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Abstract
While anterior temporal lobe (ATL) resection is an effective treatment for temporal lobe epi-

lepsy, surgery on the dominant hemisphere is associated with variable decline in confrontation

naming. Accurate prediction of naming impairment is critical to inform clinical decision making,

and while there has been some degree of success using task-based functional MRI (fMRI) para-

digms, there remains a growing interest in the predictive utility of resting-state connectivity as it

allows for relatively shorter scans with low task demands. Our objective was to assess the rela-

tionship between measures of preoperative resting-state connectivity and postoperative naming

change in patients following left ATL resection. We compared the resting language network

connectivity of each patient to a normative healthy control template using a novel measure

called “matrix similarity,” and found that patients with more abnormal global language-network

connectivity—particularly of regions spared from surgery—showed greater postoperative naming

decline than those with normative patterns of connectivity. When we interrogated the degree

centrality of to-be-resected regions in a more targeted approach of the pathological temporal

lobe, we found that greater functional integration of those regions with the rest of the language

network at rest was related to greater decline in naming following surgery. Finally, we found

that matrix similarity was a better predictor of postoperative outcome than degree within to-be-

resected regions, network clustering, modularity, and language task fMRI laterality. We provide

some of the first evidence that using this novel measure, a relatively short preoperative resting

scan can be exploited to inform naming ability following ATL resection.
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1 | INTRODUCTION

While anterior temporal lobectomy has proven to be effective in the

treatment of refractory temporal lobe epilepsy (TLE) (Josephson et al.,

2013; Wiebe, Blume, Girvin, & Eliasziw, 2001), removal of the anterior

temporal lobe (ATL) in the dominant hemisphere is associated with

variable postoperative language deficits (Ives-Deliperi & Butler, 2012;

Sherman et al., 2011) due to this region's involvement in semantic

integration (Binder et al., 2011), as well as its close proximity and con-

nectivity to critical language areas (Saur et al., 2008). The task of

identifying patients who are at risk for significant language morbidity

postoperatively remains challenging, and is crucial to inform the surgi-

cal decision-making process.

Several studies have related measures of activation (Bonelli et al.,

2011), laterality (Rosazza et al., 2013), and regional connectivity

(Barnett, Marty-Dugas, & McAndrews, 2014) during task-based fMRI

to preoperative language performance. However, research on the

capacity of such measures to inform postoperative morbidity is rela-

tively scarce. Various indices of language lateralization have been used

to inform surgical candidacy for patients with TLE, with the expecta-

tion that patients with functional language lateralized to the epileptic

hemisphere are at greater risk for language disruption after surgery on
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that hemisphere (Szaflarski et al., 2002; Wada & Rasmussen, 1960).

Functional lateralization has traditionally been established with the

intracarotid amobarbital procedure (Wada test) or using dichotic lis-

tening tests, and more recently, task-based functional MRI (fMRI) has

been accepted as a viable alternative wherein patients engage with

language tasks in the scanner, and the proportion of activated voxels

in each hemisphere comprises the index of language laterality (Bahn

et al., 1997; Binder et al., 1996; Szaflarski et al., 2017). Research on

the ability of task-based fMRI to inform postoperative morbidity has

generally focused on particular brain regions, showing that stronger

activation (Bonelli et al., 2012) and lateralization to left frontal regions

(Bonelli et al., 2012; Rosazza et al., 2013; Sabsevitz et al., 2003) or left

temporal regions (Sabsevitz et al., 2003) is associated with greater

naming decline following left temporal lobe excisions.

Task-based fMRI is less invasive, less uncomfortable, and carries

less cerebrovascular risks than the Wada procedure (Abou-Khalil &

Schlagger, 2003) and can provide a more direct measure of brain later-

alization than dichotic listening tests. Nonetheless, it places high

demands on compliance with scanning procedures and ability to

engage in language tasks during scanning, which is particularly trou-

blesome for individuals with lower language abilities, and individuals

who communicate in languages that do not have immediately avail-

able or adapted tests. Moreover, the resulting maps of task-active lan-

guage regions are highly dependent on arbitrary thresholds of

significance, which leaves open the possibility of reaching quite differ-

ent conclusions about lateralization among professional raters

(Benjamin et al., 2017). In light of such limitations, clinical researchers

have begun to explore resting-state connectivity as an alternative to

task-based measures (Fox & Greicius, 2010; Kamran et al., 2014), as

the only requirement is a 5–10 min scan where the patient is told to

stay awake, lay still, and think about nothing in particular. The low fre-

quency fluctuations extracted from such scans are thought to index

the brain's intrinsic connectivity, and multiple networks—many

of which map on to task activation patterns—can be evaluated

(Beckmann, DeLuca, Devlin, & Smith, 2005; Smith et al., 2009).

Of particular interest, resting-state fMRI is reliably able to identify

the language network in healthy controls using seed-based measures

of connectivity (Tomasi & Volkow, 2012) and independent component

analysis (Tie et al., 2014), and in TLE, patterns of resting connectivity

correlate with task-based laterality indices (Doucet, Pustina, et al.,

2015; Smitha, Arun, Rajesh, Thomas, & Kesavadas, 2017). While this

technique is being increasingly acknowledged as a potentially useful

clinical tool (Barnett, Audrain, & McAndrews, 2017; Tracy & Doucet,

2015), little has been done to assess the utility of resting state in the

context of informing potential postoperative language morbidity for

individual patients, and the two studies that have endeavored to do

so have yielded mixed results. Doucet, Rider, et al. (2015) used graph

theory measures from resting-state data collected preoperatively

to inform various measures of cognitive outcome in a group of

16 patients with TLE. Of relevance here, they investigated subregions

of the left inferior frontal gyrus (IFG) due to this region's involvement

in language production, as well as bilateral hippocampi due to

focal seizure activity originating from these regions, and the precu-

neus as it is a major brain network hub. They found that a complex

model successfully explained 73% of variance in language outcome

(a combination of confrontation naming and semantic and phonemic

fluency measures) in people with left TLE. The predictors in this model

included distance (an inverse measure of how well integrated a region

is with the rest of the brain) within the left pars orbitalis, pars triangu-

laris, pars opercularis, and the right hippocampus, as well as parti-

cipation (which reflects the presence of numerous intermodular

connections for a given brain region) within the left pars orbitalis of

the IFG. While this finding demonstrates the promise of resting fMRI

in informing postoperative language change, some issues are apparent

in the calculation of their measures. They used the absolute values

of negative correlations within the connectivity matrices in their

calculation of distance, which likely distorts this measure as negative

correlation weights—which often signify competition rather than

cooperation—are treated as positive weights (Fornito, Zalesky, &

Breakspear, 2013). Furthermore, utilizing 5 predictors to fit 16 obser-

vations likely over-fits the data, as evidenced by fact that some of

their models predicted 98–99% of postoperative change in cognition.

