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Abstract
Different modalities such as structural MRI, FDG-PET, and CSF have complementary information,

which is likely to be very useful for diagnosis of AD and MCI. Therefore, it is possible to develop a

more effective and accurate AD/MCI automatic diagnosis method by integrating complementary

information of different modalities. In this paper, we propose multi-modal sparse hierarchical

extreme leaning machine (MSH-ELM). We used volume and mean intensity extracted from 93

regions of interest (ROIs) as features of MRI and FDG-PET, respectively, and used p-tau, t-tau, and

Ab42 as CSF features. In detail, high-level representation was individually extracted from each of

MRI, FDG-PET, and CSF using a stacked sparse extreme learning machine auto-encoder (sELM-

AE). Then, another stacked sELM-AE was devised to acquire a joint hierarchical feature representa-

tion by fusing the high-level representations obtained from each modality. Finally, we classified

joint hierarchical feature representation using a kernel-based extreme learning machine (KELM).

The results of MSH-ELM were compared with those of conventional ELM, single kernel support

vector machine (SK-SVM), multiple kernel support vector machine (MK-SVM) and stacked auto-

encoder (SAE). Performance was evaluated through 10-fold cross-validation. In the classification of

AD vs. HC and MCI vs. HC problem, the proposed MSH-ELM method showed mean balanced

accuracies of 96.10% and 86.46%, respectively, which is much better than those of competing

methods. In summary, the proposed algorithm exhibits consistently better performance than SK-

SVM, ELM, MK-SVM and SAE in the two binary classification problems (AD vs. HC and MCI vs.

HC).
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1 | INTRODUCTION

Alzheimer’s disease (AD) is the most common dementia type in the

elderly. The number of people suffering from AD is increasing rapidly

every year. Because AD is a degenerative disease and progressively

attacks memory cells, the development of early diagnostic tools for AD

and mild cognitive impairment (MCI) is essential. AD is known to be

closely related to structural atrophy, pathological amyloid depositions,

and metabolic alterations in the brain (Jack et al., 2010; Nestor, Schel-

tens, & Hodges, 2004). For this reason, brain atrophy measured by

magnetic resonance imaging (MRI), hypometabolism measured by

functional imaging, and quantification of specific proteins measured by

CSF have been used for AD/MCI diagnosis. In general, features

extracted from the hippocampus, entorhinal cortex, parahippocampal

gyrus, and cingulate using structural MRIs have been reported to be

the most effective in classifying AD/MCI, and these results are consist-

ent with those of previous studies based on group comparison meth-

ods (Ch�etelat et al., 2002; Convit et al., 2000; Fox, & Schott, 2004;

Jack et al., 1999; Misra, Fan, & Davatzikos, 2009). In addition to struc-

tural MRI, another important modality for AD and MCI diagnosis is flu-

orodeoxyglucose positron emission tomography (FDG-PET) (Ch�etelat

et al., 2003; Foster et al., 2007; Higdon et al., 2004). For example, Diehl
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et al. (2004) and Drzezga et al. (2003) showed that there is a decrease

in glucose metabolism in the parietal, posterior cingulate, and temporal

brain regions of AD patients (Diehl et al., 2004; Drzezga et al., 2003).

Another modality that is important for diagnosis of AD and MCI is cer-

ebrospinal fluid (CSF). It is generally known that increased CSF total

tau (t-tau), tau hyperphosphorylated (p-tau), and reduced amyloid b

(Ab42) at threonine 181 appear in AD patients (Bouwman et al., 2007;

Ji et al., 2001; De Leon et al., 2007). Different modalities such as struc-

tural MRI, FDG-PET, and CSF have complementary information, which

is likely to be very useful for diagnosis of AD and MCI (Apostolova

et al., 2010; Fjell et al., 2010; Foster et al., 2007; Landau et al., 2010;

