, Natick, Massachusetts) function

tal2mni in the fieldtrip toolbox (Oostenveld, Fries, Maris, & Schoffelen,

2011). We conducted ALE analyses for each of the three components

of RPE individually. Along the valence component, we looked at both

patterns A (i) and A (ii) in Figure 1 (i.e., to identify activations for negati-

ve>positive RPE and vice versa, respectively). Accordingly, we ran

separate ALE analyses for each of the two patterns. In addition, we

performed two conjunction analyses—one between the valence and

surprise components to investigate our hypothesis of largely separate

neural representations and another between all three RPE components

to identify regions that simultaneously encode these representations.

Subsequently, we also performed all possible pairwise contrast analyses

between the three patterns (A, B and C), using the individual maps

associated with each pattern.

A total of 402 foci from 66 contrasts were used with 262 foci

from 31 contrasts for Pattern A (i) revealing BOLD patterns greater for

negative than positive outcomes and 205 from 35 contrasts for Pattern

A (ii) (e.g., the opposite contrast). For the surprise (Pattern B) and

signed RPE (Pattern C) analyses, we applied individual ALE analyses,

with 284 foci from 40 contrasts for surprise and 240 foci from 38 con-

trasts for signed RPE. Overall, the number of contrasts used for each

separate outcome component was large enough (>30) to allow suffi-

cient power for the required statistical tests (Eickhoff & Etkin, 2016).

FIGURE 1 Hypothesized profiles for BOLD responses as function

of the three RPE components. Pattern A (i and ii) describe the two
categorical valence responses (yellow and blue colours indicate (i)
responses being greater for negative compared with positive
outcomes [NEG>POS] and (ii) responses being greater for positive
compared with negative outcomes [POS>NEG]). Pattern B
captures surprise effects with greater responses for higher
outcome deviations from expectations, independent of the sign
(valence) of the RPE. Pattern C shows a monotonically increasing
response profile consistent with a signed RPE representation
[Color figure can be viewed at wileyonlinelibrary.com]
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Finally, we transformed the resulting ALE maps from the Colins MNI

individual brain space (Colin27_T1_seg_MNI) to the MNI normalized

brain space (MNI ICBM152 template) by applying an affine transforma-

tion using the FSL flirt program (Jenkinson, Bannister, Brady, & Smith,

2002), prior to overlaying onto the canonical MNI template for

visualization.

3 | RESULTS

All coordinates used for the following ALE analyses were collated from

fMRI studies in which the components of RPE have been regressed

onto BOLD activity time-locked to outcome presentation. We report

ALE maps with clusters surviving the False Discovery Rate (FDR) yield-

ing two p value thresholds. The most conservative FDR correction

yields a p value with no assumptions about how the data is correlated

(FRN), and the least conservative FDR correction assumes independ-

ence or positive dependence (FID) with p< .05 and a minimum volume

clustering value of 50 mm3. Note that, using a cluster-level family-wise

error (FWE) correction implemented with a cluster-extent threshold of

p< .05 and a cluster-forming threshold of p< .001 revealed virtually

identical results (compared with FRN) (Eickhoff et al., 2017) as per pre-

vious reports (Garrison, Done, & Simons, 2017). For all tables present-

ing ALE cluster results, the size of each cluster is provided in mm3

along with the associated MNI coordinates and maximum ALE score.

The ALE score indicates the relative effect size for each peak voxel

within each ALE analysis.

3.1 | Outcome valence

The first two ALE analyses were conducted to identify regions in which

BOLD signals correlate with outcome valence. Specifically, we looked

at activations that yielded greater BOLD for negative relative to posi-

tive outcomes (NEG>POS; pattern A [i] in Figure 1) and greater BOLD

for negative relative to positive outcomes (POS>NEG; pattern A [ii] in

Figure 1), respectively. Accordingly, we considered all fMRI studies,

which assumed BOLD responses varying categorically along a positive-

negative axis for outcome valence.

The findings of the two valence ALE analyses are shown in Figure

2. The resulting maps revealed a highly distributed network of brain

FIGURE 2 Results of whole-brain ALE analysis along the valence component. Overlays of brain areas activated by correlations with
NEG>POS (blue) and POS>NEG (orange) (Pattern A [i] and [ii], respectively; Figure 1) (p values corrected with FDR-ID [FID] and FDR-pN
[FRN]< .05 and a minimum cluster volume of 50 mm3). Representative slices are shown with MNI coordinates given below each image
[Color figure can be viewed at wileyonlinelibrary.com]
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activations encompassing several cortical regions and sub-cortical

structures. More precisely, NEG>POS valence clusters were found in

a network encompassing the anterior and dorsal part of the mid-

cingulate cortex (aMCC and dMCC) including the pre supplementary

motor area (pre-SMA), the bilateral anterior and middle insular cortex

(aINS, mINS), the bilateral dorsolateral prefrontal cortex (dlPFC), the

bilateral thalamus, right amygdala, left inferior parietal lobule (IPL) and

the habenula.

