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Abstract
Tensor-based morphometry (TBM) performed using T1-weighted images (T1WIs) is a well-

established method for analyzing local morphological changes occurring in the brain due to nor-

mal aging and disease. However, in white matter regions that appear homogeneous on T1WIs,

T1W-TBM may be inadequate for detecting changes that affect specific pathways. In these

regions, diffusion tensor MRI (DTI) can identify white matter pathways on the basis of their dif-

ferent anisotropy and orientation. In this study, we propose performing TBM using deformation

fields constructed using all scalar and directional information provided by the diffusion tensor

(DTBM) with the goal of increasing sensitivity in detecting morphological abnormalities of spe-

cific white matter pathways. Previously, mostly fractional anisotropy (FA) has been used to drive

registration in diffusion MRI-based TBM (FA-TBM). However, FA does not have the directional

information that the tensors contain, therefore, the registration based on tensors provides bet-

ter alignment of brain structures and better localization of volume change. We compare our

DTBM method to both T1W-TBM and FA-TBM in investigating differences in brain morphology

between patients with complicated hereditary spastic paraplegia of type 11 (SPG11) and a

group of healthy controls. Effect size maps of T1W-TBM of SPG11 patients showed diffuse

atrophy of white matter. However, DTBM indicated that atrophy was more localized, predomi-

nantly affecting several long-range pathways. The results of our study suggest that DTBM could

be a powerful tool for detecting morphological changes of specific white matter pathways in

normal brain development and aging, as well as in degenerative disorders.
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1 | INTRODUCTION

Across the lifespan in health and in disease, brain morphology

undergoes remarkable changes. To assess interindividual and group

differences in brain anatomy from MRI scans, often the image data of

each subject are registered into a common space or template. The

deformation fields that map individual images from their native space

to the common space can then be used as a measure of difference in

brain morphology. This approach is generally known as deformation-

based morphometry. When the spatial derivatives of the deformation
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fields (the Jacobian) are used, the approach is called tensor-based mor-

phometry (TBM; Ashburner et al., 1998; Ashburner & Friston, 2004;

Davatzikos et al., 1996). An important feature of the deformation field

is the determinant of the Jacobian (J). J encodes the volume of the

deformed unit-cube after registration, therefore it is a measure of local

expansion or contraction of volume. In imaging, a voxel can be consid-

ered as a unit-cube. A J value of 1 indicates no change in volume,

J < 1 indicates local contraction (i.e., tissue loss), and J > 1 indicates

local expansion (i.e., growth), therefore, J can be used as a method to

detect local volume change in development or disease. Indeed, TBM

has been used to study normal brain development and many brain dis-

orders including Alzheimer’s disease, HIV/AIDS, Huntington’s disease,

and schizophrenia (Chiang et al., 2007; Hua et al., 2008; Kipps et al.,

2005; Thompson et al., 2000). TBM has been predominantly per-

formed using structural MRI images, in particular T1-weighted images

(T1WIs) to drive the registration algorithm, as they provide good delin-

eation between white matter, gray matter, and cerebrospinal fluid

(CSF). However, it is important to consider that the signal intensity

within white matter appears relatively homogenous in T1WIs making

it difficult to detect morphological changes of specific white matter

pathways contained in large white matter regions.

Diffusion tensor imaging (DTI; Basser, Mattiello, & LeBihan, 1994)

is an MRI modality that is particularly suitable for identifying individual

white matter pathways (Pierpaoli, Jezzard, Basser, Barnett, & Di Chiro,

1996). DTI provides information about the principal direction of diffu-

sion which is locally collinear with the orientation of major fiber bun-

dles, as well as scalar metrics, such as fractional anisotropy (FA) and

the mean diffusivity (MD; i.e., Trace of the diffusion tensor/3; Basser &

Pierpaoli, 1996). TBM has been applied to diffusion MRI data in lim-

ited cases. However, mainly the scalar maps derived from DTI, such as

FA or low b-value DWIs were used to drive the registration (Oishi

et al., 2011; Pagani, Horsfield, Rocca, & Filippi, 2007; Verma et al.,

2005) with the exception of work by Studholme (2008), where a

weighted combination of diffusion tensor elements and T1WIs were

used. Using the directional information provided by the diffusion ten-

sor enables a better identification of individual white matter pathways

compared to using scalar diffusion metrics, such as FA or T1WIs and

T2-weighted images (T2WIs; Pajevic & Pierpaoli, 1999). For example,

the cingulum bundle (CB) can easily be differentiated from the corpus

callosum (CC) or the corticospinal tract (CST) from the transverse pon-

tine fibers in the directionally encoded color (DEC) maps (Pajevic &

Pierpaoli, 1999), while the demarcation between these pathways is

not easy to assess with FA, T1WIs, or T2WIs.