A subsequent study by this group used a different strategy for exam-

ining resting-state connectivity, identifying language networks by

seeding from multiple regions of peak activity found during verb gen-

eration and assessing deviation of functional connectivity in patients

relative to controls (Osipowicz, Sperling, Sharan, & Tracy, 2016). In

this case, however, the measure of deviation was not associated with

postoperative change in semantic fluency. Thus, it remains unclear

how to explore resting-state networks in a manner that may be maxi-

mally sensitive to language change and thus of greatest utility in pre-

operative planning.

These resting-state studies thus far have tended to focus on rela-

tively focal and primarily left-lateralized language areas to serve as

predictors of postoperative decline in naming or fluency, in keeping

with literature from studies of task activation and neuropsychology

that underscore the importance of the left hemisphere to language

functioning. However, the language network that has typically been

extracted from resting-state fMRI is quite bilateral (Doucet, He,

Sperling, Sharan, & Tracy, 2017; Tomasi & Volkow, 2012). In their

large multisite study, Tomasi and Volkow (2012) characterized the

resting-state language network using a seed-to-voxel approach from

Broca's and Wernike's areas, and found that both seeds demonstrated

robust connectivity to language regions that were much more bilateral

than typically reported in studies of task activation. Doucet

et al. (2017) also reported that resting-state language networks were

more bilateral in both patients with left TLE and controls in compari-

son to sets of coactivated regions recruited by task activation which

were much more left-lateralized. They suggested that bilateral activity

captured with resting-state reflects “prepotent” language regions of

which specific areas are recruited depending on task demands. Fur-

thermore, it has since been proposed that the concept of language

“dominance,” at least as assessed using fMRI, may actually be inappro-

priate when considering regional effects rather than at the level of the

entire hemisphere (Tailby, Abbott, & Jackson, 2017). Even though

lesions or inactivation procedures generally confirm strong laterality

for language in the majority of TLE and other patients, it may be

important to interrogate the more bilateral networks revealed by fMRI

to characterize changes in functional capacity following epilepsy

surgery.
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Thus, in this study, we aimed to harness the broader and more

bilateral pattern of language network connectivity that resting state

engenders to find predictors of postoperative language decline in

TLE, especially given higher rates of bilateral language representa-

tion in this population (Berl et al., 2005; Brázdil, Zákop�can, Kuba,

Fanfrdlová, & Rektor, 2003; Weber et al., 2006). We sought to craft

a novel measure that was free of arbitrary thresholding issues that

impact the clinical utility of task activation, and that characterized

both positive and negative connectivity in the service of evaluating

functional subsystems operating within broader language networks.

To do this, we derived the language networks of patients with left

TLE using expansive bilateral frontal-temporal regions of interest

(ROIs) and compared each patient's language network to that of a

normative language network template derived from healthy con-

trols. We used the measure of how similar each patient's language

network was to the normative one (here termed “matrix similarity”)

as a predictor of postoperative language decline. In order to situate

this novel index with existing network analysis measures, we

explored how matrix similarity was related to established graph the-

oretical measures of network modularity, network clustering,

network community organization, and degree centrality of the to-

be-resected regions. We then compared matrix similarity to task-

based activation laterality with respect to naming change. We

further examined how these measures were related to preoperative

language, to characterize the relative merits of each predictor.

Finally, to determine which of the described measures was most

predictive of postoperative decline, we examined the variance struc-

ture of all significant single predictors within a global model of lan-

guage change.

We tested two plausible hypotheses with opposite predictions

for the relationship between matrix similarity and postoperative

naming decline. The first was that a normative language network

would be more robust than an abnormal network, and thus would be

resilient to network disruption secondary to surgery. This would be

expected particularly if regions that remained intact following sur-

gery predicted resilience when they were appropriately connected.

The second hypothesis was that a more abnormal language network

may have reorganized away from the epileptogenic hemisphere in

an adaptive way, which might be optimal for preserving performance

after surgery. In this case, we would expect that normative connec-

tivity of the language network would be related to greater language

decline postoperatively. In either case, we expected that matrix simi-

larity would capture individual differences in network modularity,

community clustering, and community organization, and as such it

would be a better predictor of postoperative naming change than

any of these measures alone. Further, we hypothesized that if to-

be-resected regions had a high number of connections (measured

via the graph theory metric of degree), then removal of these

regions would result in greater naming decline as these regions

would no longer be able to contribute to network processing. For

individuals with a low number of connections, we postulated that

removal would have less of an impact on naming as these regions

were not widely participating in network information transfer at

baseline. Finally, based on previous research (Bonelli et al., 2012;

Rosazza et al., 2013; Sabsevitz et al., 2003), we anticipated that

strong left lateralized task activation presurgically would predict

naming decline, though we were particularly interested in how this

measure would compare with those based on resting-state network

connectivity.

2 | METHODS

2.1 | Participants

Twenty adults with medically intractable TLE were recruited for

this study from the Epilepsy Clinic at Toronto Western Hospital

(12 females, Mean age = 37.6; age range: 23–53). Continuous

recording of scalp electroencephalography and video monitoring

during an inpatient evaluation in our epilepsy monitoring unit were

used to determine seizure focus in the left temporal lobe. All patients

underwent a standard left ATL resection (Mansouri et al., 2014),

wherein approximately 1 cm was removed from the superior tempo-

ral gyrus, 3 cm were removed from the middle temporal gyrus, and

4–5 cm from the inferior temporal gyrus extending caudal from the

temporal pole. The amygdala and hippocampus were also completely

removed. Nineteen healthy control subjects were recruited

(8 females, mean age = 34.4; age range: 22–59) with no history of

neurological or psychiatric disorders. All controls gave prospective

written informed consent. Patients either gave prospective written

informed consent or, for an older cohort, permission for retrospec-

tive analysis of clinical data was obtained from the University Health

Network Ethics Board.

2.2 | Neuropsychological testing

All patients underwent an extensive neuropsychological battery of

tests preoperatively and at a postoperative session approximately

12 months after surgery. For the current study, we examined language

outcome using total number of correct words, without phonemic cue-

ing, on the Boston Naming Test (BNT), as naming performance is one

of the main cognitive functions at risk for decline following ATL sur-

gery (Sherman et al., 2011). Change scores were calculated by taking

the difference in performance from preoperative to postoperative

testing. Preoperative BNT scores were also retained as a predictor of

postoperative change, as better baseline performance has been asso-

ciated with a higher risk for decline (Busch et al., 2016; Sabsevitz

et al., 2003).

2.3 | MRI data acquisition

A high-resolution 3D anatomical scan was collected on a 3T Signa MR

system (GE Medical Systems, Milwaukee, WI) for each subject

(T1-weighted sequence, FOV 220 mm, 146 slices, 256 × 256 matrix,

resulting in voxel size of 0.86 × 0.86 × 1.0). Task and resting-state

fMRI (T2*-weighted) scans were acquired with an echo-planar pulse

imaging sequence (FOV 240 mm, 28–32 slices depending on head

size, TR = 2000 ms, TE = 25 ms, 64 × 64 matrix, 3.75 × 3.75 × 5 mm

voxels, for 180 volumes). During resting state scans, subjects were

instructed to lie still, clear their thoughts, and “not to think about any-

thing in particular,” with their eyes closed.
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2.4 | fMRI language tasks

Four language tasks were used to characterize functional activation

laterality; all required covert word generation to visual cues (Supporting

Information Figure S1). In the first (verb generation), participants were

presented with a noun (e.g., ball) and were instructed to produce as

many verbs as they could that were associated with that noun (e.g., kick,

toss, throw, and catch). In each block of verb generation, participant

viewed five nouns for 5 s each. In the second task (sentence comple-

tion), participants were instructed to complete a sentence (e.g., The boy

wore red ______) with words that logically made sense (e.g., socks, shorts).