POS>NEG valence clusters were found in the bilateral ventral stria-

tum (vSTR), the ventromedial prefrontal cortex (vmPFC), the posterior

part of the cingulate cortex (PCC), as well as the ventrolateral orbitofron-

tal cortex (vlOFC). At a lower threshold (uncorrected p value of .001), we

also found the midbrain as part of this network, encompassing the VTA,

which is commonly associated with the delivery of reward (D’Ardenne,

McClure, Nystrom, & Cohen, 2008). Table 2 contains the complete list of

regions, coordinates and statistics of these two ALE analyses.

3.2 | Surprise

FMRI investigations of RPE have focused primarily on the valence com-

ponents while neglecting potential contributions from possible separate

representations along the surprise component, defined as the degree

by which outcomes deviate from expectations and mathematically

expressed as the modulus of RPE. A major goal of this work was to

explore the possibility that there exist largely separate neuronal repre-

sentations encoding surprise. To this end, we conducted a new ALE

analysis in which the few empirical fMRI studies making use of the sur-

prise from RL models were combined with other fMRI measures corre-

lated with the surprise as defined by RL models (Table 1).

Figure 3 shows the areas in which BOLD signal correlated with

surprise. We found evidence for activations in a distributed network

encompassing the aMCC, dMCC, the pre-SMA the bilateral dorsal stria-

tum (dSTR), the bilateral aINS, the MTG and the midbrain. Crucially,

this activation map shows that the neural network associated with sur-

prise is largely distinct from that of valence. This finding provides initial

support for the notion that these two RPE components are encoded in

separate brain areas and, as such, they might be contributing individu-

ally to promote learning. The full results of the surprise ALE analysis

are also summarized in Table 3.

3.3 | Valence and surprise conjunction and contrast

analyses

The activation maps for valence (NEG>POS and POS>NEG) and sur-

prise ALE analyses conducted above revealed little overlap between

the spatial representations of these two RPE components. To formally

quantify the degree of overlap between the valence and surprise net-

works, we next ran a conjunction analysis between the two compo-

nents. The statistical map resulting from this conjunction analysis and

the two separate statistical maps of valence and surprise (as already

reported in Figures 2 and 3) are overlaid in Figure 4.

Contrast analyses were conducted for each possible pairing

between any dimensions of valence (POS>NEG [positive]; NEG>POS

TABLE 2 ALE cluster results for the valence analysis: Pattern A (i)
and (ii) (FDR-ID p< .05, with a minimum volume cluster size of
50 mm3

Region R/L x y z
Cluster
size

ALE
score

Pattern A (i) NEG>POS

Dorsomedial cingulate
cortex (dMCC)

R 2 24 36 12,712 0.051

Anterior insula (aINS) R 32 24 22 6,120 0.062

– L 232 22 24 4,880 0.056

Pallidum R 12 8 4 3,360 0.04

– L 214 6 2 2,520 0.029

Middle frontal gyrus R 38 4 32 3,152 0.029

– R 30 10 56 488 0.021

– L 228 12 60 104 0.019

Inferior parietal lobule
(IPL)

R 40 248 42 2,416 0.039

– L 238 248 42 2,216 0.043

Middle temporal gyrus
(MTG)

R 60 228 26 1,192 0.031

Amygdala R 18 26 212 704 0.024

Thalamus L 212 212 10 624 0.025

– L 26 226 8 280 0.023

Habenula R 2 220 218 312 0.022

Dorsolateral prefrontal
cortex (dlPFC)

L 244 28 32 360 0.020

– R 40 34 30 344 0.020

Fusiform area L 240 262 210 272 0.023

Precentral cortex L 252 0 34 256 0.021

Dorsomedial orbitofrontal
cortex (dmOFC)

R 38 58 22 192 0.020

Dorsomedial prefrontal
cortex (dmPFC)

R 20 50 4 120 0.018

Superior temporal sulcus R 58 242 22 120 0.017

Pattern A (ii)
(POS>NEG)

Ventral striatum (vSTR) L 212 8 24 4,880 0.052

– R 8 8 22 2,880 0.038

Ventromedial prefrontal
cortex (vmPFC)

L 22 42 0 3,416 0.037

Posterior cingulate cortex
(PCC)

L 0 232 36 240 0.016

– L 0 236 26 88 0.014

Ventrolateral OFC
(vlOFC)

R 32 44 210 144 0.015

Dorsomedial prefrontal
cortex (dmPFC)