Alignment of diffusion tensor images is a more involved process

compared to the alignment of scalar images as the tensors must be

reoriented to be consistent with the reorientation of anatomical struc-

tures. There has been extensive work on performing proper alignment

of diffusion tensor images, for example, using the deviatoric of the dif-

fusion tensor and optimizing tensor orientation explicitly (Zhang et al.,

2007), and using the full diffusion tensor (Irfanoglu et al., 2016). How-

ever, previous work has concentrated on the improvement of registra-

tion and subsequent voxelwise analysis of diffusion derived metrics

and not on the TBM of deformation fields themselves. In this study,

we propose to use diffusion tensor data to drive the registration, tak-

ing advantage of both DTI scalar and vectorial information and

perform TBM on these deformation fields. We hypothesize that TBM

based on deformation fields obtained by registration of diffusion ten-

sors (DTBM) will be more sensitive than TBM based on scalar images,

such as T1WIs (T1W-TBM) and FA (FA-TBM) in detecting morpho-

metric changes in specific white matter pathways. We used all the

three TBM methods, DTBM, T1W-TBM, and FA-TBM, to assess their

ability to characterize morphometric abnormalities with respect to

controls in a group of patients with spastic paraplegia of type

11 (SPG11), a rare disorder that is well defined genetically, and has

certain disease characteristics involving atrophy of white matter, mak-

ing it particularly suitable for testing our hypothesis.

Spastic paraplegia of type 11 is a subtype of hereditary spastic

paraplegia (HSP), a group of inherited disorders characterized by pro-

gressive spasticity and lower limb weakness produced by abnormali-

ties in the protein spatacsin caused by a mutation in the SPG11 gene.

Although the function of spatacsin is not completely clear, current evi-

dence suggests it may be involved in anterograde vesicle trafficking

and axonal transport (Pérez-Brangulí et al., 2014), both of which are

expected to play a crucial role in axonal maintenance, in particular for

long-range white matter pathways. SPG11 is therefore an appropriate

candidate for assessing the sensitivity of TBM methods as multiple

white matter pathways including commissural, association, and projec-

tion pathways are affected (Cao et al., 2013; Chen et al., 2008; França

et al., 2012; Garaci et al., 2014). A common MRI finding is a thin CC,

which is visually detectable (Cao et al., 2013; Fink, 2013; Stevanin

et al., 2007). In addition, a common documented pathological feature

of HSP is the axonal degeneration of the CST (motor pathway) along

the medulla and spinal cord (Deluca, Ebers, & Esiri, 2004; McDermott,

White, Bushby, & Shaw, 2000; Salinas, Proukakis, Crosby, & Warner,

2008; Wharton et al., 2003; White et al., 2000). We hypothesized that

DTBM will have an advantage in detecting CST atrophy, especially at

the level of the brainstem where DTI provides additional information

(these regions appear homogenous in the T1WIs). Another region of

interest is the centrum semiovale where multiple long-range pathways

are located, DTBM might be able to detect whether these white mat-

ter tracts are differentially affected as this region also appears homog-

enous in the T1WIs. Moreover, if the role recently proposed for

spatacsin by Pérez-Brangulí et al. (2014) in SPG11 involves more

selective loss of long-range fibers, DTBM should be able to detect a

pattern of white matter atrophy that affects preferentially selected

white matter pathways.