Each block had five trials for 5 s each. In the third task (category flu-

ency), participants were visually presented with a category (e.g., flowers)

and asked to generate as many examples of that category as they could

(e.g., rose, daisy, tulip). Each block had two categories of 12.5 s each. In

the fourth task (naming to description), participants were presented with

a sentence (e.g., furniture that you sleep on) and were instructed to gen-

erate words that matched the description (e.g., bed, couch). Each block

had five trials for 5 s each. Prior to each task block, was a fixation block

which was cued by “Relax” and involved the presentation of a string of

symbols (e.g., ^&*%#$@) and participants were told to fixate on the

middle of the strings. Each fixation block had five trials at 4 s each. An

instruction screen was provided at the beginning of each block for 1 s

to ensure participants understood the task requirements. Seventeen

patients performed all four of the language tasks during one functional

run. For these subjects, the four tasks were interleaved and presented

for three blocks each. Three subjects performed only the verb genera-

tion task and category fluency task. None of the healthy controls per-

formed these language tasks.

2.5 | fMRI preprocessing

Preprocessing was performed in SPM8 (http://www.fil.ion.ucl.ac.uk/

spm/software/spm8). Anatomical and functional images were reor-

iented so that the origin aligned with the anterior commissure. Then,

the functional images were coregistered to the anatomical image and

motion corrected using the realign and unwarp function. Anatomical

images for each subject were segmented into gray matter, white mat-

ter, and cerebral spinal fluid and normalized into standard Montreal

Neurological Institution (MNI) space using a linear transformation.

Functional images were then normalized to standard space using the

parameters from the anatomical transformation and smoothed with an

8-mm full-width half-max Gaussian kernel. We used the Artifact detec-

tion toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012) to identify

fluctuations in global signal greater than three SDs, translational motion

greater than 1 mm, and rotational motion greater than 0.05 radians.

The resulting outliers were saved as regressors and used as covariates

of no interest along with motion regressors. Finally, for the resting state

data only, we used the CONN toolbox (http://www.nitrc.org/projects/

conn; Whitfield-Gabrieli & Nieto-Castanon, 2012) to temporally filter

the data to exclude low (<0.008 Hz) and high (>0.09 Hz) frequency

fluctuations and used aCompCor (Behzadi, Restom, Liau, & Liu, 2007)

to exclude measures of physiological noise by regressing out the

top five components of a principal component analysis, run on the

unsmoothed data, from white matter and cerebrospinal fluid masks.

2.6 | Matrix similarity analysis

To construct our language network for resting-state analyses, we

selected all of the ROIs from the Brainnetome Atlas (Fan et al., 2016)

that were characterized as involved in the language processing domain

using the meta data labels of the BrainMap Database (http://www.

brainmap.org/taxonomy), along with their contralateral homologs. In

the Brainnetome Atlas, ROIs were labeled as language regions if a given

region activated at p < .05, corrected during tasks in the language

domain (forward inference) or if a task in the language domain was

most likely administered given that there was activation in the region

(reverse inference) using Bayes' rule (Fan et al., 2016). For our language

nodes, we included regions that were labeled as involved in speech,

semantics, syntax, and phonology, and excluded regions that were

exclusively involved orthography, as we wanted our ROIs to represent

a broad array of language processes that could be involved in lexical

access in our activation tasks. In addition, we included the left anterior

and posterior hippocampal ROIs and their homologs (also acquired from

the Brainnetome Atlas) given epileptogenicity of this region in our

patient population. We obtained a total of 33 ROIs in each hemisphere

(66 total) spanning frontal and temporal regions (Figure 1a).

Using the resting-state fMRI data, we extracted the mean cor-

rected time course across all the voxels in each ROI, which we corre-

lated with every other ROI in a pairwise fashion and converted to

z-scores using a Fisher's z-transformation, resulting in a 66 × 66 lan-

guage connectivity matrix for each subject. The connectivity matrices

of the 19 healthy control subjects were averaged together to create a

normative template, representative of typical language network con-

nectivity in the healthy brain (Figure 2). Then, we investigated how

similar each patient's language network connectivity pattern was to

the normative template using a Pearson's correlation between the

vectorized normative matrix and each of the vectorized patient matri-

ces. The resulting correlation coefficients were transformed using a

Fisher's z-transformation which served as our measure of matrix simi-

larity. We then used linear regression to predict preoperative BNT

performance, as well as preoperative to postoperative change in BNT

performance using matrix similarity as a predictor.

To characterize further what regional patterns were related to

postoperative language change, we calculated the ROI-level similarity

between each patient and the normative template. In this analysis, we

examined how similar an ROI's pattern of connectivity to every other

ROI—its connectivity fingerprint—was to the normative template. We

did this by correlating each ROI's connectivity fingerprint with the cor-

responding ROI connectivity fingerprint of the normative template for

each subject (i.e., we correlated each row of every patient matrix with

the corresponding row of the normative template matrix). We then

Fisher z-transformed each correlation and evaluated the relationship

between each region's connectivity fingerprint similarity and postopera-

tive naming change using a Pearson's correlation, and thresholded these

regions at p < .05, corrected for False Discovery Rate (FDR).

2.7 | Graph theoretical analysis of the language
network

We additionally wanted to quantify the representative characteristics of

the healthy language network, and to investigate how matrix similarity
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compared with existing measures of network organization in terms of

its descriptive and predictive ability. Visual inspection of the normative

template generally revealed a pattern of community organization

within anatomical lobes of the brain characterized by greater

within-lobe connectivity, moderate connectivity to contralateral homo-

logs, and relatively weaker across-lobe connectivity. We therefore

chose to characterize the community structure of the normative lan-

guage network using measures of clustering and modularity, which we

FIGURE 2 Matrix similarity derivation. Matrices representing each participant's resting language network connectivity were calculated.

A normative template was made by averaging the matrices from 19 healthy controls. Each patient's connectivity matrix was correlated with the
average normative template to quantify how similar patient networks were to “normal” language network connectivity. The resulting
z-transformed Pearson correlations were used to predict postoperative naming change

FIGURE 1 (a) The 33 selected regions of interest from the Brainnetome Atlas involved in language functioning, and their homologs. (b) To-be-

resected regions of interest from which we extracted degree centrality across a range of thresholds to correlate with postoperative naming
change. The regions are displayed on the MNI152 brain in radiological convention on axial slices. Ant., anterior; BA, Brodmann area; post.,
posterior; STS, superior temporal sulcus
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calculated using a combination of Brain Connectivity Toolbox func-

tions (https://sites.google.com/site/bctnet/; Rubinov & Sporns, 2010)

and in-house scripts.

