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Abstract
The inhibition of prepotent responses is a requirement for goal-directed behavior and several fac-

tors determine corresponding successful response inhibition processes. One factor relates to the

degree of automaticity of pre-potent response tendencies and another factor relates to the degree

of cognitive control that is exerted during response inhibition. However, both factors can con-

jointly modulate inhibitory control. Cognitive theoretical concepts suggest that codings of

stimulus-response translations may underlie such conjoint effects. Yet, it is unclear in how far such

specific codes, as assumed in cognitive psychological concepts, are evident in neurophysiological

processes and whether there are specific functional neuroanatomical structures associated with

the processing of such codes. Applying a temporal decomposition method of EEG data in combina-

tion with source localization methods we show that there are different, intermingled codes (i.e.,

“stimulus codes” and “response selection codes”) at the neurophysiological level during conjoint

effects of “automatic” and “controlled” processes in response inhibition. Importantly, only

“response selection codes” predict behavioral performance, and are subject to conjoint modula-

tions by “automatic” and “controlled” processes. These modulations are associated with inferior

and superior parietal areas (BA40/BA7), possibly reflecting an updating of internal representations

when information is complex and probably difficult to categorize, but essential for behavioral con-

trol. Codes proposed by cognitive, psychological concepts seem to have a neurophysiological

analogue that fits into current views on functions of inferior and superior parietal regions.
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1 | INTRODUCTION

The inhibition of prepotent responses is a major requirement for goal-

directed behavior and an important instance of cognitive control (Bari

& Robbins, 2013). In the last years, a lot of research has been con-

ducted to understand which factors determine successful response

inhibition processes. Several lines of evidence suggest that one factor

relates to the degree of automaticity of prepotent response tendencies

(Chmielewski, M€uckschel, Dippel, & Beste, 2015; Dippel, Chmielewski,

M€uckschel, & Beste, 2015; Donkers & van Boxtel, 2004; Helton, 2009;

McVay & Kane, 2009; M€uckschel, Chmielewski, Ziemssen, & Beste,

2017a), and that another factor relates to the degree of cognitive

control that is exerted during response inhibition (Aron, 2007;

Ridderinkhof, van den Wildenberg, Segalowitz, & Carter, 2004). While

these factors may be regarded to be mutually exclusive, recent findings,

however, suggest that both of these factors (i.e., “automaticity” and

“cognitive control”) exert conjoint effects (Chmielewski & Beste,

2016b) and that conflicts can foster response inhibition processes

depending on how much response inhibition performance relies upon

automatic or controlled processes.

To examine the interaction of automatic and controlled processes

during response inhibition, these processes need to be dissociable at

the experimental level. This can be achieved by combining a Go/NoGo

with a Simon task in a “Simon Go/NoGo” task. In Simon tasks, conflicts

occur depending on the congruency, or incongruence of stimulus later-

ality and response (motor) effector. No conflicts are evident in

Hum Brain Mapp. 2018;39:1839–1849. wileyonlinelibrary.com/journal/hbm VC 2018Wiley Periodicals, Inc. | 1839

Received: 24 August 2017 | Revised: 20 December 2017 | Accepted: 8 January 2018

DOI: 10.1002/hbm.23974

http://orcid.org/0000-0003-4410-3709
http://orcid.org/0000-0002-9069-7803
http://orcid.org/0000-0002-2989-9561


congruent trials, because stimulus laterality and response effector are

not different (stimulus on the left side of the monitor ! left-handed

utilization of the left response button; right-sided stimulus ! right

hand and response button). In incongruent trials a conflict occurs,

because the stimulus laterality and the response effector are opposite

to each other (left ! right; right ! left). These conflicts in the Simon

task have been suggested to result from a combination of automatic

and controlled processes (De Jong, Liang, & Lauber, 1994; Keye, Wil-

helm, Oberauer, & St€urmer, 2013; Kornblum, Hasbroucq, & Osman,

1990; M€uckschel, Stock, Dippel, Chmielewski, & Beste, 2016). One

influential theoretical account to explain these conflict effects in Simon

tasks is the dual-process account (De Jong et al., 1994). In this account,

the automatic tendency to respond toward the stimulus location is

labeled as “unconditionally automatic” process, or “direct route.” The

second process (“indirect route”) involved is the conditional selection of

the relevant stimulus feature(s) indicating the appropriate response.