L 26 256 14 96 0.016

Medial prefrontal
cortex (mPFC)

L 22 46 20 88 0.014
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[negative] and POS1NEG [all valence]) and surprise. These analyses

allowed us to identify the areas that were unique and specific to each

individual outcome and RPE-related component. The positive valence

(pattern A [ii]) minus surprise (pattern B) contrast revealed two main

clusters in the vSTR and vmPFC whereas the reverse contrast revealed

a network of clusters including preSMA, aINS and MTG. Contrasting

negative valence (pattern A [i]) and surprise also exposed separate net-

works of areas for each subtraction. Specifically, this contrast revealed a

network encompassing the thalamus, the habenula, the right mINS and

the dMCC, whereas the reverse contrast showed clusters in the dorsal

portion of the STR and the dlPFC. The statistical maps resulting from

these contrast analyses are presented in Figure 5.

3.4 | Signed RPE

A major goal of this work was to investigate the spatial profile of the

signed RPE component and to scrutinise more closely the extent to

which it overlaps with the separate representations identified for

valence (NEG>POS and POS>NEG) and surprise. The fMRI-RPE liter-

ature has focused on this component largely due to neurophysiological

evidence suggesting that RPE-like learning is driven by a single, theo-

retically unified representation of both POS>NEG valence and sur-

prise (Table 1).

Results from this ALE analysis revealed very few unique activations

for signed RPE compared with valence and surprise. Instead, brain

areas identified in this analysis overlapped mostly with areas appearing

in the POS>NEG valence component and, to a lesser extent, surprise

(Figure 6). Specifically, a large overlap between signed RPE and the

POS>NEG valence component was found in the STR and a smaller

one in the vmPFC. Similarly, areas appearing in the singed RPE analysis

that overlapped with the surprise component were also found, albeit

only in small clusters comprising the aMCC and dorsal STR. Taken

FIGURE 3 Results of the whole brain ALE analysis for the surprise component of RPE (pattern B, Figure 1). Overlay of brain areas
activated by all analyses representing direct or indirect measures of the surprise component of RPE (p values corrected with FDR-ID [FID]
and FDR-pN [FRN]< .05 and a minimum cluster volume of 50 mm3). Representative slices are shown with MNI coordinates given below
each image [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 ALE clusters results for the surprise analysis (FDR-ID
p< .05, with a minimum volume cluster size of 50 mm3)

Region R/L x y z
Cluster
size

ALE
score

Anterior mid-cingulate
cortex (aMCC)

R 4 24 34 4072 0.029

Anterior insula (aINS) R 32 24 24 2496 0.050

– L 232 20 24 1544 0.038

Inferior parietal
lobule (IPL)

R 40 246 42 1672 0.033

– L 240 248 42 568 0.025

Dorsal striatum (dSTR) R 12 8 4 1400 0.034

– L 214 10 2 1216 0.021

Middle temporal
gyrus (MTG)

R 60 228 28 648 0.022

Lateral inferior
frontal cortex

R 52 10 18 488 0.025

Lateral central
frontal gyrus

L 244 26 30 392 0.019

Precentral gyrus R 48 12 34 360 0.019

– L 252 0 34 224 0.020

Midbrain R 2 220 218 304 0.021

Dorsal mid-cingulate
cortex (dMCC)

R 12 14 42 224 0.019

Hippocampus R 20 26 210 160 0.018

Fusiform gyrus L 240 260 210 112 0.017

Mid occipital pole L 216 290 26 112 0.016

Superior temporal
sulcus

R 60 240 20 64 0.015
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together, these findings emphasize the potential collinearities between

the BOLD predictors used to identify neural representations associated

with the three RPE components and highlight the need for developing

a methodology for properly disentangling their individual contributions

( Tables 4–7).

3.5 | Putting it all together

Subsequently, to formally test for the overlap between all three RPE

components and identify potential regions integrating valence and

surprise either into a signed RPE representation or a linear superposi-

tion of the two signals (Fouragnan et al., 2017), we performed a con-

junction analysis between the valence (pattern A), the surprise (pattern

B) and signed RPE (pattern C) signals. We summarize our conjunction

results in Figure 7, which revealed a major overlap between all activa-

tions associated with signed RPE and each of the other two RPE repre-

sentations in the central part of the STR. Thus, one possibility is that

the STR meets the requirement that a full monotonic representation of

the error signal also simultaneously encodes valence and surprise, as

per our last ALE analysis.