2 | MATERIALS AND METHODS

2.1 | Subjects

Twenty-four healthy volunteers (mean age of 35 and standard deviation

of six years; 15 female and 9 male) with no history of neurological disor-

ders and normal MRI, and four subjects diagnosed with SPG11 (mean

age of 32 and standard deviation of three years; four female) were

included in this study. The study was approved by the Ethics Commit-

tee and written informed consent was obtained from all subjects.
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2.2 | Image acquisition

All participants were scanned on a Philips 3T system with a 32-channel

head coil. The DTI data were acquired with a single-shot spin-echo

echo-planar imaging (EPI) sequence (repetition time [TR]: 4,700 ms,

echo time [TE]: 80 ms, 80 slices, acceleration factor: 2 with an isotropic

voxel size of 2.2 × 2.2 × 2.2 mm3). A multishell DTI protocol composed

of eight nondiffusion-weighted images along with 15 volumes with b-

value of 300 s/mm2 and 53 volumes with b-value of 1,100 s/mm2.

Additionally, MPRAGE 3D T1WIs (sequence parameters: TR: 8.2 ms,

TE: 3.8 ms, voxel size: approximately 1 × 1 × 1 mm3) and T2WIs

(sequence parameters: TR: 3,000 ms, TE: 100 ms, voxel size: approxi-

mately 1.5 × 1.5 × 1.7 mm3) were obtained.

2.3 | Diffusion-weighted image processing

Diffusion-weighted volumes were processed with the diffprep module

of the TORTOISE software package1 (Irfanoglu, Nayak et al., 2017;

Pierpaoli et al., 2010). The processing steps included: reduction of the

effects of motion and eddy current distortions with appropriate rota-

tions to the b-matrix (Rohde, Barnett, Basser, Marenco, & Pierpaoli,

2004), correction of EPI distortions by nonlinear B-spline registration

to the individual’s undistorted structural T2WI (Wu et al., 2008), and

reorientation of all volumes to a common standard orientation with

the midsagittal plane of the image separating the two hemispheres

and the intersection of the anterior and posterior commissures with

the sagittal plane lying on the same axial slice (midsagittal and AC–PC

alignment). All corrected DWIs were systematically inspected for the

presence of uncorrected motion. A DWI volume was removed if it

showed uncorrected motion. Subsequently, robust estimation by out-

lier rejection tensor estimation (RESTORE; Chang, Jones, & Pierpaoli,

2005; Chang, Walker, & Pierpaoli, 2012) of the diffcalc module of

TORTOISE package (Pierpaoli et al., 2010) was used to estimate the

diffusion tensor.

2.4 | Spatial normalization and construction of
Jacobian maps

In general, an average template is a 3D image that should represent

the average of features (e.g., size, shape, and composition) of the

imaged anatomical organ in the population of interest. Spatial normali-

zation is necessary for both constructing the average template and

assessing morphological differences between individual subjects and

the template. We used two software programs for spatial normaliza-

tion. For T1W images and FA maps, we used the well-established

ANTS software (Avants et al., 2010, 2011). For DTI spatial normaliza-

tion we used the recently developed DR-TAMAS software (Irfanoglu

et al., 2016).

DR-TAMAS is a diffeomorphic diffusion tensor-based registration

method that uses all scalar and vectorial tensor features (anisotropy,

Trace, eigenvectors) in its cost function, achieving good overall quality

of registration in white matter, gray matter, and CSF regions (Irfanoglu

et al., 2016). For the purpose of template building, at each iteration,

we added the constraint that the sum of the displacement fields from

the template to each individual image is zero at each voxel location to

ensure the computed template represents the average morphology of

the population (Irfanoglu, Sadeghi et al., 2017). We built modality-

specific control templates using ANTS and DR-TAMAS software with

the symmetric normalization (SyN) diffeomorphic transformation

model option proposed by Avants, Epstein, Grossman, and Gee

(2008). SyN transformation model has been shown to be powerful

and fast (Klein et al., 2009; Murphy et al., 2011).

For each modality (T1W, FA, and DTI), individual subjects were

registered to the control template, and the corresponding transforma-

tions (combined affine and nonlinear transformations) were used to

compute the modality-specific log of determinant of Jacobian (LogJ)

maps for each subject. To test the hypothesis that long-range fibers

were more selectively affected, deterministic tractography (Mori &

van Zijl, 2002; Wang, Benner, Sorensen, & Wedeen, 2007) performed

on the DTI average template of the control subjects was used to

assess which pathways pass through regions that showed localized

atrophy (negative values in the LogJ maps) in SPG11 patients. The

angular threshold for terminating streamline propagation was set to

20� as this has been shown to yield relatively higher specificity in the

anatomical accuracy of pathways visualized using diffusion tractogra-

phy (Thomas et al., 2014). The extracted tracts were identified and

labeled according to the terminology used by Catani and de

Schotten (2012).