This is established by means of stimulus–response (S–R) bindings (spe-

cific stimulus ! specific response effector) and requires the employ-

ment of cognitive control (Hommel, 2011). According to the dual-

process account, in congruent trials “unconditionally automatic” proc-

esses alone can indicate the correct answer. Yet, in incongruent trials, a

conflict between two mutually exclusive response tendencies (“uncon-

ditionally automatic” response tendencies indicating the stimulus later-

ality vs controlled conditional selection of stimulus features indicating

the response button) emerges and complicates response selection

processes (De Jong et al., 1994; Keye et al., 2013; Kornblum et al.,

1990; M€uckschel et al., 2016). When this dual-route logic was com-

bined with a Go/NoGo task it has been shown that response inhibition

is more difficult (error-prone), when processing is mediated via the

unconditional-automatic route (congruent NoGo trials), compared to a

condition where a conditional selection of the appropriate response is

required (incongruent NoGo trials) (Chmielewski & Beste, 2016b). Even

though this might be counterintuitive, the following has to be consid-

ered: For NoGo trials, it has been shown that response inhibition per-

formance is more difficult when automated response tendencies are

facilitated (Chmielewski et al., 2015; Dippel et al., 2015; Donkers & van

Boxtel, 2004). This automaticity to execute a Go response in NoGo tri-

als, should vary depending on the congruency of stimulus and response

features (or automatic vs controlled processes). In incongruent NoGo

trials, cognitive control is exerted to overcome “unconditionally auto-

matic” processes and to resolve the conflict between the “uncondition-

ally automatic” route and the appropriate conditional selection of

stimulus features. This reduces the automaticity of inappropriate

response tendencies in NoGo trials. Therefore, response inhibition per-

formance is better under such conditions and conjoint effects of auto-

mated and controlled processes in NoGo trials can improve response

inhibition performance (Chmielewski & Beste, 2016b). For congruent

NoGo trials, however, less cognitive control is employed, because the

“unconditionally automatic” route dominates processes. As a result,

response inhibition is more difficult to exert and performance declines.

Importantly, the dual-process account also stresses the importance

of stimulus (S)–response (R) translation processes as a major source

driving effects in “Simon-like” paradigms (Hommel, 2011; Keye et al.,

2013). Therefore, specific kinds of codes relating stimuli to responses

are particularly important to consider for conjoint effects of controlled

and automatic processes during response inhibition. Yet, the important

and unresolved question is, in how far such specific codes during these

processes can be isolated in neurophysiological processes and whether

there are specific functional neuroanatomical structures associated

with the processing of such codes? The question is whether a specific

kind of code as suggested by cognitive, psychological concepts has a

neurophysiological analog? If this would be the case, such a neurophys-

iological code should predict behavioral performance to a high degree.

Event-related potentials (ERP) may not be suitable to address such

questions. This is because ERP components are composed of various

amounts of signals from different sources (Huster, Plis, & Calhoun,

2015; Nunez et al., 1997; Stock, Gohil, Huster, & Beste, 2017). More-

over, and more relevant in the context of this study, ERPs can also

reflect a mixture of different codes related to perceptual processing

(“stimulus codes”) and response selection (“response selection codes”)

(Folstein & Van Petten, 2008). In particular, “stimulus codes” and

“response selection codes” can be intermingled at the neurophysiologi-

cal level at any time point in the cognitive processing cascade. Regard-

ing this, M€uckschel et al. (2017a) have shown that there are not only

consecutive levels of processing from stimulus selection (Boehler et al.,

2009; Chmielewski & Beste, 2016a, 2016b) to response selection

(Aron, Robbins, & Poldrack, 2014; Bari & Robbins, 2013). Rather, “stimu-

lus codes” and “response selection codes” can co-exist over extended

time periods during the inhibition of responses (M€uckschel et al., 2017a).

This is especially important to consider, when automatic (“uncondi-

tional”) responding dominates behavior (M€uckschel, Dippel, & Beste,

2017b). Similarly, it has long been argued that the N2 ERP component, a

neurophysiological correlate of cognitive control and conflict monitoring

(van Veen & Carter, 2002), reflects a concomitant coding of perceptual

processes and of processes controlling for incorrect motor response

preparation (Folstein & Van Petten, 2008). This is evident during the

“conditional selection” of stimulus features (i.e., stimulus–response (S–R)

binding) in the dual-route logic. The presence of dissociable fractions of

“stimulus codes” and “response selection codes” in the N2 ERP compo-

nent that are processed in overlapping areas of the medial frontal cortex,

and that these are differentially modulated by neurobiochemical proc-

esses has recently been reported (M€uckschel et al., 2017b).

To isolate “stimulus codes” and “response selection codes,” an EEG

temporal decomposition method, the residue iteration decomposition

(RIDE) can be applied (M€uckschel et al., 2017a; Ouyang, Herzmann,

Zhou, & Sommer, 2011). Even though the primary purpose of RIDE is

to account for intraindividual variability in EEG data (Ouyang et al.,

2011; Ouyang, Sommer, & Zhou, 2015b), RIDE decomposes EEG data

into several component clusters with dissociable functional relevance

(Ouyang et al., 2011, 2015b). The S-cluster refers to stimulus-related

processes (like perception and attention), the R-cluster refers to

response-related processes (like motor preparation/execution), and the

C-cluster refers to intermediate processes between S and R (like

response selection) (Ouyang et al., 2011; Ouyang, Hildebrandt,

Sommer, & Zhou, 2017). As response selection processes also take

place for inappropriate responses in NoGo trials (Mostofsky &
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Simmonds, 2008; M€uckschel et al., 2017b), we will also utilize the term

response selection processes for inhibitory trials in this paper.

In this study, we use RIDE to examine which of these codes are

modulated by conjoint effects of “automaticity” and “cognitive control”

during response inhibition. Combined with source localization methods,

it is then possible to examine the associated functional neuroanatomi-

cal network (M€uckschel et al., 2017a,b; Wolff, M€uckschel, & Beste,

2017). The aforementioned stimulus (S)–response (R) translation proc-

esses have been suggested to be reflected by the C-cluster (Bluschke,

Chmielewski, M€uckschel, Roessner, & Beste, 2017; M€uckschel et al.,

2017a; Ouyang et al., 2017; Verleger, Metzner, Ouyang, �Smigasiewicz,

& Zhou, 2014; Verleger, Siller, Ouyang, & �Smigasiewicz, 2017; Wolff

et al., 2017), which has also been shown to be modulated during the

inhibition of automated responses (M€uckschel et al., 2017a) and is

assumed to mostly reflect processes that are also assumed to be

reflected by the (NoGo)-P3 (M€uckschel et al., 2017b; Verleger et al.,

2014, 2017; Wolff et al., 2017). During inhibitory control the C-cluster

probably reflects a “braking function,” or a mechanism that is important

to inhibit automated response tendencies (M€uckschel et al., 2017a).