FIGURE 4 Results of the ALE conjunction analysis between valence and surprise (purple). The regions identified earlier with separate ALE
analyses along the valence (NEG>POS: blue, POS>NEG: orange) and surprise (green) components are shown for comparison purposes.
The p values were corrected with FDR-pN [FRN]< .05 and a minimum cluster volume of 50 mm3 for the initial maps. Representative slices
are shown with MNI coordinates given bellow each image [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Results of the ALE contrast analyses for [valence – surprise] (left panel) and [surprise – valence]. The p values were corrected
with FDR-pN [FRN]< .05 and a minimum cluster volume of 50 mm3 for the initial maps. Representative slices are shown with MNI coordi-
nates given bellow each image [Color figure can be viewed at wileyonlinelibrary.com]
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Another possibility is that the overlap between all outcome com-

ponents outcomes in the STR is arising, at least in part, due to collinear-

ities across the different outcome representations, particularly between

the positive categorical nature of outcome valence (pattern A [ii]) and

the signed RPE. To formally test this hypothesis, we performed a new

series of contrast analyses between signed RPE and all dimensions of

categorical valence and surprise. Particularly, we performed contrast

analyses between patterns C-A(i), C-A(ii), C-A and C-B (and vice versa).

The results are summarized in Figure 8. Intriguingly, we did not find

any area unique to signed RPE when looking at each of the individual

comparisons of signed RPE with the other three patterns. In fact, when

comparing signed RPE to positive valence (pattern A [ii]), no clusters

were found to be significantly different than those found with the cate-

gorical outcome valence (POS>NEG). Conversely, the STR was found

for all the other signed RPE comparisons (signed RPE>negative;

signed RPE> surprise). Finally, the unique network related to negative

valence (pattern A [i]) was found in the dMCC, thalamus and mINS, the

unique cluster related to positive valence was found in the vmPFC and

the unique network related to surprise was found in the aMCC, pre-

SMA and the aINS.

4 | DISCUSSION

In this fMRI meta-analysis work, we demonstrated that reward learning

in humans involves separate neuronal signatures of RPE, comprising

distinct representations for valence and surprise. Together with recent

neurophysiological and EEG evidence (including studies using simulta-

neous EEG and fMRI), these findings point to a potentially sequential

and distributed encoding of different RPE components with potentially

functionally distinct roles.

4.1 | Valence networks

The ALE analyses related to valence revealed two distributed set of

activations correlating with both pattern A (i) and (ii) in Figure 1. Foci

for which the BOLD signal was greater for negative than positive out-

comes showed significant clustering in a large network of areas includ-

ing the thalamus, the aMCC and dMCC, the aINS, mINS and the dlPFC.

Conversely, foci for which the BOLD signal was greater for positive

than negative outcomes showed significant clusters in a separate net-

work including vmPFC, vSTR, PCC and vlOFC. These findings clearly

suggest the presence of multiple systems responding to the categorical

nature of valence which supports the notion that separate valuation

systems shape learning in the human brain (Fiorillo, 2013; Fouragnan

et al., 2013), although their functional role remains debated. More spe-

cifically, the debate focuses on the number and exact nature of the

neural systems assigning value to decision outcomes and driving behav-

iours that are evolutionarily appropriate in response to changes in the

environment.

A first theory describes two distinct valence systems invoking two

orthogonal axes of decision-making: alertness (involving the implemen-

tation of action) and learning (including the updates of value expecta-

tions for future avoidance and approach behaviours). In this

framework, the first system is thought to monitor on-going activity and

interrupt it when needed to trigger switching behaviours (e.g., following

FIGURE 6 Results of whole brain ALE analysis for signed RPE. Overlay of brain areas activated by positive correlation with signed RPE (p
values corrected with FDR-ID [FID] and FDR-pN [FRN]< .05 and a minimum cluster volume of 50 mm3). Representative slices are shown
with MNI coordinates given bellow each image [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 ALE cluster results for the conjunction analysis of valence
and surprise (FDR-ID p< .05, with a minimum volume cluster size
of 50 mm3)

Region R/L x y z
Cluster
size ALE score

Striatum (STR) R 12 6 4 1082 0.031

– L 212 12 4 376 0.021

Anterior insula (aINS) L 232 20 26 453 0.018

Anterior mid-cingulate
cortex (aMCC)

R 3 22 37 221 0.014

Inferior parietal lobule L 40 246 42 327 0.014
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negative RPEs). In contrast, the second system uses both negative and

positive RPE values for decreasing or increasing internal value repre-

sentations associated with decisions to ultimately drive avoidance and

approach learning, respectively (Boureau & Dayan, 2011; Cools, Naka-

mura, & Daw, 2011; Elliot, 2006; Fiorillo, 2013; Fouragnan et al., 2015;

Gray & McNaughton, 2003; Guitart-Masip et al., 2012).