2.5 | Statistical analysis

Permutation testing was performed to determine whether the LogJ

maps of SPG11 were significantly different from the control. FSL ran-

domize software was used to determine the p values (Winkler, Ridgway,

Webster, Smith, & Nichols, 2014) and corrected for multiple compari-

sons using family-wise error rate of 5% (p < .05). In addition, effect size

maps were computed using the following formula: ([mean of

patients] – [mean of controls])/pooled standard deviation. As the two

groups are dissimilar in size, we used pooling of weighted standard

deviation such that each group’s standard deviation is weighted by its

sample size (Hedges, 1981).

3 | RESULTS

Figure 1 shows voxelwise maps of the effect size for LogJ maps

obtained from T1W-TBM as it is typically performed, as well as FA-

TBM which also uses scalar images for registration, and our proposed

DTBM method which uses tensor data for registration. The axial slices

show effect size for LogJ maps at different rostrocaudal brain levels

and, being scaled with the same window, allow comparison of these

three different approaches. Negative values (darker regions) in the

effect size maps indicate areas that are smaller in the patients with

respect to the controls, and positive values (brighter regions) indicate

regions that are larger in the patients compared to the controls. Note

that the scale is from negative seven to seven, where an effect size of

0.8 is considered a large effect size (Cohen, 1988). As one of the main

characteristics of HSP is progressive weakness and spasticity of the

lower limbs, it is important to examine the results specifically with1http://www.tortoisedti.org.

SADEGHI ET AL. 4645

http://www.tortoisedti.org


regard to the changes in the apparent size of the CST in the patient

group. Figure 1a–c shows the CST at the level of the medulla where a

sensitive method should be able to detect atrophy of the CST, which

is well documented histologically in SPG11 (Deluca et al., 2004;

McDermott et al., 2000; Salinas et al., 2008; Wharton et al., 2003;

White et al., 2000). Atrophy is clearly evident for data processed with

FIGURE 1 Control templates and effect size of LogJ maps for T1W-TBM, DTBM, and FA-TBM at seven different axial slices (a–g) are shown. Dark

voxels in the effect size images represent regions where structures in the patient group are smaller than the control group (regions of atrophy or
hypoplasia), whereas the bright regions, such as CSF spaces and ventricles, are areas that are larger in the patient group compared to the control
group. Fiber tracts that show large effect size in DTBM are labeled. AF = arcuate fasciculus, bCC = body of CC, CST = corticospinal tract; gCC = fibers
from the genu of the CC; IFOF = inferior fronto-occipital fasciculus; sCC = fibers from the splenium of the CC; UF = uncinate fasciculus. The brain is
presented in radiological convention with the right hemisphere on the left of the image
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DTBM, while the T1W-TBM maps are unremarkable at this level. This

is probably caused by the lack of contrast in this region in the T1W

images. FA-TBM maps show some CST atrophy, but less clearly

than DTBM.

Figure 1d shows atrophy of additional white matter pathways

projecting along the extreme capsule. This region has been described

as an area, where several long-range white matter pathways converge

(Maier-Hein et al., 2017) making it difficult to distinguish whether the

atrophy is specific to the inferior fronto-occipital fasciculus (IFOF) or

the uncinate fasciculus (UF). Nonetheless, all three approaches iden-

tify atrophy in this region, with T1W-TBM also indicating atrophy in

the posterior region of the brain.

Next, we looked at the effect size maps at the level of CC

(Figure 1e). A common finding in conventional MRI data of SPG11

patients is thin CC. Effect size maps of all three methods (DTBM, FA-

TBM, and T1W-TBM) also indicate a thin CC for the SPG11 patients,

however, the magnitude and extent of the effect is larger in the

DTBM compared to the T1W-TBM and FA-TBM. Also, of note is the

indication of atrophy of the thalamus and enlargement of ventricles at

this level (Figure 1e), which is evident in DTBM and T1W-TBM, but

not in FA-TBM, which fail to differentiate the anterior horn of lateral

ventricles and the caudate nuclei. This is not surprising given the low

FA of both CSF and the gray matter, there is no contrast between

these two structures to drive the registration in FA-TBM. Both T1W-

TBM and DTBM are much more effective in showing the specific

enlargement of the lateral ventricles.