Therefore, we hypothesize that conjoint effects of “automaticity” and

“cognitive control” during response inhibition are mostly reflected by

modulations of “response selection codes” (the C-cluster) and not by

modulations of “stimulus codes” (the S-cluster). This would suggest that

specific kinds of code considered in cognitive, psychological concepts

have a neurophysiological analogue. We hypothesize that these neuro-

physiological correlates reflect the interaction of “automaticity” and

“cognitive control” processes during response inhibition and predict

behavioral performance. More specifically, we expect more controlled

(response selection) processes, as evident in incongruent (incongruent)

inhibitory trials, to be reflected in an increased C-Cluster amplitude and

in an improved response inhibition performance. For “unconditionally

automated” processes, as evident congruent inhibitory trials, we expect

the C-Cluster amplitude to be decreased. Because modulations in the

C-cluster have been shown to be associated with functions of the

medial frontal and/or inferior parietal regions (M€uckschel et al., 2017a,

2017b; Ouyang et al., 2017; Wolff et al., 2017), we further hypothesize

that these conjoint effects between “automaticity” and “cognitive con-

trol” processes are also correspondingly expressed within these areas.

This is also likely because inferior parietal areas have been shown to be

involved in response selection processes during the Simon task (Rush-

worth, Paus, & Sipila, 2001; Schiff, Bardi, Basso, & Mapelli, 2011).

2 | MATERIALS AND METHODS

2.1 | Sample

N534 young healthy participants (11 males) between 19 and 29 years

(mean age 23.260.7 years) took part in the experiment. All partici-

pants were free of medication, had normal or corrected-to-normal

vision and hearing, and reported no neurological or psychiatric disor-

ders. Written informed consent was obtained from all participants. This

study was approved by the institutional review board of the Medical

faculty of the TU Dresden.

2.2 | Task

To examine the relevance of concomitantly processed “stimulus codes”

and “response selection codes” for conjoint effects of “automaticity”

and “cognitive control” during response inhibition, we use a combined

Simon-Go/NoGo task. The outline of the task is shown in Figure 1.

White stimuli were presented on a black background (57cm view-

ing distance). A fixation cross was continuously presented in the middle

of screen and one white boxes at the same vertical level were pre-

sented on the left and right of the fixation cross (distance of 1.18 visual

angle). Each trial began with the presentation of a letter (for 200 ms) in

one of the white frame boxes and subjects were required to press

within 1200 ms (on Go trials). On each trial a letter stimulus in normal

font (i.e., “A,” “B”), or in bold-italics (i.e., “A” or “B”) was presented. Par-

ticipants were requested to respond as fast as possible to letters in a

normal font (i.e., A and B; Go trials), while responses had to be inhib-

ited, whenever the letter stimuli were presented in the combined bold

and italic font (i.e., “A” and “B”; NoGo trials). For Go trials, whenever an

“A” was displayed, a left-hand response was required, whereas a right-

hand response was required, whenever a “B” was displayed. These

responses were required regardless of the spatial position of the letter

stimuli in the left or right white frame box on the screen. This consti-

tuted two different Go conditions, that is, a congruent Go condition

where stimuli were presented on the side of the hand carrying out the

response and one incongruent condition where stimuli were presented

on the side opposite of the hand carrying out the response. For NoGo

trials (combined bold and italic font letters), left-side “A”s and right-side

“B”s represented congruent NoGo trials, whereas left-side “B”s and

right-side “A”s represented incongruent NoGo trials. This variation of

congruency in Go and NoGo trials created the Simon component in the

task. The task conditions are shown in Figure 1.

If no response was given on Go trials in a time window of 500 ms,

a speed-up sign (“Schneller!”) was presented above the fixation cross.

Each trial ended after 1700 ms, if no response was previously recorded.

The intertrial interval (ITI) was jittered between 1100 and 1600 ms.

The experiment consisted of 720 trials [70% (504 trials) Go and 30%

FIGURE 1 Schematical illustration of the experimental paradigm
showing all experimental conditions. In the left panel, “GO” trials
are shown, whereas in the right panel, “NoGo” trials are shown.
The upper row shows the condition requiring left hand responses
on Go trials (responses on stimulus “A”), the lower row right hand

responses on Go trials (responses on stimulus “B”)
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(216 trials) NoGo trials], of which 50% were congruent and 50% were

incongruent. The experiment was divided into six blocks with 120 trials

each. Trial types (congruent and incongruent Gos, or congruent and

incongruent NoGos) were presented randomly, but it was ensured that

all conditions were equally distributed across the blocks. Before the

experiment, each subject was trained on the task using 40 trials.

During Go trials, a response had to be executed within the time

interval from 250 to 1200 ms. An incorrect response in that time-

window was coded as error and if no response was obtained, trials

were coded as misses. For NoGo trials, any response resulted in trials

being coded as false alarms. These behavioral parameters were

acquired for congruent and incongruent trials separately.

2.3 | EEG recording and analysis

The EEG was recorded using 60 Ag/AgCl electrodes (sampling rate 500

Hz) connected to a “BrainAmp” amplifier (Brain Products Inc.). The elec-

trode impedances were kept below 5 kX. The reference electrode was

located at Fpz and the ground electrode was located at u558, a578.