A second (not mutually exclusive) proposition supports the idea

that there are at least two separate systems responsible for aversive

and appetitive reinforcements such that punishments and rewards are

encoded separately (i.e., a punishment space and a reward space; Mor-

rens, 2014). This proposition was developed on the basis of neurophys-

iological evidence showing that different types of neurons exhibit

differential activity in response to punishing vs. non-punishing out-

comes and rewarding versus non-rewarding outcomes, respectively

(Fiorillo, Tobler, & Schultz, 2003; Fiorillo, 2013; Schultz, Apicella, Scar-

nati, & Ljungberg, 1992; Schultz, 1998). In this second theory, the pun-

ishment space is responsible for avoidance behaviours as well as

avoidance learning and the reward space is responsible for approach

behaviours and approach learning.

It is noteworthy that our meta-analysis on itself cannot directly dis-

tinguish between the two theories because the results do not reveal

whether the relevant activations respond exclusively to either positive

or negative outcomes or are modulated by both outcomes in opposite

directions. This distinction is critical because the former response pro-

file would suggest the presence of separate approach and avoidance

systems that might not necessarily be linked to the learning processes

as such, while the latter might point to both up- and down-regulation

of activity consistent with learning and updating of reward expecta-

tions. Nonetheless, the meta-analysis results suggest that two main

networks process valence. The network encompassing aINS, aMCC,

thalamus and dlPFC could regulate on-going activity and alertness or

TABLE 5 ALE cluster results for the contrast analyses of valence and surprise (FDR-pN p< .05, with a minimum volume cluster size of
50 mm3)

Region R/L x y z Cluster size ALE score

Valence vs. surprise

Ventral striatum (vSTR) L 210 8 210 1,096 3.29
Ventromedial prefrontal cortex (vmPFC) L 22 44 0 256 3.29

Positive vs. surprise

Ventral striatum (vSTR) L 212 28 28 1,872 3.29
Ventromedial prefrontal cortex (vmPFC) R 0 46 0 512 3.29
Ventral striatum (vSTR) R 8 8 26 168 3.29

Negative vs. surprise

Middle insula (mINS) R 40 10 2 544 3.29
Mid cingulate Cortex (MCC) R 6 20 42 144 3.29

Surprise vs. valence

Anterior insula (aINS) R 32 24 24 1,224 3.29
Anterior insula (aINS) L 232 20 22 112 3.29
Ventral tegmental area (VTA) L 26 216 210 96 3.29
Ventral tegmental area (VTA) R 2 220 216 72 3.29
Occipital lobe R 24 280 26 72 3.29

Surprise vs. positive

Anterior insula (aINS) R 32 22 22 1,648 3.29
Middle temporal gyrus (MTG) R 40 246 42 1,184 3.29
Anterior insula (aINS) L 232 22 22 1,016 3.29
Inferior Frontal Gyrus R 52 10 18 184 3.29
Supplementary motor area (SMA) L 22 12 52 160 3.29

Surprise vs. negative

Angular gyrus R 40 246 40 248 3.29
Anterior insula (aINS) R 32 28 26 80 3.29
Dorsal striatum (dSTR) R 12 10 2 56 3.29

TABLE 6 ALE clusters results for the signed RPE studies (FDR-ID
p< .05, with a minimum volume cluster size of 50 mm3)

Region R/L x y z
Cluster
size

ALE
score

Striatum (STR)
(encompasses left
and right hemispheres)

R 12 10 24 10888 0.053

Putamen R 30 26 8 688 0.024

Anterior mid-cingulate
cortex (aMCC)

R 6 26 46 160 0.018

– L 22 14 40 120 0.016

Anterior cingulate
cortex (ACC)

R 4 36 20 112 0.017

Ventromedial
prefrontal (vmPFC)

L 0 34 0 64 0.015

Lateral inferior
frontal gyrus (lIFC)

L 246 4 24 64 0.016

FOURAGNAN ET AL. | 2897



could represent the punishment space in accordance to the first and

the second theories, respectively. Conversely, the network of regions

encompassing the vmPFC, vSTR, PCC and vlOFC could represent the

learning system depicted in the first theory or could represent the

reward space depicted in the second theory. Further research is

required to tease apart the roles of these systems, especially by investi-

gating their precise response profiles in the appetitive (where reward-

ing and non-rewarding outcomes are manipulated) and in a true

aversive (where punishing and non-punishing outcomes are manipu-

lated) domains, respectively.