Figure 1f,g shows axial slices at the level of the centrum semio-

vale, which contains association, commissural, and projection fibers.

The centrum semiovale appears as a homogenous white matter region

in the T1W images, however, multiple fiber bundles are evident on

the DEC maps. The effect size maps of Figure 1f,g show that white

matter architecture along the centrum semiovale is greatly altered in

the SPG11 patient group. Effect size maps of T1W-TBM show diffuse

atrophy in this region, whereas, DTBM maps help identify localized

white matter pathways that are more selectively affected. Cingulum,

CC, and arcuate fasciculus (AF) are among the white matter pathways

that are severely affected, as indicated in the DTBM maps and to a

much lesser degree in the FA-TBM.

Figure 2 shows the results of the statistical voxelwise analysis of

LogJ maps. Regions in red correspond to statistically significant white

matter atrophy in SPG11 patients. All three TBM approaches show

some areas of significant volumetric reduction in SPG11 patients com-

pared to the control group, but the spatial localization and the extent

of the regions are different for the different methods. DTBM atrophy

is localized and predominantly affects several long-range white matter

pathways. These specific white matter pathways (Figure 3) can be

traced by following dark regions (indicative of volume loss) in the

effect size maps (Figure 1). These white matter tracts include commis-

sural pathways, association pathways (most prominently the AF, but

also the IFOF, UF, and CB), and projection pathways (CST). In addition

to white matter regions, significant atrophy was also detected in gray

matter regions, such as the thalamus (Figure 2e). The spatial extent of

the atrophy detected by T1W-TBM is relatively large but less localized

to specific white matter bundles. FA-TBM shows the least spatial

extent of atrophy. Interestingly, only DTBM detects significant atro-

phy of the CST.

In addition to group analysis, we looked at the brain morphology

at the single subject level by generating z-score maps for each of the

SPG11 subjects (see Supporting Information Figures). DTBM showed

a pattern of atrophy that is symmetric between left and right hemi-

spheres and consistent across subjects (Supporting Information

Figure S1). For example, Supporting Information Figure S1f,g shows

different fiber tracts in centrum semiovale, which are consistently

detected for each subject, and the magnitude of the z-scores is larger

compared to T1W-TBM and FA-TBM. Atrophy of CST was detected

with a z-score of >4 in three of the four SPG subjects (Supporting

Information Figure S1a,b), but was not detected by T1W-TBM and

only detected in two subject with a lower z-score by FA-TBM. Similar

to the group comparison, T1W-TBM showed diffuse white matter

FIGURE 2 Regions of statistically significant atrophy (red regions) in

the SPG11 patients compared to the controls using the three
different approaches: T1W–TBM (left column), DTBM (middle
column), and FA–TBM (right column). Significance map is overlaid on
the control T1W template. Fiber tracts that show statistically
significant volumetric reduction are: AF = arcuate fasciculus;
bCC = body of CC; CST = corticospinal tract; gCC = fibers from the
genu of the CC; IFOF = inferior fronto-occipital fasciculus;
UF = uncinate fasciculus. The brain is presented in radiological
convention with the right hemisphere on the left of the image
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atrophy at the individual level, however, the regions of atrophy were

not as consistent among SPG11 subjects as the regions identified by

DTBM (Supporting Information Figure S2). FA-TBM showed less atro-

phy overall compared to the other two methods (Supporting Informa-

tion Figure S3).

4 | DISCUSSION

In this study, we proposed a novel way of performing TBM that is

driven by scalar and vectorial information of the diffusion tensor.

DTBM offers multiple advantages over the scalar-based TBM

methods of T1W-TBM and FA-TBM, including the ability to localize

patterns of volume change to specific fiber pathways within white

matter regions that appear homogenous in T1W images. Additionally,

DTBM was found to detect volume changes with higher sensitivity, as

indicated by the greater magnitude of its effect size. Finally, DTBM

was able to reveal volume abnormalities that were invisible using

other TBM methods in tracts with known involvement in HSP, such as

the CST (Deluca et al., 2004; McDermott et al., 2000; Salinas et al.,

2008; Wharton et al., 2003; White et al., 2000).