Offline, a band-pass filter from 0.5 to 20 Hz (48 dB/oct slope each)

was applied and the EEG was downsampled to 256 Hz. Then, a raw

data inspection was conducted to remove technical artifacts, while

periodically occurring artifacts such as pulse artifacts, horizontal, and

vertical eye movements were subsequently detected and corrected for

by means of an independent component analysis (ICA; infomax algo-

rithm). After these corrections, cue-locked segments were formed

according to the experimental conditions: congruent Go trials, incon-

gruent Go trials, congruent NoGo trials, and incongruent NoGo trials.

Only trials with correct responses were included. The segments started

200 ms prior to the locking point (cue onset was set to time point 0)

and ended 1200 ms thereafter. Afterward, an automated artifact rejec-

tion procedure was applied using a maximal value difference above

200 lV in a 200 ms interval and an activity below 0.5 lV in a 100 ms

period as rejection criteria. Overall, �1.2% of trials were discarded on

the basis of these criteria and there was no difference between condi-

tions [t(33)520.49, p> .6]. Then, a current source density (CSD)

transformation was run, which eliminates the reference potential from

the data and helps to find the electrodes showing the strongest effects

(Nunez & Pilgreen, 1991). The resulting CSD values are stated in lV/

m2. A baseline correction was then set to a time interval from 2200 to

0 ms (i.e., stimulus presentation) before the segments were averaged.

The ERP components were quantified on the single-subject level using

the mean amplitude in a specific time interval. Time windows and elec-

trode sites were chosen on the basis of a literature-driven visual

inspection of the ERPs and corresponding topography maps in highly

probable time windows. This choice of electrodes and time windows

was validated using following statistical method (M€uckschel, Stock, &

Beste, 2014): within each of the visually detected search intervals (see

below), the peak amplitude was extracted for all 60 electrodes. Each

electrode was subsequently compared against the average of all other

electrodes using Bonferroni-correction for multiple comparisons (criti-

cal threshold p5 .0007). Only electrodes that showed significantly

larger mean amplitudes (i.e., negative for N-potentials and positive for

the P-potentials) than the remaining electrodes were selected. This pat-

tern of electrodes matched the electrodes found in the visual inspec-

tion of the data. Consequently, the P1 ERP component was quantified

at electrodes P7 and P8 in the time interval from 95 to 110 ms; the N1

ERP-component was quantified at electrodes P7 and P8 in the time

interval from 155 to 170 ms in Go and NoGo trials. The N2 and P3

ERP-components were quantified in a time window of 310–340, or

respectively 480–520 ms at electrodes FCz and Cz in Go and NoGo

trials.

2.4 | Residue iteration decomposition (RIDE)

To dissociate “stimulus codes” from “response selection codes,” residue

iteration decomposition (RIDE) was run using established protocols

(M€uckschel et al., 2017a; Ouyang et al., 2011; Verleger et al., 2014)

and the RIDE toolbox and manual (available on http://cns.hkbu.edu.hk/

RIDE.htm). RIDE decomposes ERP components applying L1-norm mini-

mization (i.e., obtaining median waveforms) and therefore minimizes

residual error due to noise in the data (Ouyang, Sommer, & Zhou,

2015a; Ouyang et al., 2015b). Importantly, these spatial filter properties

of the CSD do not violate assumptions relevant to RIDE since the

decomposition is conducted separately for each single electrode chan-

nel (Ouyang et al., 2015b).

RIDE decomposes the ERP signal into clusters that are either cor-

related to the stimulus onset (S-cluster or to the response time (R-clus-

ter), and a central C-cluster with variable latency, which is estimated

initially and iteratively improved. Since no response time measure can

be collected in NoGo trials when no button press is required, it is not

possible to depict processes related to the response (Ouyang, Schacht,

Zhou, & Sommer, 2013). Therefore, the R-cluster was not computed.

RIDE uses a self-optimized iteration scheme for latency estimation

through which the latency estimation of the C-cluster is improved. In

the RIDE algorithm, the initial latency of the C-cluster is estimated

using a time window function. In an iterative procedure, the S-cluster is

removed, and the latency of the C-cluster is re-estimated based on a

template matching approach until convergence of the initial latency

estimation and the S- and C-cluster. Full mathematical details of the

RIDE method, including information about the validity of the template

matching approach used by the RIDE algorithm can be found in meth-

odological papers on the RIDE procedure (Ouyang et al., 2011, 2013,

2015b). The validity of the RIDE procedure for Go/Nogo tasks has

already been shown (M€uckschel, Dippel, & Beste, 2017c; Ouyang et al.,

2013). During processing, the initial time window for the estimation of

the C-cluster was set to 200–700 ms after stimulus onset. The time

window is assumed to cover the range within which each component

is supposed to occur (Ouyang et al., 2015a). The time window for the

S-cluster was set to 2200 to 400 ms around stimulus onset. For fur-

ther details on the method, see Ouyang et al. (2011, 2015a) and for a

detailed analysis of NoGo tasks using RIDE, please refer to Ouyang

et al., (2013). The procedure used here is exactly the same as done in

Ouyang et al. (2013) and M€uckschel et al. (2017a).