4.2 | Surprise network

Emerging evidence indicates that the brain encodes the unsigned RPE

signal (surprise), which alerts the organism of relative deviations from

expectations, regardless of the outcome value. However, to date, only

few articles have modelled surprise as such to search for independent

neural representations, with the exception of recent neurophysiological

developments (Brischoux et al., 2009; Matsumoto & Hikosaka, 2009),

recent EEG work (Philiastides et al., 2010b; Yeung & Sanfey, 2004) and

an increasing number of fMRI studies (Fouragnan et al., 2017; Gläscher

et al., 2010; Li & Daw, 2011; Metereau & Dreher, 2013). Nevertheless,

other fMRI studies used variables highly correlated with surprise that

can be employed as proxies (Behrens, Woolrich, Walton, & Rushworth,

2007; Iglesias et al., 2013; Nassar et al., 2012; den Ouden et al., 2012;

Yu & Dayan, 2005). These studies share the assumption that the corre-

sponding BOLD response profile is maximal for high positive and

TABLE 7 ALE cluster results for the contrast analyses of signed RPE and valence as well as signed RPE and surprise (FDR-pN p< .05, with a
minimum volume cluster size of 50 mm3)

Region R/L x y z Cluster size ALE score

Positive—signed RPE

Ventromedial prefrontal cortex (vmPFC) R 2 44 215 160 3.29

Signed RPE—positive

No significant

Negative—signed RPE

Middle insula (mINS) R 40 12 0 528 3.29
Dorsal middle cingulate cortex (dMCC) R 6 22 36 208 3.29
Middle insula (mINS) L 238 18 24 184 3.29
Habenula L 22 226 8 168 2.58
Thalamus R 8 210 5 96 2.58

Signed RPE—negative

Ventral striatum (vSTR) R 10 10 26 2208 3.29

Valence—signed RPE

Ventromedial prefrontal cortex (vmPFC) R 2 44 212 760 3.29
Middle insula (mINS) R 40 12 2 568 2.58
Dorsal middle cingulate cortex (dMCC) R 6 24 38 480 2.58

Signed RPE—valence

Ventral striatum (vSTR) R 12 16 22 184 3.29

Surprise—signed RPE

Anterior insula (aINS) L 234 22 0 704 3.29
Anterior midcingulate cortex (aMCC) R 0 14 52 136 3.29
Pre supplementary motor area (preSMA) R 0 14 52 136 3.29
Anterior insula (aINS) R 38 18 22 88 3.29

Signed RPE—surprise

Ventral striatum (vSTR) L 210 8 210 904 3.29
Ventral striatum (vSTR) R 12 14 23 192 3.29
Ventral striatum (vSTR) R 4 6 26 72 3.29

FIGURE 7 Results of the ALE conjunction analysis for all
components of RPE. Overlay of brain areas individually activated
by (1) valence (orange), (2) surprise (green), and (3) signed RPE
(red), with p values corrected with FDR-pN [FRN]< .05 and a mini-
mum cluster volume of 50 mm3 for the initial maps. Importantly,
the overlap between the three analyses, shown in white, also cor-
responds to the only cluster found for the ALE conjunction analysis
between valence/surprise vs. signed RPE. MNI coordinates are
given below each image [Color figure can be viewed at wileyonline-
library.com]
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high negative RPE and minimal for no RPE, resembling a V-shape, as

illustrated with pattern B in Figure 1. By combining these fMRI

results into a single ALE-analysis, we expose for the first time the net-

work associated with surprise while stressing the need for a common

lexicon for this learning component to guide subsequent research in

the field.

The surprise ALE-analysis revealed a large network including corti-

cal and sub-cortical areas such as aMCC, bilateral aINS, dSTR and mid-

brain, that differed majoritarily from those of valence processing

although small overlaps were found between the two components at

the junction of ventral and dorsal STR, in left aINS and aMCC. Impor-

tantly, the role of surprise is still a subject of debate. Some studies pro-

pose that this network encodes the saliency of an outcome or how

much a stimulus stands out from others (Litt, Plassmann, Shiv, & Ran-

gel, 2011; Zink, Pagnoni, Martin-Skurski, Chappelow, & Berns, 2004).

As such, the surprise system could be considered as a key attentional

mechanism that enables an organism to focus its limited perceptual

and cognitive resources on the most pertinent subset of the available

sensory data, similarly to the attentional mechanism used to guide deci-

sions in the case of salient stimuli (Kahnt & Tobler, 2013). Consistent

with a role in attention regulation, representations of such signal have

been found in lower-level visual areas (Serences, 2008), lateral intrapar-

ietal cortex (Huettel, Stowe, Gordon, Warner, & Platt, 2006; Kahnt &

Tobler, 2013) and areas involved in visual and motor preparation such

as the supplementary motor area (Wunderlich, Rangel, & O’Doherty,

2009) or the supplementary eye field (Middlebrooks & Sommer, 2012;

So & Stuphorn, 2012).