The clustering coefficient describes how often a given node's

neighbors are also connected with each other (Rubinov & Sporns,

2010). Using the brain connectivity toolbox, we calculated the

weighted clustering coefficient for each node, which is the proportion

of a given node's neighbors that are connected to each other, renor-

malized by the average intensity of neighborhood clusters at that

node (Onnela, Saramäki, Kertész, & Kaski, 2005). The average of the

weighted clustering coefficients across the network is thought to be

indicative of specialized processing and can range from 0 (there is no

clustering or specialized processing) to 1 (there is maximal clustering).

Modularity (Q) describes how well a network can be divided into

communities that have high within community connectivity and low

between community connectivity and can range from −1 (highest

between community connectivity, with lowest within community con-

nectivity) to 1 (highest within community connectivity, with lowest

between) (Rubinov & Sporns, 2010). Community detection for the

modularity measure was performed using the Louvain method

(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) which iteratively

performs a greedy optimization of modularity by randomly selecting

nodes and merging them into the community that maximally increases

modularity, until no more gains in modularity are possible. These

resulting communities are then treated as nodes in a network and the

Louvain method of community detection is performed on these result-

ing communities. As this detection is influenced by the random node

that the algorithm begins with, we ran the algorithm 1,000 times and

created consensus co-classification matrices (Dwyer et al., 2014;

Lancichinetti & Fortunato, 2012) for each patient and the healthy

template. The consensus co-classification matrices represent how

often pairwise selections of nodes (node i and node j) were assigned

to the same community across the 1,000 iterations. Finally, the

Louvain community detection algorithm was applied to these consen-

sus matrices for each patient and the template to derive the final com-

munity arrangements. The modularity measure, Q, was calculated for

each subject on their final community arrangement.

Given that TLE patients may have a modular language network

even though the nodes within the communities of that network differ

from the normative template, we additionally investigated the

adjusted Rand index—a measure of similarity between two community

assignments, adjusted for the chance grouping of nodes (Rand,

1971)—to compare the community assignment of the normative tem-

plate to community assignment of each patient's language network in

a measure of community similarity. We calculated the adjusted Rand

index for each subject using their final community arrangements

derived from their consensus co-classification matrices. The Rand

index is scaled between 0 (match is at chance level) and 1 (perfect

match). We investigated the degree to which matrix similarity cap-

tured these descriptors by computing these measures (clustering,

modularity, adjusted Rand index) for each TLE patient's language net-

work and comparing them to matrix similarity scores using Pearson's

correlations and corrected for the number of comparisons using

FDR correction. In instances of significant relationship between graph

theoretical measures and matrix similarity, we additionally investi-

gated if these descriptors were related to BNT change.

2.8 | Graph theoretical analysis of to-be-resected
regions

Using the CONN toolbox, individual subject matrices were thre-

sholded and binarized so that only the top positive connections sur-

vived at 5, 10, 15, 20, 25, 30, 35, 40, and 45 percentile connection

density thresholds, in order to reduce bias in selecting any one arbi-

trary threshold, as is typical for this type of analysis (Rubinov &

Sporns, 2010). These proportional thresholds, in contrast to absolute

thresholds, ensure that each participant's matrices have similar num-

bers of edges. Degree centrality—the number of connections a partic-

ular region has to the rest of the network—was extracted for each

ROI that was to-be-resected (in full or in part) in the left ATL with a

standard ATL resection at our centre (Mansouri et al., 2014). This met-

ric was chosen as a relatively straightforward measure of regional

functional integration. These regions included rostral Brodmann area

22 along the superior temporal gyrus, the anterior superior temporal

sulcus of the middle temporal gyrus, three regions from Brodmann

area 20 (intermediate ventral area 20, rostral area 20, and rostroven-

tral area 20) of the inferior temporal gyrus, and the rostral and caudal

hippocampus (Figure 1b). We summed together the degree from each

of the to-be-resected ROIs, subtracting out the connections that link

to-be-resected ROIs with other to-be-resected ROIs. These summed

degree measures served as our index of ATL integration to the rest of

the network. The summed degree was correlated with preoperative

BNT scores and postoperative BNT change across the range of

thresholds.

2.9 | Task activation and laterality calculation

For each patient, we modeled first level activation using a general

linear model with a block design and computed subject level

t-contrasts for all language tasks versus all fixations in SPM8. To eval-

uate language laterality, we used the laterality index (LI) toolbox

(Wilke & Lidzba, 2007), which extracts voxel values that exceed a

particular threshold over a range thresholds and computes a LI for

each threshold according to the formula (Leftactivation – Rightactivation)/

(Leftactivation + Rightactivation). We used a bootstrapping method and

calculated the weighted mean LI across a range of thresholds using

10,000 bootstrap resamples. The weighted mean LI is calculated by

averaging the resulting LIs at each threshold, weighted by the height

of the threshold, such that more conservative thresholds have a

greater influence. Thus, this procedure does not rely on arbitrary

thresholding, but also allows voxels with stronger activation more

influence than those with lower activation. The resulting LI values

range from −1 to 1, with values closer to −1 indicating right lateralized

activation and values closer to 1 indicating left lateralized activation.

This method has been used in the past by our group (Barnett et al.,

2014) and others (Bonelli et al., 2012) and the details of these calcula-

tions have been described elsewhere (Wilke & Lidzba, 2007).

We calculated laterality using three different masks, given reports

of regional differences in LI (Tailby et al., 2017). The first was a
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relatively inclusive mask that included the frontal, temporal, and parie-

tal lobes, which was made out of masks included with the LI toolbox

and defined using the AAL atlas (Tzourio-Mazoyer et al., 2002).

Second, we calculated LI within the IFG exclusively using the AAL

atlas as described in Rosazza et al. (2013), with the exception that we

mirrored the left mask onto the right hemisphere to ensure equal

number of voxels in each hemisphere for the LI calculation. Finally, we

calculated LIs in the temporal lobes exclusively using a whole temporal

lobe mask that is provided with the LI toolbox. This mask was selected

because it was visually quite similar and as inclusive as the mask used

by Sabsevitz et al. (2003) who successfully predicted language out-

come with LI from their temporal lobe mask. The occipital lobe and all

voxels within 5 mm of the midline were excluded from the calcula-

tions, as activation here has been shown to be a major source of dis-

crepancy between fMRI LI and Wada laterality (Arora et al., 2009).

The LIs from each of the three masks were separately used as predic-

tors of postoperative language change using linear regression. Given

previous research, we used a one-tailed approach, hypothesizing that

greater left lateralization would be related to greater naming decline.

2.10 | Combined model prediction

Using the independent variables that were significantly related to lan-

guage change as predictors (with a cut-off of p < .05), we performed a

multiple linear regression on postoperative BNT change to assess the

unique influence of each variable on naming outcome.