For data quantification, a visual inspection of the data was

performed, which was also followed by the statistical validation
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procedures described for the ERP-component data. The S-cluster was

quantified at electrodes P7 and P8 as well as electrode FCz in Go and

NoGo trials. At electrodes P7 and P8, the mean amplitude in the P1

time window was quantified in the time interval from 95 to 110ms,

and in the N1 time window in the time interval from 155 to 170ms in

Go and NoGo trials. At electrode FCz, data was quantified in the N2

time window between 310 and 340ms. For the C-cluster, it has already

been shown that it reflects processes that are commonly reflected by

the (NoGo)-P3 ERP component (Ouyang et al., 2017; Verleger et al.,

2014; Wolff et al., 2017). The C-cluster was quantified in Go and

NoGo trials. The C-cluster revealed negative amplitudes at central elec-

trodes (i.e., Cz) between 310 and 340 ms and positive amplitudes at

centro-parietal electrode sites (i.e., CPz, Pz, and P1) between 440 and

490 ms. C-cluster amplitudes were quantified at these electrodes and

time windows. The statistical validation procedure confirmed this

choice of electrodes and time windows.

2.5 | Source localization

The source localization was conducted using the RIDE data, as we

were especially interested in the sources associated with the process-

ing of dissociable “stimulus codes” and “response selection codes.” The

analysis was performed using sLORETA (standardized low resolution

brain electromagnetic tomography; Pascual-Marqui, 2002). sLORETA

provides a single linear solution to the inverse problem without a local-

ization bias (Marco-Pallar�es, Grau, & Ruffini, 2005; Pascual-Marqui,

2002; Sekihara, Sahani, & Nagarajan, 2005). There is also evidence of

EEG/fMRI and EEG/TMS studies underlining the validity of the sources

estimated using sLORETA (Dippel & Beste, 2015; Sekihara et al., 2005).

For sLORETA, the intracerebral volume is partitioned into 6239 voxels

at 5 mm spatial resolution. The standardized current density at each

voxel is calculated in a realistic head model using the MNI152 template.

As this study focuses on the modulation of RIDE clusters during

response inhibition processes by the congruent and incongruent condi-

tions, the voxel-based sLORETA images compared NoGo trials in the

congruent Simon condition against NoGo trials in the incongruent

Simon condition. Comparisons were based on statistical nonparametric

mapping (SnPM) using the sLORETA-built-in voxel-wise randomization

tests with 2000 permutations. Voxels with significant differences

(p< .01, corrected for multiple comparisons) between contrasted con-

ditions were located in the MNI brain www.unizh.ch/keyinst/NewLOR-

ETA/sLORETA/sLORETA.htm

2.6 | Statistics

The behavioral data were analyzed using dependent samples t tests.

The neurophysiological data (i.e., ERPs and RIDE clusters) were ana-

lyzed using repeated measures ANOVAs including the factor “condi-

tion” (Go vs NoGo) and “congruency” (congruent vs incongruent) as

within-subject factors. Greenhouse–Geisser correction was applied

where appropriate. All post-hoc tests were Bonferroni-corrected. All

variables included in the analyses were normal distributed as indicated

by Kolmogorov–Smirnov Tests (all z<0.85; p> .3).

3 | RESULTS

3.1 | Behavioral data

For the behavioral data, a dependent samples t test showed that reac-

tion times (RTs) were longer on incongruent (545 ms614) than con-

gruent Go trials (517 ms613) (t(33)527.83; p< .001). The hit rate on

Go trials was larger on congruent trials (94.8%60.65) than on incon-

gruent trials (91.3%61.2) (t(33)53.31; p5 .001). However, the rate of

false alarms (responses executed in NoGo trials) is the most important

behavioral parameter in response inhibition paradigms. The rate of false

alarms was larger in congruent NoGo trials (14.62%61.95) than in

incongruent NoGo trials (9.58%61.25) (t(33)54.04; p< .001).

3.2 | Neurophysiological data

3.2.1 | Event-related potentials (ERPs)

The standard event-related potentials are shown in Figure 2.

For the N2 ERP component (Figure 2a), analysis revealed a main

effect “congruency” (F(1,33)56.97; p5 .013; hp
25 .174) showing that

the N2 was larger (i.e., more negative) on incongruent (211.05 mV/

m261.52) than on congruent trials (28.15 mV/m261.99). The main

effect “Go/NoGo” (F(1,33)526.76; p< .001; hp
25 .448) revealed that

the N2 was more negative in NoGo (212.87 mV/m261.57) than in Go

trials (26.33 mV/m262.01) and the sLORETA analysis suggests that

this relates to activation differences in the right inferior frontal gyrus.

This area has frequently been reported to reflect inhibitory control

processes (Aron et al., 2014). There was an interaction “congruency 3

Go/NoGo” (F(1,33)56.98; p5 .013; hp
25 .174). Post-hoc tests

revealed that the difference in N2 amplitudes between Go and NoGo

trials (i.e., the response inhibition effect) was larger in the incongruent

condition (27.43 mV/m261.45) than in the congruent condition

(23.63 mV/m261.30) (t(33)52.64; p5 .013).

For the P3 ERP component (Figure 2a), the was only a main effect

“Go/NoGo” (F(1,33)563.63; p< .001; hp25 .659), showing that the

P3 was larger in NoGo (11.72 mV/m262.5) than in Go trials (23.77

mV/m262.5). No other main or interaction effects were significant (all

F<1.47; p> .2).

For the P1 ERP component, and for the N1 ERP component (Fig-

ure 2b), the repeated measures ANOVA revealed no main or interac-

tion effects (all F<1.1; p> .3)

3.3 | RIDE-decomposition

3.3.1 | S-cluster

The S-cluster, including scalp topography plots is shown in Figure 3.