In contrast, it has also been suggested that a surprise system can

independently monitor unexpected information and act as a learning

signal that allows better predictions of upcoming events, and help plan

appropriate behavioural adjustments (Dayan & Balleine, 2002; Foura-

gnan et al., 2017; Kolling, Behrens, Mars, & Rushworth, 2012;

FIGURE 8 Results of the ALE contrast analyses for [signed RPE – positive valence] (left panel), [signed RPE – negative valence] (middle
panel) and [signed RPE – (positive1 negative valence)] (right panel). The p values were corrected with FDR-pN [FRN]< .05 and a minimum
cluster volume of 50 mm3 for the initial maps. Representative slices are shown with MNI coordinates given bellow each image [Color figure
can be viewed at wileyonlinelibrary.com]
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Wittmann et al., 2016). In particular, some studies suggest that the

aINS receives information related to surprise and direct modulation

from the dSTR providing crucial information for behavioural adjustment

(Menon & Levitin, 2005). Along these lines, the surprise signal also cap-

tures the essence of a learning signal that the brain needs to compute

to maintain a homeostatic state (Friston, Kilner, & Harrison, 2006; Fris-

ton, 2009). Practically, this means that the brain elaborates internal pre-

dictions about sensory input and updates them according to surprise, a

process that can be formulated as generalized Bayesian filtering or pre-

dictive coding in the brain. Finally, still in the framework of learning,

some authors argue that surprise can also be considered as a signal pre-

dicting the level of risk associated with a future decision outcome, and

thus reflect a risk RPE (Fiorillo et al., 2003; Preuschoff, Quartz, & Bos-

saerts, 2008; Rudorf, Preuschoff, & Weber, 2012).

4.3 | Neuromodulatory pathways encoding

multicomponent RPE signals

Supporting the idea of separate neural systems for valence and sur-

prise, recent electrophysiological work has revealed both signals exist-

ing in neighbouring groups of neurons. The first study of this kind

observed the response of dopaminergic neurons in ventral and dorsal

areas of the SNc and reported two categories of dopamine neurons

(Matsumoto & Hikosaka, 2009). Some dopamine neurons increase their

phasic firing activity in response to valence while others responded

only to the changes in unsigned RPE, regardless of the valence compo-

nent. The latter population of neurons was located more dorsolaterally

in the SNc, whilst the neurons encoding valence were located more

ventromedially, including the VTA. Interestingly, the dorsolateral SNc

projects mainly to the dorsal STR, whereas the ventral SNc and VTA

project to the ventral STR, which matches the results of our last con-

junction analysis (Figure 7). We found that the only region that enco-

des the full monotonic representation of the RPE as well as the

separate valence and surprise components of RPE seems to be the cen-

tral part of the STR as shown in Figure 7. This result aligns with the

assumption that this region receives direct projections from the mid-

brain dopaminergic neurons encoding a fully monotonic signed RPE sig-

nal (Schultz et al., 1997). Additionally, the meta-analysis also revealed

that both the valence (POS>NEG) and surprise networks include

activity in the midbrain, confirming this hypothesis.

It is important to note that identifying neural activity associated

with valence and surprise signals is challenging because in many experi-

mental paradigms both components are highly correlated. For example,

when positive RPE are manipulated in isolation, valence (POS>NEG)

strongly correlates with surprise. Additionally, whether positive or neg-

ative, an unexpected outcome attracts more attention, leads to higher

levels of emotional arousal and involves higher levels of motor prepara-

tion compared with no RPE (Matsumoto & Hikosaka, 2009; Maunsell,

2004; Roesch & Olson, 2004). Consequently, to disentangle these sig-

nals, one needs to design tasks in which the level of valence and sur-

prise can independently be controlled and decoupled (Kahnt, 2017;

Kahnt & Tobler, 2013) or capitalize on the variability of physiologically

derived responses (i.e., endogenous variability) associated with valence

and surprise (Fouragnan et al., 2015; Fouragnan et al., 2017; Pisauro,

Fouragnan, Retzler, & Philiastides, 2017).

It is important to note that since the problem of collinearity and

functional specificity of some brain regions is already present in single

studies, it will inevitably be carried over to studies performing conjunc-

tion meta-analyses. Virtually every experimental design engages a large

number of cognitive operations and, thereby, activates functional neu-

ral networks that may be irrelevant to a particular regressor (psycholog-

ical construct) of interest. For example in our study, regions related to

outcome valence and surprise might share variance with outcome con-

fidence (Gherman & Philiastides, 2015; Gherman & Philiastides, 2017;

Lebreton, Abitbol, Daunizeau, & Pessiglione, 2015; Philiastides, Heeke-

ren, & Sajda, 2014). Despite this general limitation and the difficulty of

interpreting conjunction results, aggregating results across a large num-

ber of experiments allows one to expose convergence of findings

across studies and increasing the generalizability of the conclusions. In

particular, this meta-analysis, capitalizing on both individual maps of

activations as well as contrasts between different outcome compo-

nents, points to a distributed encoding of valence and surprise, with

potentially distinct functional roles.