3 | RESULTS

3.1 | Participant demographics

There were no significant differences in age, t(37) = 0.91, p = .37, sex

distribution, χ2 = 0.64, p = .43, or handedness, Fisher Exact probabil-

ity test, p = 1 between the patient group and the control group. There

were, however, significantly higher levels of education in the healthy

control group, t(37) = 2.57, p = .01. Demographics are displayed in

Table 1 (also see Supporting Information for more detail).

3.2 | Matrix similarity analysis

Matrix similarity was significantly lower in people with TLE compared

to the healthy control group, t(37) = 6.3, p < .001, suggesting that the

TLE group had abnormal patterns of preoperative network connectiv-

ity (note, the control similarity was calculated by taking the matrix

similarity between a given healthy control's network to a template

made from all other controls; see Supporting Information Figure S2).

We did not find a significant relationship between matrix similarity

and preoperative BNT scores (R2 = 0.01, F[1,18] = 0.24, p = .63).

However, matrix similarity showed a significant, positive relationship

with preoperative to postoperative change on the BNT (R2 = 0.4,

F[1,18] = 11.8, p = .003). Patients who showed a pattern of language

network connectivity that was more similar to that of the normative

template showed the least decline in naming performance (Figure 3a).

To better understand which regions contributed to this effect, we

interrogated the relationship between ROI fingerprint similarity and

naming change. We found that patients who had a similar pattern of

connectivity to the template in bilateral supplementary motor area,

Broca's area (left opercular part of the IFG), bilateral middle temporal,

right posterior middle temporal, and right inferior temporal regions

showed less naming decline following surgery, p < .05 FDR corrected

for the 66 regions (Figure 3c). That is, demonstrating a more norma-

tive pattern of connectivity from each of the aforementioned ROIs to

the rest of the language network was associated with better language

outcome postoperatively. No regions showed a substantial negative

relationship between ROI similarity and naming change, indicating

there were no regions where normal connectivity patterns predicted

worse outcome. Plotted in Figure 3d, we have presented an example

of the patient with the most similar and the patient with the most dis-

similar language network connectivity to the template. The individual

with the most similar pattern to the template showed almost no

change in naming performance, increasing by two points (a 4%

increase) on the BNT, while the individual with the most dissimilar

pattern to the template showed a loss of 19 points (a 39% decrease)

following surgery.

3.3 | Graph theoretical analysis of the language
network

We next investigated how other measures of network similarity fared

with respect to descriptive and predictive ability. There was a positive

relationship between network clustering and matrix similarity (t[18] =

2.27, r = .47, p = .04), wherein greater clustering of the language net-

work was associated with greater matrix similarity. However, while

greater clustering was associated with better naming outcome, this

relationship was not significant (R2 = 0.12, F[1,18] = 2.28, p = .07).

Network modularity was not related to matrix similarity (t[18] = 0.57,

r = .13, p = .29), indicating that there was no relationship between

how modular an individual's language network was and how similar

their network was to the normative template. This means that a

patient's network can be modular and yet dissimilar from the tem-

plate, suggesting that the communities formed in their network

are likely distorted relative to the template communities. When look-

ing at how modules grouped together, we found a strong, positive

TABLE 1 Patient demographic data

Controls LTLE

N 19 20

Age, years (SD) 34.4 (10.7) 37.6 (11.2)

Education, y (SD) 18 (3.1) 15.6 (2.6)

Sex, M/F 11/8 8/12

Handedness, L/R/BI 2/17/0 1/18/1

Language dominance, L/R/BI – 13/2/5

Disease duration, y (SD) – 19.2 (14.8)

Onset of seizures, y (SD) – 19 (15.1)

Presence of MTS, yes/no – 11/9

BI = bilateral; F = female; L = left; LTLE = left temporal lobe epilepsy; M =
male; MTS = mesial temporal sclerosis; R = right; SD = standard deviation;
y = years. Language dominance was determined using LI scores from the
combined frontal, temporal, and parietal mask, wherein LIs > 0.2 indicated
left-dominance, LIs < −0.2 indicated right-dominance, and LIs between
−0.2 and 0.2 denoted bilateral language. Characterization of MTS was
based on radiology (3T MRI protocol).
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relationship between adjusted Rand index and matrix similarity

(t[18] = 6.08, r = .82, p < .001), wherein patients who had more simi-

lar community assignment to healthy controls also had greater matrix

similarity (Figure 4b). Adjusted Rand index was also positively corre-

lated with BNT change, wherein patients with more similar commu-

nity structure to that of the normative template performed better on

the naming task after surgery, though this relationship did not reach

significance (R2 = 0.12, F[1,18] = 2.37, p = .07). When we investi-

gated the topology of the community organization, we saw that the

healthy template was characterized by a frontal community, a superior

and mid-temporal community, an inferior temporal community, and a

medial temporal community (Figure 4a). We again characterized the

highest and lowest matrix similarity networks and saw that the patient

with the lowest matrix similarity had relatively discordant community

assignment with the template, showing a loss of frontal community

specificity, especially in the right hemisphere (Figure 4c). The patient

with the most similar matrix showed a preserved frontal community,

although both patients highlighted here did not show a clear medial

temporal community, which is perhaps not surprising given that is the

seizure focus.

3.4 | Graph theoretical analysis of to-be-resected
regions

We found a positive relationship between preoperative BNT scores

and degree centrality in to-be-resected ROIs across a range of thresh-

olds from 5 to 40 percentile (Figure 5a), wherein greater degree in the

dominant ATL was associated with better naming scores preopera-

tively. Thus, greater integration of the dominant ATL with the rest of

the language network supports better confrontation naming before

surgery.

In parallel, we found a negative relationship between BNT change

after surgery and degree in to-be-resected ROIs across a range of

thresholds from 10 to 30 percentile. Figure 5c demonstrates the

consistency of this finding across the different thresholds. Patients

who had greater degree in these to-be-resected ROIs showed the

greatest decline in naming following surgery, indicating that removal

of dominant ATLs that are highly integrated with the rest of the lan-

guage network is detrimental to language outcome. For visualization,

we have plotted the mean degree centrality across the range of signif-

icant thresholds against postoperative naming change in Figure 5d.

FIGURE 3 (a) Correlation between matrix similarity and postoperative BNT change. Higher matrix similarity scores represent patient language

networks that were more similar to normative template, p < .01. Negative BNT change scores represent a decline in naming postoperatively.
(b) the healthy patterns of connectivity. The rows with asterisks (*) are the ROIs for which fingerprint similarity is significantly related to BNT
change (r > .45, p < .05, FDR corrected). (c) the centers of gravity for the top regions where ROI fingerprint similarity is related to BNT change
(the rows with asterisks in b) depicted on a rendered brain. (d) Two example TLE connectivity matrices are provided for comparison: The patient
with the highest matrix similarity score and the lowest. (e) The color bar represents correlation coefficient. BNT, Boston naming test; Fusi + Para,
fusiform and parahippocampal gyrus; hippo, hippocampus; ITG, inferior temporal gyrus; MTG, middle temporal gyrus; STG, superior temporal
gyrus
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Across this range of significant thresholds, there was no difference in

the mean ATL degree between the left temporal lobe epilepsy and

control group at baseline (t[37] = 1.1, p = .3).