As expected, the S-cluster was evident at fronto-central electrode

sites in the N2 ERP-component time window (Figure 3a), which is in

line with previous results (M€uckschel et al., 2017a) and in line with con-

cepts stating that the N2 reflects a mixture of stimulus and response-

related processes (Folstein & Van Petten, 2008). Moreover, the

S-cluster reflected activity in the time range of the P1 and N1 ERP-

components (Figure 3b). Interestingly, for all time windows and
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electrodes analyzed in the S-cluster, there were no main or interaction

effects (all F<0.24; p> .85). For the S-cluster, it is not possible to com-

pare Go and NoGo trials using sLORETA because there were no ampli-

tude differences. We, however, compared the N2 in NoGo trials

against zero. This contrast also revealed a source in the right inferior

frontal gyrus (refer to Figure 3). There are thus converging sources for

the S-cluster in the N2 time window in NoGo trials and the NoGo-N2

at the ERP level. This further validates the sLORETA results based on

RIDE data.

As this lack of effects in the S-cluster in the N2 time window is

important from a theoretical point of view (refer introduction) we cal-

culated bayesian statistics. Opposed to classical null hypothesis testing

using ANOVAs, Bayesian statistics (Masson, 2011; Wagenmakers,

2007) can evaluate the relative strength of evidence for the null

hypothesis (Masson, 2011). It is possible to examine the probability of

the null hypothesis being true, given the obtained data (p(H0|D)) and

can be achieved on the basis of a transformation of the sum-of-squares

values generated by the ANOVA (Masson, 2011). This analysis revealed

FIGURE 2 (a) Event-related potentials (ERPs) showing the N2 and P3 ERP-component at electrodes FCz/Cz in all four experimental condi-
tions including the scalp topography plots. The sLORETA plot shows the comparison between Go and NoGo trials in the N2 time window.
The source shown is corrected for multiple comparison using SnPM (p< .01). The color scale denotes critical t values. A source in the right
inferior frontal gyrus is shown. (b) The P1 and N1 ERP-components (at electrodes P7/P8) are shown for all conditions including the scalp

topography plots. The scalp topography plots show the distribution of potentials at the peak of each ERP component. In the scalp topogra-
phy plots, blue colors denote negativity and red colors denote positivity [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 This figure shows the S-cluster data at electrode Cz for the N2 time window (a) and for the P1 and N1 time window. The
sLORETA plot shows the comparison NoGo trials against zero (NoGo<0) in the N2 time window. The source shown is corrected for multi-
ple comparison using SnPM (p< .01). The color scale denotes critical t values. A source in the right inferior frontal gyrus is shown. (b). All
experimental conditions are shown. The scalp topographies show the distribution of potentials at the peak of the S-cluster in the N2 and
P1/N1 time window. In the scalp topography plots, blue colors denote negativity and red colors denote positivity [Color figure can be
viewed at wileyonlinelibrary.com]
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p(H0|D)> .95. The results of the Bayesian analysis show that there is

strong evidence in favor for the null hypothesis that no modulations

are evident in the S-cluster.

3.3.2 | C-cluster

The C-cluster, including scalp topography plots is shown in Figure 4a.

As can be seen in Figure 4, The C-cluster revealed negative amplitudes

at central electrodes (i.e., Cz) and positive amplitudes at centro-parietal

electrode sites (i.e., CPz, Pz, and P1).

For the central negativity, the repeated measures ANOVA only

revealed a main effect “Go/NoGo” (F(1,33)56.95; p5 .013;

hp
25 .174), showing that the C-cluster was more negative on NoGo

trials (24.32 mV/m261.47) than on Go trials (22.21 mV/m261.45).

All other main or interaction effects were not significant (all F<0.66;

p>4.). Since the Bayesian analysis revealed p(H0|D)> .90, there is

strong evidence in favor for the null hypothesis.

For the parietal positivity, the repeated measures ANOVA revealed

a main effect “congruency” (F(1,33)56.61; p5 .015; hp
25 .167) show-

ing that the C-cluster was larger in the incongruent (23.89 mV/

m261.83) than in the congruent condition (20.42 mV/m261.84). The

main effect “electrode” (F(2,66)57.75; p5 .001; hp
25 .190) revealed

that the C-cluster was largest at electrode Pz (26.22 mV/m262.53)

and differed from electrode CPz (18.38 mV/m261.78) and electrode

P1 (21.86 mV/m261.77) (p5 .008). Electrodes CPz and P1 did not dif-

fer from each other (p> .3). The main effect Go/NoGo (F(1,33)55.61;

p5 .024; hp
25 .145) showed that the C-cluster was larger on Go

(22.85 mV/m261.80) than on NoGo trials (21.46 mV/m261.65).

Importantly, there was an interaction “congruency 3 Go/NoGo”

(F(1,33)510.10; p5 .003; hp
25 .234). Post-hoc dependent samples t

tests revealed that there was no difference in the C-cluster amplitude

on Go trials (t(33)520.80; p> .4), while there was a difference on

NoGo trials (t(33)53.35; p5 .001) showing that the C-cluster was

larger on incongruent (22.08 mV/m261.96) than on congruent trials

(18.76 mV/m261.83). No other main or interaction effects were signif-

icant (all F<0.49; p> .6). Using sLORETA the congruent and incongru-

ent NoGo trials were contrasted to examined the associated source.

This analysis shows that modulations in the C-cluster amplitude (NoGo-

congruent<NoGoincongruent) were associated with activation differences

in the left superior parietal cortex (BA7) and the left inferior parietal

cortex (BA40) including the temporo-parietal junction (refer Figure 4b).