We chose to evaluate brains of SPG11 patients to evaluate the

utility of our proposed method, because SPG11 shows evident white

matter atrophy in the CC, which could imply atrophy of other long-

range white matter pathways (França et al., 2012), in addition to diffu-

sion anisotropy abnormalities detected using DTI (França et al., 2012;

Garaci et al., 2014). While both morphometric and microstructural

alterations are implicated in this disorder, it is important to emphasize

that they can have different etiology and consequences, and therefore

the primary goal of this study was to evaluate morphometric analysis

tools to complement the analysis of DTI scalar quantities, such as FA,

that have already been described in the literature.

Given the disorder’s rarity, most previous studies including our

study are limited to a small number of patients, but anatomical

abnormalities that accompany the disorder are quite consistent across

subjects and large in magnitude. For example, in several long-range

white matter pathways we found an effect size for DTBM that was

nearly an order of magnitude higher than what is considered a large

effect size. The prominence of abnormalities, along with a suitable

number of controls, allowed the generation of z-score maps for asses-

sing brain morphology at a single subject level (see Supporting Infor-

mation Figures). Taken together, the findings of this study support the

use of DTBM to provide morphometric metrics that are not available

using other approaches.

4.1 | Potential of DTBM in characterizing CNS
disorders and its relationship to DTI

In this study, we have shown that DTBM provides useful information

about white matter changes in SPG11 patients. On a more general level,

one could ask what role DTBM could play in characterizing other CNS

disorders and how its use could be integrated into a more classical

voxel-based analyses of diffusion metrics, such as FA and MD.

While voxelwise analysis of FA or MD offers insights about changes in

microstructure and architecture (e.g., intravoxel orientational arrange-

ment of fibers) within a structure of interest, DTBM analysis offers

insights about changes in the size of a given structure. In some disor-

ders, both the microstructure and the size of the fiber bundle might be

affected, which is likely the case for SPG11. Previous studies have

indeed found diffuse FA abnormalities in SPG11 (França et al., 2012).

However, this is not always the case, as FA and volume metrics are

intrinsically different. For example, we have recently shown that in

Down syndrome using TBSS analysis on FA reveals no differences

between patients and controls, while DTBM detects highly significant

differences in several brain regions (Pierpaoli et al., 2018). In another

study of patients with Moebius syndrome, we found no significant dif-

ferences in FA and TR between patients and controls, but DTBM

detected atrophy in the posterior pons, including medial longitudinal

fasciculus (Sadeghi et al., 2017, 2018). For SPG11 subjects, in contrast

to previous DTI studies where diffuse white matter abnormalities were

detected, DTBM was able to localize patterns of volume reduction

within the white matter regions and to indicate a more severe and focal

atrophy specifically affecting several long-range pathways, including

association, commissural, and projection pathways. Given that impaired

axonal transport has been implicated in the pathogenesis of SPG11, this

finding is consistent with the idea that long-range pathways could be

selectively affected in SPG11, because they are more vulnerable to

impaired axonal transport.

One can also imagine other scenarios, where DTI measurements

and morphometric measurements are affected differently. For exam-

ple, consider a scenario in which the patient group is characterized by

thinning of white matter pathways with preserved microstructure

(i.e., fewer fibers, but with the remaining fibers structurally unaltered).

In such a scenario, voxelwise analysis of FA should reveal no decrease

in FA (although in practice we may find a reduction in FA, due to the

contribution of partial volume contamination from the surrounding

tissue). In this case, DTBM analysis would reveal the loss of volume

due to a decrease in the number of fibers and provide a better under-

standing of the underlying change in the white matter structures. In

another scenario, it may be that the structure of a fasciculus is altered

FIGURE 3 Fiber tracts that pass through regions of atrophy detected

by DTBM in the left hemisphere. AF = arcuate fasciculus;
CB = cingulum bundle; CST = corticospinal tract; IFOF = inferior fronto-
occipital fasciculus; ILF = inferior longitudinal fasciculus; UF = uncinate
fasciculus. Remarkably, these are all long-range fiber tracts
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in the patient group due to interstitial edema, but the overall size of

the fasciculus is not changed—or even it may have increased. In this

case, analysis of the LogJ maps may not reveal meaningful changes,

while analysis of FA will show a remarkable reduction. In yet another

scenario, involving gliosis accompanied by relatively minor loss of fiber

in a brain region, voxelwise analysis of FA would be more informative

as the architecture of the tissue may have changed without altering

the overall size of the tissue.