3.5 | Other indices of language functioning

Preoperative BNT scores were negatively associated with postopera-

tive BNT change (R2 = 0.14, F[1,18] = 2.89, p = .053, one-tailed),

meaning that those who had better naming ability before surgery

experienced a bigger decline post-resection. In terms of fMRI activa-

tion, task laterality showed left lateralization in 13 out of 20 patients

(LI > 0.2) using the combined frontal–temporal–parietal mask (range =

−0.37–0.94), 15 out of 20 patients using the IFG mask (range =

−0.58–0.98), and 12 out of 20 patients using the temporal lobe mask

(range = −0.50–0.94). Laterality was not significantly related to BNT

scores preoperatively (all R2 < 0.03, p > .2), or to postoperative

change using any of the masks (all R2 < 0.02, p > .28).

3.6 | Combined regression model

Since matrix similarity and degree within to-be-resected regions were

both related to postoperative BNT change (p < .05), we used these

measures in a combined regression model (for degree, we used

the average degree across the range of significant thresholds).

FIGURE 4 (a) The nodes of the language network color coded by the community to which they were assigned using iterative Louvain community

detection on the normative template network, projected onto an inflated standard brain. Blue: frontal module; green: superior-middle temporal
module; yellow: middle-inferior temporal module; red: medial temporal module. (b) Scatterplots showing the relationship between adjusted Rand
index and matrix similarity (left), p < .001 and the relationship between adjusted Rand index and change in naming following surgery on the
Boston naming test (right), p = .07. (c) The community organization of the patient with the least similar language network matrix similarity (left)
and the community organization of the most similar language network matrix similarity (right). The larger spheres represent the nodes where
connectivity pattern similarity is related to naming change following surgery and are highlighted in Figure 3
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The combined model was significantly related to BNT naming change

following surgery, R2 = 0.46, F(2,17) = 7.3, p = .005. To ensure there

was no collinearity among our predictors, we examined the variance

inflation factor (VIF) and found a VIF of 1.17. Typically, a VIF < 10

is considered to indicate that there no evidence for consequential

collinearity (Hair, Anderson, Tatham, & Black, 1995; Menard, 1995).

Matrix similarity was a significant predictor, β = 0.52, t(17) = 2.72,

p = .01, and explained 23% of unique variance in outcome, but mean

degree in the to-be-resected temporal lobe regions was no longer

significant, β = −0.28, t(17) = −1.47, p = .16, explaining only 7% of

unique variance.

4 | DISCUSSION

Our main objective in this study was to assess the relationship

between measures of resting language network connectivity with

postoperative change in patients following left ATL resection. Using a

novel measure, matrix similarity, we found that individuals who

showed more normative global patterns of resting-state language net-

work connectivity at baseline were less likely to show postoperative

naming decline than those with abnormal patterns of connectivity.

TLE patients with greater matrix similarity also had greater network

clustering and greater community similarity to the normative template

(which consisted of relatively circumscribed bilateral frontal, superior

temporal, mid-inferior temporal, and medial temporal communities),

implicating these as important properties of the normative network,

but these indices were weaker predictors of language outcome com-

pared to matrix similarity. Normative connectivity patterns in predom-

inantly bilateral supplementary motor area, Broca's area, bilateral

middle temporal, right posterior middle, and inferior temporal cortex—

regions spared (except for the most anterior portion of left middle

temporal gyrus) in surgery for left TLE—were especially important

regional predictors of functional reserve. Thus, healthy patterns of

connectivity in regions that are not directly impacted by surgery

appear to allow for stable performance following damage to other

components of the network. When we interrogated the degree cen-

trality of to-be-resected regions in a more targeted approach of the

pathological temporal lobe, we found that high numbers of connec-

tions from to-be-resected regions to the rest of the language network

at rest was related to better preoperative naming ability and greater

FIGURE 5 Top panels: Association between degree and preoperative naming ability. (a) Correlation between degree within left ATL regions and

preoperative BNT scores across a range of thresholds. ATL degree represents summed connections of ROIs within the to-be-resected region to
the rest of the language network (and not to each other). Whiskers represent 95% confidence intervals, and those which do not cross 0 denote a
significant relationship at p < .05 uncorrected levels. (b) A representative scatterplot showing the average relationship between ATL degree
across thresholds and preoperative BNT scores. Here, ATL degree was averaged across thresholds where this measure was significantly related to
preoperative BNT scores (5–40 percentile as shown in a) to get a single R2 value representing the strength of this relationship (p < .01). Bottom
panels: Association between degree and postoperative naming change. (c) Correlation between degree within ATL regions and postoperative BNT
change across a range of thresholds. As in (a), ATL degree at each threshold represents summed connections of ROIs within the to-be-resected
region to the rest of the language network. Whiskers represent 95% confidence intervals, and those which do not cross 0 denote a significant
relationship at p < .05 uncorrected levels. (d) A representative scatterplot showing the average relationship between ATL degree across
thresholds and postoperative BNT change. ATL degree was averaged across thresholds where this measure was significantly related to
preoperative BNT scores (10–30 percentile as shown in c) to get a single R2 value representing the strength of this relationship (p < .05)
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decline in naming following surgery. This suggests that degree within

these regions is a good indicator of language functioning, and that los-

ing nodes that are highly integrated with the language network is det-

rimental to language ability after surgery. When we combined the

significant predictors of naming change in one model, we found that

matrix similarity was more strongly related to outcome, with degree

explaining only an additional 7% of unique variance in naming change.

Altogether, results from the present study indicate that of those con-

nectivity features examined, matrix similarity is the strongest predictor

of functional outcome after ATL resection.

Our findings accord with others in the literature in demonstrating

that low frequency fluctuations at rest characterize network proper-

ties that subserve cognition. While task activation is certainly invalu-

able in terms of describing how the brain operates during a specific

mental operation, and in identifying functional engagement of particu-

lar regions, it is not without limitations in clinical contexts (Fox &

Greicius, 2010). Resting-state fluctuations may provide a window to

the intrinsic connections that can be harnessed for any relevant task

and thus reflect the capacity of a network and not how it is being

engaged during a particular occasion (Cole et al., 2016; Doucet et al.,

2017). Indeed, resting state analysis has been shown to identify

regions involved in task-based activity across a wide range of cogni-

tive tasks including those of attention, emotion, reward learning, rela-

tional reasoning, social cognition, working memory, motor, and

language (Cole et al., 2016; Mennes et al., 2010; Tavor et al., 2016),

and subject-specific functional connectivity fingerprints at rest

have been identified for simple motor and visual operations (Finn &

Constable, 2016; Geerligs, Rubinov, Cam-Can, & Henson, 2015).

There have been criticisms that “resting state” is a poorly understood

and uncontrolled set of mental operations that can vary considerably

across participants (Buckner, Krienen, & Yeo, 2013; Campbell &

Schacter, 2017) which implies that this may have little clinical value.