For a discussion on the different congruency effects for NoGo trials at

posterior and fronto-central electrode sites, as well as a discussion on

the larger C-cluster amplitudes in Go than NoGo trials, the reader is

kindly referred to the Supporting Information.

3.4 | Correlation analyses

To examine whether the C-cluster systemically predicts performance

Pearson correlations were conducted. The scatterplots are shown in

Figure 4c. For the incongruent NoGo trials, the C-cluster amplitude in

FIGURE 4 (a) The C-cluster is shown at electrodes Cz and P1/CPz/Pz for all experimental conditions, including the scalp topographies. The
scalp topographies show the distribution of potentials at the peak of the C-cluster at the shown electrodes. In the scalp topography plots,
blue colors denote negativity and red colors denote positivity. (b) Results from the sLORETA analysis comparing the congruent and incon-
gruent NoGo trials. The source shown is corrected for multiple comparison using SnPM (p< .01). The color scale denotes critical t values. (c)
Scatterplots showing the negative correlation between the C-cluster amplitude and the false alarms in the incongruent (top) and the congru-
ent condition (bottom) [Color figure can be viewed at wileyonlinelibrary.com]
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the P3 time window at parietal electrodes was negatively correlated

with the rate of false alarms in that condition (r52.608; R2536.9;

p< .001); that is, the higher the C-cluster’s amplitude, the lower the

rate of false alarms. A similar correlation was observed for the congru-

ent condition (r52.585; R2534.2; p< .001). For the C-cluster ampli-

tudes in the N2 time window, no correlations were obtained (all

r<2.114; p> .2) and the same was the case for the C-cluster ampli-

tude in Go trials (all r<2.054; p> .4). No correlations were obtained

for the S-cluster data for Go and NoGo trials (all r<2.132; p> .2) and

also in ERP-component’s amplitudes in all examined time windows for

Go and NoGo trials (all r<2.095; p> .3). Together, only the C-cluster

amplitudes in NoGo trials, but no other neurophysiological parameter

predicted behavioral performance.

4 | DISCUSSION

Goal of this study was to examine whether conjoint effects of “automa-

ticity” and “cognitive control” during response inhibition are reflected

by specific neurophysiological codes and whether specific functional

neuroanatomical structures are involved in this coding. These questions

relate to theoretical considerations and previous evidence suggesting

that different, intermingled codes (“stimulus codes” and “response

selection codes”) at the neurophysiological level may be crucial for con-

joint effects of “automaticity” and “cognitive control” during response

inhibition. To examine this question, we applied residue iteration

decomposition (RIDE) to ERP data and combined this with source local-

ization methods (sLORETA).

The behavioral data were well in line with literature on the Simon

task: RTs and error rates were increased in conflicting (i.e., incongru-

ent), compared to nonconflicting (congruent) stimulus–response (S–R)

relations (Keye et al., 2013). More important, and in accordance with a

previous study, it was shown that congruent stimulus–response rela-

tions during inhibitory trials lead to an increase in false alarms (Chmie-

lewski & Beste, 2016b). The finding that conflicts can foster response

inhibition performance, while they aggravate response execution proc-

esses can be explained using the dual-process account (De Jong et al.,

1994): According to this account, the first process reflects stimulus

evoked automatic tendency to respond towards the stimulus location

via the “direct route.” The second process reflects a conditional (con-

trolled) selection of the relevant feature(s) and the response via the

“indirect route.” When applying this logic to NoGo trials, a conflict

occurs between the “direct” and “indirect route” whenever there is an

incongruent stimulus–response relation. This results in an increased

deployment of cognitive control. This increased deployment of cogni-

tive control decreases the automaticity of response execution (i.e., to

react in NoGo trials) and fosters response inhibition performance. In

congruent NoGo conditions, this additional deployment of cognitive

control is not initiated and response inhibition performance becomes

worse. Therefore, conjoint effects of “automaticity” and “cognitive con-

trol” can modulate (or improve) response inhibition performance

(Chmielewski & Beste, 2016b).

These behavioral results were paralleled by specific effects in the

neurophysiological data. In the N2 amplitude, an interaction “Go/NoGo

x congruency” was observed. Amplitude differences between Go and

NoGo trials were larger for the incongruent condition than the congru-

ent condition. As the N2 amplitude is assumed to reflect conflict moni-

toring and premotor inhibition processes (Chmielewski & Beste, 2015;

Donkers & van Boxtel, 2004; Falkenstein, Hoormann, & Hohnsbein,

1999; Nieuwenhuis, Yeung, & Cohen, 2004), increased amplitudes in

NoGo and/or incongruent trials are well in line with the literature.

However, the N2 reflects a concomitant coding of perceptual proc-

esses and motor processes (Folstein & Van Petten, 2008; M€uckschel

et al., 2017b). When applying RIDE to dissociate between these differ-

ent codes, it was shown that conjoint effects of “automaticity” and

“cognitive control” during response inhibition, only affected the

response selection codes, but not stimulus codes.