4.2 | Image processing factors and their influence
on DTBM

One factor that could affect the result of analysis of LogJ maps is the

choice of smoothing parameters during registration. DR-TAMAS and

ANTS use two sets of smoothing, one is the smoothing of the images

and the other is the smoothing of the deformation fields. We use a

similar strategy to smooth deformation fields, and we used the same

value for the smoothing parameter across all methods when register-

ing all subjects to the control template. In our experience, deformation

field smoothing affects the LogJ maps the most and we used zero

smoothing to preserve the location of atrophy and avoid blurring of

tissue boundaries. Another parameter that could also affect the results

is the step size used in the registration optimization algorithm. We

also ensured that these parameters are consistent between the two

programs. A small amount of smoothing can lead to a negative Jaco-

bian, which is inconsistent with diffeomorphism. However, excessive

smoothing can also blur the tissue boundaries. In this study, we

decided to use limited image smoothing and no smoothing for defor-

mation fields to preserve tissue boundaries and avoid blurring in the

LogJ maps, however, this resulted in a negative Jacobian for a few

voxels in the CC for SPG11 patients. In the future, development of

the anisotropic smoothing kernel used during registration might rem-

edy some of these issues.

It is worth noting that LogJ maps are also affected by the arrange-

ment and sparsity of the fibers in the white matter bundle. For exam-

ple, as is evident in Figure 1, a reduction in the CST volume is

apparent in the LogJ maps of DTBM at the level of the medulla, but is

not evident at the level of the pons. While taking this finding at face

value may lead to the unlikely conclusion that the CST is differently

impacted at different levels of the brainstem, a more plausible expla-

nation is that the voxels containing the CST at the level of the medulla

contain only CST fibers, whereas at the level of the pons they contain

the CST as well as other pathways. In general, in regions containing

multiple white matter pathways, the magnitude of the selective

shrinkage of one of them will be diluted. For example, if pathway A

represents 10% of the tissue in the voxel and its volume is reduced by

50%, the overall volume reduction in that voxel would be 5%, whereas

if the pathway is the only white matter bundle in the voxel then the

measured volume reduction would be 50%. Using multi-fascicle regis-

tration methods such as the one proposed by Taquet et al. (2014)

should improve DTBM in the crossing fiber regions.

Another important issue that could potentially affect the DTBM

analysis is geometric distortion of the DTI data. We used registration

of B0 images to undistorted T2W images to correct for distortion

(Wu et al., 2008). However, one could use field maps or, if the data

were acquired with multiple phase encoding directions, an algorithm

such as DR-BUDDI (Irfanoglu et al., 2015) can be used to correct for

this distortion.

5 | CONCLUSIONS

All TBM methods appear to detect white matter abnormalities, how-

ever, our findings suggest that DTBM is more informative and enables

a better localization of white matter change within regions that appear

homogenous in T1W images. Relative to FA-TBM, DTBM shows more

severe white matter atrophy and is able to detect enlargement of CSF

spaces and atrophy of gray matter regions. As DR-TAMAS takes the

full diffusion tensor into account and uses deviatroic and Trace met-

rics when registering subjects to the control template, DTBM is able

to detect differences even in regions with low anisotropy. DTBM

combines the advantages of T1W-TBM and FA-TBM and provides a

better delineation of atrophic regions. DTBM has the strength of

T1W-TBM in detecting atrophy of gray matter regions and enlarge-

ment of CSF spaces and the strength of FA-TBM in localizing white

matter atrophy that appears homogenous in T1W images with a

greater specificity.

DTBM has potential for clinical applications in assessing brain

morphology in a single subject or group comparison, as demonstrated,

provided that normative data acquired with similar experimental

parameters are available for the control population. A natural applica-

tion of this method would be the analysis of volume changes of white

matter pathways in brain development and aging, or using LogJ maps

as an input to a classification algorithm. When atrophy or hypoplasia

is severe, assessing group differences with deformation-based analysis

would be more appropriate conceptually than voxelwise analysis of

DTI-derived metrics, which would be biased by the presence of partial

volume contamination.
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