Nonetheless, an emerging body of research suggests these network

characteristics may depict key properties that relate to functional

integrity and prediction of change at the individual patient level

(Dierker et al., 2017; Doucet, Rider, et al., 2015; McCormick et al.,

2014; McCormick, Quraan, Cohn, Valiante, & McAndrews, 2013; Sair,

Agarwal, & Pillai, 2017; Zhou, Liu, Ng, & Wang, 2017).

4.1 | Normative resting-state language network
connectivity of spared regions is related to better
outcome postoperatively

Patients whose resting-state language network was more similar to

that of healthy controls had better naming outcome after surgery. This

finding suggests that focal insult to the language network, at least in

TLE, is less catastrophic when resting connectivity within the broader

network is normal, and is perhaps able to compensate for the damage

with redundant or degenerate processes—processes that can perform

the same function following impairment of a subset of regions (Tononi,

Sporns, & Edelman, 1999). This may be specific to the epileptic brain,

although we found preoperative naming ability was not related to

matrix similarity, suggesting that network alterations caused by long-

standing seizures may not cause dramatic functional impairment.

Nonetheless, these altered networks may be especially vulnerable

given that surgical disruption leads to greater impairment. As discussed

earlier, Doucet et al. (2017) demonstrated that resting connectivity of

the language network in epilepsy is broad, bilateral, and seems to be

reflective of a prepotent set of regions that may subserve language. In

this context, those with normal connectivity have greater opportunity

to rely on the integrity of network components capable of subserving

language that are spared during surgery. However, deviation from this

pattern of typical network connectivity may restrict the opportunity to

capitalize on redundant or degenerate processes.

When we examined which ROIs were contributing most to this

pattern, we found that it was largely driven by frontal and temporal

regions that were not excised during surgery (with the exception of

part of one middle temporal region). While the pattern of connectivity

of left lateralized ROIs were important drivers of the matrix similarity

effect, the only completely left lateralized region in this respect was

Broca's area. Interestingly, we found that most of the left temporal

ROIs that were to-be-resected were not actually driving the matrix

similarity effect, indicating that the pattern of connectivity from most

of these regions were not important in determining outcome. These

results, which are influenced by the topological pattern of connec-

tions, differ from the results showing that the arbitrary number of con-

nections (degree) preoperatively in the to-be-resected regions are

related to naming change. Instead, the connectivity patterns of right

temporal regions were generally more predictive of outcome than the

pattern of connectivity of regions within the epileptogenic temporal

lobe, suggesting that abnormal reorganization of connectivity within

the right temporal lobe (perhaps a functional response to impairment

in the left temporal lobe or in response to bilateral interictal dis-

charges) results in a network organization that is more fragile. It is

important to note that conclusions based on resting-state topography

may be quite different from those regarding reorganization in the con-

text of task-related activation (Berl et al., 2005; Brázdil et al., 2003;

Weber et al., 2006). Indeed, it could be that there is increased activa-

tion and functional load assumed by right temporal regions that is

adaptive to preserved language functioning, but that reorganized con-

nections with other language regions cannot withstand network insult

as efficiently as a normative connectome. This finding suggests that

resting connectivity of right temporal regions is informative and use

of resting-state fMRI to interrogate language networks must reflect

the bilateral nature of the network.

While it is tempting to focus on strong positive correlations

between regions as indicative of better outcome, negative, or null

connections within the network are equally as important to consider

in the context of the present findings, as it is the entire pattern of con-

nectivity that correlates with outcome, not just the positive connec-

tions. This distinguishes matrix similarity from other metrics which

may focus on only the strongest available positive connections such

as degree. Greater connectivity between regions that are not normally

connected would contribute just as much to an abnormal resting lan-

guage network as null correlations where there should be positive

ones. In short, it is the balance between positive and negative connec-

tions to the rest of the language network that determines how much

influence a given ROI has in driving matrix similarity and also deter-

mines the overall predictive value of this metric. Similarly, this may be

the reason matrix similarity better captures language outcome than
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clustering or adjusted Rand index. Matrix similarity was moderately

positively correlated with clustering and strongly positively correlated

with adjusted Rand index—suggesting that it overlaps with both of

these descriptors of network structure. While matrix similarity was

associated with naming outcome, clustering, and adjusted Rand index

were not. General clustering of the network is valuable for describing

overall network topology, but it does not take into account which

regions are clustering together, whether those regions are within the

same community, or whether those communities map on to normative

network communities. Conversely, adjusted Rand index does take into

account which regions are normatively grouped together into the

same community, but it does not consider the patterns of those rela-

tionships within and between communities in the same way that

matrix similarity does. One example of this is illustrated in the commu-

nity assignments used to calculate adjusted Rand index in the individ-

ual who had the highest matrix similarity score (Figure 4c). While

communities within the temporal lobes were less circumscribed and

there was greater integration between some frontal and temporal

communities compared to the normative template (Figure 4a), the

ROIs that drove the matrix similarity effect (at the group level) were

clustered within the same communities in this individual as they were

in the normative template. This may indicate that the community

membership and pattern of connectivity of some nodes or regions

may be more important than others, and matrix similarity is better able

to capture these covarying magnitudes of community alignment com-

pared to the categorical assignments examined with the Rand index.

4.2 | Greater degree in to-be-resected regions is
associated with worse outcome postoperatively

In a more targeted approach, we examined the number of connections

from to-be-resected ROIs to the rest of the language network (exclud-

ing the number of connections within the to-be-resected regions

themselves) and found that patients who had more connections run-

ning through these regions performed better preoperatively and sus-

tained a greater decrement in their naming ability after these regions

were resected. This finding suggests that functional integration of the

left ATL to the rest of the language network is important to consider

in the context of surgical removal of this region, where the loss of an

ATL characterized by greater integration is more detrimental to nam-

ing ability than the loss of an ATL that has fewer connections to the

rest of the language network.

Previous studies have demonstrated the importance of to-be-

resected regions to cognitive outcome. Encoding activation in the

to-be-resected hippocampus (Bonelli et al., 2010) and greater connec-

tivity between the to-be-resected hippocampus and the posterior cin-

gulate cortex (McCormick et al., 2013) is related to greater memory

decline after surgery. Our findings also correspond with other litera-

ture that has demonstrated that loss or damage to high degree nodes

results in greater impairment in cognitive ability (Fagerholm, Hellyer,

Scott, Leech, & Sharp, 2015; Warren et al., 2014). Further, simulations

of lesions that target random nodes compared to high degree nodes,

demonstrate that loss of high degree nodes is more devastating to

network architecture relative to loss of random nodes (Crossley et al.,

2014). Crossley et al. (2014) suggested that this is because the loss of

high degree nodes is more likely to lead to reductions in global net-

work efficiency—the ability of a network to transfer information. Thus,

removal of high degree regions with surgery for TLE may lead to

reduced network efficiency, and greater naming decline. Together,

these studies demonstrate the importance of functional adequacy—

the integrity/functional capability—of the to-be-resected tissue in pre-

dicting postoperative changes in cognition. In the context of our

matrix similarity findings, this suggests that high left ATL integration

with the rest of the language network is an important indicator of lan-

guage functioning, regardless of if those connections are normative.