De Leon et al., 2007; Walhovd et al., 2010). For this reason, a number

of studies have reportedly integrated multiple modalities such as MRI,

PET, and CSF rather than using a single modality to improve the per-

formance of AD/MCI automatic diagnosis (Cui et al., 2011; Fan et al.,

2007; Kohannim et al., 2010; Suk & Shen, 2013; Walhovd et al., 2010;

Westman, Muehlboeck, & Simmons, 2012; Yuan et al., 2012; Zhang

et al., 2011; Zhang, & Shen, 2012). For example, Kohannim et al. (2010)

concatenated the features extracted from various modalities into a vec-

tor and classified it using support vector machine (SVM) (Kohannim

et al., 2010). Walhovd et al. (2010) used multi-method stepwise logistic

regression analysis to integrate multiple modalities. Hinrichs, Singh, Xu,

and Johnson (2011), Suk and Shen (2013), and Zhang et al. (2011) used

a kernel-based machine learning method such as multiple kernel SVM

(MK-SVM) to integrate complementary information from multi-modal

data (Hinrichs et al., 2011; Suk & Shen, 2013; Zhang et al., 2011).

Recently, deep learning has become a promising technology in the

machine learning field. Deep learning refers to the learning of multiple

levels of representation and abstraction. Deep learning has resulted in

significant performance improvements in data analysis and classifica-

tion of images, sounds, and text. In recent years, increasingly more

attempts have been made to use deep learning techniques for multi-

modal data analysis and classification. For example, Wang et al. (2014)

used stacked auto-encoders to obtain seamless information from vari-

ous types of media. Srivastava and Salakhutdinov (2012) proposed a

multi-modal deep belief network to obtain joint representations of

image and text data (Srivastava & Salakhutdinov, 2012). Ouyang, Chu,

and Wang (2014) developed a multi-source deep model to obtain infor-

mation for human pose estimation. Suk and Shen (2013) proposed a

method of integrating MRI, PET, and CSF modalities for automatic

diagnosis of AD using stacked auto-encoders.

Learning by most deep learning architectures is based on a back-

propagation algorithm that iteratively adjusts the parameters of all layers.

For this reason, conventional neural networks require numerous itera-

tions to obtain good generalization performance (Huang et al., 2004). To

overcome this situation, Huang, Zhu, and Siew (2004) proposed an

extreme learning machine (ELM) with good generalization performance

and computational efficiency by randomly assigning input layer weights

and analytically calculating hidden layer weights. However, ELM is fun-

damentally a shallow network, which makes it difficult to obtain a hier-

archical representation of the data (Cao et al., 2012; Cao, & Lin, 2015).

To overcome these limitations, the deep ELM (DELM) algorithm was

proposed by Kasun, Zhou, Huang, and Vong (2013), with the ELM auto-

encoder (ELM-AE) as its base building block. Tang et al. (2016) proposed

a sparse ELM-AE, which is an improved version of the existing ELM-AE,

by learning the hidden layer weights sparsely (Tang et al., 2016). Wei,

Liu, Yan, and Sun (2016) proposed a multi-modal deep ELM-AE (MM-

DELM) framework, an extended version of DELM, for multi-modal data

analysis and classification. MM-DELM reportedly had successful per-

formance in robotic grasping problems (Wei et al., 2016).

In this article, we propose a multi-modal sparse hierarchical

extreme learning machine (MSH-ELM) that employs a sparse ELM-AE

as a base building block. Through the MSH-ELM algorithm, we will

extract joint hierarchical representations from three modalities (MRI,

PET, and CSF), and finally classify AD and MCI from healthy controls

(HC). Volume from MRI, mean intensity from PET, and Ab42, t-tau, and

p-tau from CSF were used as the features of classifier. Particularly, the

reason for using volume as a feature of MRI is that there are many

studies that the volume reflects the brain atrophy induced by AD (Guo

et al., 2010; Hirata et al., 2005; Ishii et al., 2005; Karas et al., 2003;

Matsuda et al., 2012; Vemuri et al., 2009; Whitwell et al., 2007).