4.4 | Temporally specific components of RPE

processing

The presence of separate RPE-related neural systems raises the ques-

tion of how these systems unfold in time. Capitalizing on the high tem-

poral resolution of EEG, three recent studies using simultaneous EEG-

fMRI have started to shed light on the spatiotemporal characterisation

of the RPE components. First, these studies have revealed two tempo-

rally specific EEG components discriminating between positive and

negative RPEs peaking around 220 and 300 ms, respectively, largely

consistent with the timing of the feedback-related negativity and

feedback-related positivity ERP components (Cohen, Elger, & Ranga-

nath, 2007; Hajcak, Moser, Holroyd, & Simons, 2006; Yeung & Sanfey,

2004). Additionally, the studies also revealed a late unsigned RPE com-

ponent which overlaps temporally with the late valence signal (Philiasti-

des et al., 2010b) but appears in a largely separate and distributed

neural network (Fouragnan et al., 2017).

Based on these previous studies and the current meta-analysis, we

propose that the early and late EEG valence components might reflect

the separate contributions of the two networks of areas found for the

ALE-valence analyses. This proposal assumes that an early network

processes mainly negative RPEs in order to initiate a fast alertness

response in the presence of negative outcomes. Conversely, a later

network—associated with the brain’s reward circuitry—is modulated by

both positive and negative RPEs, consistent with a role in approach/

avoidance learning and value updating (Philiastides, Biele, & Heekeren,

2010a). We also propose that the surprise network unfolds near simul-

taneously with the late valence component and thus influences learning

through largely distinct spatial representations of the two outcomes

signals, which happen to form a composite signal in overlapping areas

(Fouragnan et al., 2017).
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4.5 | Full representation of a monotonic signed RPE

signal

To examine the spatial profile of a true monotonic signed RPE repre-

sentation in the human brain, we pooled results from fMRI studies,

which hypothesized that RPE-like learning is driven by a simultaneous

representation of both categorical valence and surprise. These fMRI

studies are based on the influential assumption that BOLD signal

increases monotonically as a function of signed RPE, as illustrated in

pattern C (Figure 1), equivalent to the teaching signal that is predicted

in the Rescorla–Wagner model of RL (Rescorla & Wagner, 1972). Addi-

tionally, we combined the valence and surprise networks and subse-

quently compared it with the signed RPE to test the requirement that

the signed RPE simultaneous encodes both components. This conjunc-

tion analysis revealed that the only brain region that seems to encode a

true monotonic signal is the STR in the basal ganglia, which could

explain why such a signal is not tractable with EEG recordings as high-

lighted earlier. This result confirms the long standing view that the

BOLD activity in STR mirrors the dopaminergic signalling of the meso-

limbic neurons (Delgado, Nystrom, Fissell, Noll, & Fiez, 2000; Haber,

Kunishio, Mizobuchi, & Lynd-Balta, 1995; O’Doherty et al., 2004; Pag-

noni, Zink, Montague, & Berns, 2002) that fully encode the RL predic-

tion error signal of the Rescorla–Wagner rule (Ikemoto, 2007; Schultz

et al., 1992).

Nonetheless, the ALE contrast analyses between valence (the posi-

tive correlation with pattern A [ii]) and signed RPE revealed no signifi-

cant activation, whereas the reverse contrast revealed a denser cluster

of activity in vmPFC for valence than signed RPE. Given the evidence

presented above that the signed RPE may only be encoded in the STR,

we suggest that this result may arise due to collinearities between

valence and signed RPE or surprise and signed RPE. More precisely, a

parametric predictor for signed RPE would be positively correlated

with the contrast positive>negative outcomes whereas the signed

RPE and surprise would be perfectly correlated in the positive (appeti-

tive) domain.

5 | CONCLUSION

In conclusion, the current meta-analysis points to a framework

whereby heterogeneous signals are involved in RPE processing. The

proposal of a temporally distinct and spatially distributed representa-

tion of valence and surprise is open to debate and many questions

remain about how these signals interact and how they correspond to

the computations made in the brain. For example, it is currently unclear

whether valence and surprise encoding occur before the computation

of the signed RPE, or whether these three computations are performed

in parallel. Nevertheless the taxonomy proposed is conceptually useful

because it breaks down the learning and valuation processes into testa-

ble components and organizes the RPE literature in terms of the com-

putations that are potentially involved. It will require additional

experiments to validate the current proposal and to better understand

the complexity of RPE processing.
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