Preoperatively, patients with higher degree in the left ATL showed

greater naming ability irrespective of how normal those connections

were (indeed, matrix similarity was not predictive of preoperative

naming ability). However, normative connectivity of regions spared

from surgery explained more variance in postoperative outcome than

integration of the to-be-resected ATL, suggesting that while even

abnormal connectomes may preserve language functioning preopera-

tively, they are much less resilient to network insult. This may in part

be impacted by the fact that there are more connections considered

in the rest of the language network than from the to-be-resected ATL

on its own, but it also underscores the importance of functional

reserve in cognitive outcome.

4.3 | Preoperative language ability, LI, and
postoperative naming decline

Better preoperative BNT scores were only marginally associated with

postoperative decline in naming ability, though this trend is consistent

with existing literature (Busch et al., 2016; Sabsevitz et al., 2003). This

relationship is also in agreement with findings from this study that

individuals with greater degree within the to-be-resected region had

better naming ability before surgery and worse ability afterward. Thus,

individuals with better integrated and perhaps better functioning ATLs

appear to be at greater risk for postoperative language morbidity.

Surprisingly, we failed to replicate the finding that LI extracted

from task-active language regions is related to postoperative language

change (Bonelli et al., 2012; Rosazza et al., 2013; Sabsevitz et al.,

2003). This was true for a relatively inclusive frontal–temporal–

parietal mask and for separate temporal and frontal masks. There are

several potential reasons for the discrepant findings and indeed,

among the three studies in the literature that have shown a relation-

ship between LI and postsurgical language outcome, there is consider-

able variability in methodological choices. The tasks used to identify

language activation across these studies include a semantic decision-

making task (Sabsevitz et al., 2003), a naming task (Rosazza et al.,

2013), and a verbal fluency task (Bonelli et al., 2012). Our task activa-

tion map was composed of activations from naming, verb generation,

category fluency, and sentence completion tasks for the majority of

subjects. While we believe that the composite of these measures bet-

ter reflects “true” language activation (Gaillard et al., 2004), we would

not necessarily expect this measure to engender the same LI or activa-

tion patterns as any one given measure (e.g., naming tasks tend to

engage more temporal language regions whereas fluency tasks better

engage frontal regions). Another methodological consideration is the

calculation of laterality. Sabsevitz et al. (2003) calculated LI based on
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voxel count at a threshold of p < .001 in left and right homologous

ROIs. We, and others, would argue that calculating LI across a range

of thresholds is much more robust than when using an arbitrary

threshold, given that one can get substantially different results

depending on the threshold chosen (Branco et al., 2006; Wilke &

Lidzba, 2007). However, Bonelli et al. (2012) used the same bootstrap-

ping method as the current study and to a more limited extent

Rosazza et al. (2013) did calculate LI across a discrete range of thresh-

olds and found that relatively greater rightward lateralization was

related to better outcome. The third possible reason for the discrep-

ant findings lies within the ROIs chosen for these analyses, though we

probed several different regions for a relationship between LI and lan-

guage outcome based on reported ROIs from the aforementioned

studies and still found no relationship. We repeated our LI analysis

using only the naming and category fluency subsets of our tasks with

our IFG mask, using the same threshold as Rosazza et al. (2013) and

we still did not find a relationship with naming change (see Supporting

Information). Previous studies did, however, have fewer instances

of bilateral or right-lateralization in their sample of patients than

reported here (and indeed, Bonelli et al. (2012) excluded these

patients from their analysis). To investigate this possibility, we exam-

ined the left lateralized patients (LI > 0.2 using the combined frontal–

temporal–parietal mask) independently. We found that while there

was a small negative correlation between the degree of leftward later-

alization and naming change, it was not significant (t[11] = 0.93,

p = .19, r = −.27); note that due to a smaller sample size in this

instance, power was diminished. The fact that we did not replicate this

finding may be the product of any such differences, and future studies

will be needed to investigate the impact of such varied methodologi-

cal choices.

4.4 | Limitations

The first limitation of this study, and one that affects many studies of

language fMRI, is that all patients were using antiepileptic medication

(AEDs) during scanning. Some AEDs have been shown to affect lan-

guage performance and activation in fMRI, specifically topiramate is

associated with reduced activation (Wandschneider et al., 2017), but

the degree to which they affect resting state properties has not been

explored. However, of our sample, only three patients were taking this

drug. Second, the results pertaining to degree centrality are partially

contingent upon methodological decisions such as thresholding, and

choice of parcellation scheme. We presented our findings across a

range of thresholds that have previously been used in the TLE literature

(Bernhardt, Chen, He, Evans, & Bernasconi, 2011; Doucet et al., 2014),

and took steps to ensure that our non-graph theory measures were

minimally dependent on threshold. For the calculation of LI in task fMRI

we took a weighted mean across many thresholds, bootstrapped

10,000 times. Also, our measure of matrix similarity is threshold inde-

pendent, as the full pattern of connections was taken into account. For

the choice of parcellation scheme, we used an atlas that was based on

anatomical and connectivity-based boundaries (Fan et al., 2016) and

selected language regions based on their taxonomy determined via the

BrainMap database (http://www.brainmap.org/taxonomy) which draws

on over 3,600 publications and over 110,000 subjects. We are, thus,

confident that our ROIs are bound by anatomy and shared connectivity

providing meaningful division, while avoiding the redundancy of using

each voxel as an ROI.

5 | CONCLUSIONS AND FUTURE
DIRECTIONS

Here, using a novel measure of matrix similarity, we provide some of

the first evidence that preoperative resting-state connectivity mea-

sures can be exploited as predictors of postoperative language decline

in adults with left TLE, and that a quick 6-min scan at rest provides

enough information to inform language change after surgery. We

found that the healthy resting-state language network is quite broad,

bilateral, and consists of relatively circumscribed frontal and temporal

lobe communities. Notably, we found that normative connectivity of

regions spared from surgery is critical for optimal language functioning

postoperatively. Finally, we found that a high level of integration of

the to-be-resected ATL with the rest of the network was indicative of

better language functioning preoperatively regardless of the pattern

of those connections, and was also associated with worse outcome

postoperatively. These results highlight the difference between net-

works subserving functional adequacy versus reserve and the com-

plexities of interactions between these processes in the context of

network damage.

We have speculated that resting networks that look healthy pre-

surgically are able to better adapt to network disruption due to sur-

gery, and future studies should address this by examining network

organization following surgery to observe how network reorganization

may take place. Further, longitudinal tracking of naming ability may be

explored to determine whether network plasticity and recovery of lan-

guage performance can be predicted from preoperative neuroimaging

measures. Finally, matrix similarity could serve as a metric for other

types of prediction such as memory decline following surgery for epi-

lepsy, or potentially serve as predictive measure for cognitive decline

in children with TLE following surgery or other neurological disorders

such as individuals with mild cognitive impairment. Work will need to

be done to test the efficacy and limitations of this method as applied

to other domains.
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