No conjoint effects of “automaticity” and “cognitive control” were

evident in the S-cluster because no interaction effect “congruency 3

Go/NoGo” was evident. This was substantiated by a Bayesian analysis

of the data and is in line with the study hypothesis. Only for the C-

cluster (response selection codes) data, an interaction “Go/NoGo 3

congruency” was observed at parietal electrode sites. This interaction is

due to nonsignificant differences in C-cluster amplitudes between con-

gruent and incongruent Go trials, but increased C-cluster amplitudes in

incongruent, compared to congruent NoGo trials. Besides reflecting

“response selection codes”-related processes mediating between stim-

ulus evaluation and responding (Bluschke et al., 2017; M€uckschel et al.,

2017a; Ouyang et al., 2017; Verleger et al., 2014, 2017; Wolff et al.,

2017), the C-cluster has also been assumed to reflect a “braking func-

tion” for motor processes (M€uckschel et al., 2017b). The decreased C-

cluster amplitude in congruent NoGo trials compared to incongruent

NoGo trials likely reflects an insufficient braking of motor responses.

This may be an effect of stronger “automatic” processes in congruent

NoGo trials. The finding that the C-cluster and response selection

codes underlie conjoint effects of controlled and automatic processes

during response inhibition is further substantiated by the findings of

the regression analyses. Increased C-cluster amplitudes in inhibitory tri-

als were related to better inhibitory control performance (lower false

alarms) in congruent and incongruent trials. As no such correlations

were obtained for the S-cluster or the ERP data, this shows that espe-

cially “response selection codes” are essential for conjoint effects of

“automaticity” and “cognitive control” during response inhibition.

The finding that especially “response selection codes” (i.e., the C-

cluster) are modulated during NoGo trials is consistent with cognitive

theoretical accounts of the experimental rationale of this study:

According to the dual-process account (De Jong et al., 1994), stimuli

evoke an automatic response tendency to respond toward their loca-

tion (“automatic process”) via the “direct route.” The second process,

via the “indirect route,” reflects a conditional selection of the relevant

feature(s) and the appropriate response. The dual-process account

stresses the importance of stimulus (S)–response (R) translation proc-

esses as a major source driving effects in “Simon-like” paradigms (Hom-

mel, 2011; Keye et al., 2013). Exactly such S–R translations processes

have been suggested to be reflected by the C-cluster (Bluschke et al.,
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2017; M€uckschel et al., 2017a; Ouyang et al., 2017; Verleger et al.,

2014, 2017; Wolff et al., 2017). Also horse race models stress the

importance of S–R translation processes (Band, Ridderinkhof, & van

der Molen, 2003b). The horse race framework assumes that Go and

NoGo processes race for execution and that the more dominant pro-

cess gets executed (Band, van der Molen, & Logan, 2003a; Logan,

Cowan, & Davis, 1984; Logan, Van Zandt, Verbruggen, & Wagen-

makers, 2014). In this framework, conflicting stimulus response transla-

tions impede Go processes and hence increase the probability that

NoGo processes are executed. In congruent, nonconflicting stimulus

response relations Go processes are not impeded, which results in a

quicker response execution and consequently in increased false alarm

rates. Together, the dual-process account and horse race models are in

line with the finding that especially the modulation of response selec-

tion codes (reflected by the C-cluster) underlies conjoint effects of con-

trolled and automatic processes during response inhibition.

The source localization, contrasting the congruent and incongruent

NoGo conditions, revealed that regions in the left inferior parietal cor-

tex (BA40) encompassing the temporo-parietal junction (TPJ) and the

left superior parietal lobe (BA7) were associated with modulations in

“response selection codes” in the C-cluster amplitude. Neural activity in

these areas was increased in the incongruent compared to the congru-

ent NoGo condition. Especially the involvement of the TPJ (BA40)

seems plausible, as this region has been shown to be involved in

response selection processes during the Simon task. Here, the TPJ is

assumed transform spatial information into code for action (Rushworth

et al., 2001; Schiff et al., 2011). In line with that, also more recent con-

cepts suggest that the TPJ processes task-relevant stimuli to update

internal representations of the environmental context using sensory

information to initiate appropriate actions (Geng & Vossel, 2013). This

concept closely resembles “response selection codes” likely reflected

by the C-cluster. Yet, also the involvement of superior parietal regions

(BA7) closely relates to these aspects. Even though the superior parie-

tal cortex (BA7) has less frequently been reported to be involved in

response inhibition (Barber, Caffo, Pekar, & Mostofsky, 2013; Dippel

et al., 2015; Fan, Gau, & Chou, 2014; Ocklenburg, G€unt€urk€un, & Beste,

2011), it has been suggested that the BA7 is involved in response inhi-

bition, whenever it is essential, but challenging, to categorize complex

information to inform inhibitory processes (Fokin et al., 2008; Ocklen-

burg et al., 2011; Takeichi et al., 2010). From this perspective, it seems

reasonable that activity in BA7 was increased in the incongruent NoGo

condition, because in this condition the selection of (inappropriate Go)

responses is complicated by the conflict between the automatic

response tendency to respond towards their location (“automatic pro-

cess”) mediated via the “direct route” and the conditional (controlled)

selection of the relevant feature(s), mediated via the “indirect route.”

In summary, this study shows that there are different, intermingled

codes (i.e., “stimulus codes” and “response selection codes”) at the neu-

rophysiological level during conjoint effects of “automaticity” and “cog-

nitive control” on response inhibition. Especially “response selection

codes” predict behavioral performance, and are subject to modulations

by “automatic” and “controlled” processes. This study shows that codes

considered to be important from a cognitive psychological point of

view can be isolated in neurophysiological processes using temporal

EEG signal decomposition. Moreover, these codes can be related to

specific functional neuroanatomical structures using source localization.

In this study, parietal areas are modulated, which is again well in line

with current concepts about the functional relevance of inferior and

superior parietal regions.
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