Our experimental results on the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) dataset prove the utility of the proposed method. To

verify the effectiveness of our method, we compared the classification

performance with the single kernel support vector machine (SK-SVM),

conventional ELM, multiple kernel support vector machine (MK-SVM),

and stacked auto-encoder (SAE) (Liu et al., 2014a; Suk & Shen, 2013;

Zhang et al., 2011).

Our contributions of this study are as follows:

1. We propose an automated AD/MCI discrimination method based

on a deep extreme learning machine framework. Compared to

conventional ELM which is shallow network, deep extreme learn-

ing machine which is deep neural network and stacked by ELM

auto-encoder (ELM-AE) can more effectively extract optimal fea-

tures from the data. This is the first study to introduce a deep

extreme learning machine framework for AD and MCI

classification.

2. Our proposed framework employs a novel architecture which

extracts optimal features from structural MR image, PET, and CSF

modalities, simultaneously. Deep extreme learning machine mod-

els for multi-modal data have been rarely studied, and to the best

of our knowledge, this is the first multi-modal deep extreme learn-

ing model for medical image classification.

3. The base building block of our proposed framework is sparse ELM

auto-encoder (sELM-AE). sELM-AE can generate sparser and more

compact features from the data compared to ELM-AE. This is the

first algorithm to apply sELM-AE as base building block into multi-

modal deep extreme learning machine framework.

4. The proposed algorithm extracts jointly optimized features from

multi-modal data differently from conventional sELM-AE. The pro-

posed algorithm first obtains high-level representations individu-

ally for each modality. It then computes the joint hierarchical

feature representation of the multi-modal data using the high-

level representation of each modality as input.
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5. The classification performance of our framework is expected to be

superior to other conventional classification algorithms such as

ELM, SVM, and MK-SVM and so on because of deep neural net-

work structure, sparse, and jointly optimized multi-modal feature

extraction characteristics. This will be addressed in detail through

this study.

The remainder of this article is organized as follows: Section 2

describes the information contained in the ADNI database that we

used for this study and the preprocessing procedure. Section 2.1 dis-

cusses related work, including the fundamental concepts and theories

of ELM and the proposed MSH-ELM framework. Sections 4 and 5

present the results and discussion of the proposed method, respec-

tively. Section 3 presents the concluding remarks.

2 | MATERIALS AND IMAGE PROCESSING

2.1 | Subjects

The data used in this study were obtained from the ADNI dataset,

which is publicly available on the web (www.loni.ucla.edu/ADNI).

Detailed information on the subjects is presented in Table 1. General

criteria for categorizing HC, AD, and MCI are explained on the web

(http://adni.loni.ucla.edu). The subjects ranged in age from 55 to 90

years, and independent functioning assessments were evaluated by the

study partner. The general inclusion/exclusion criteria were as follows:

healthy control (HC) subjects had Mini-Mental State Examination

(MMSE) scores between 24 and 30 (inclusive), a Clinical Dementia Rat-

ing (CDR) of 0, and were nondepressed, non-MCI, and nondemented.

MCI patients had MMSE scores between 24 and 30 (inclusive), a mem-

ory complaint, objective memory loss measured by education adjusted

scores on the Wechsler Memory Scale Logical Memory II, a CDR of

0.5, absence of significant levels of impairment in other cognitive

domains, essentially preserved activities of daily living, and an absence

of dementia. Mild AD patients had MMSE scores between 20 and 26

(inclusive), a CDR of 0.5 or 1.0, and met National Institute of Neurolog-

ical and Communicative Disorders and Stroke and the Alzheimer’s Dis-

ease and Related Disorders Association (NINCDS/ADRDA) criteria for

probable AD.

In this study, we only used the baseline MRI, 18-Fluoro-

DeoxyGlucose PET (FDG-PET), and CSF data acquired from 51 AD

subjects, 99 MCI subjects, and 52 healthy control (HC) subjects, who

included all three modalities at baseline. All subject IDs used in this

study are provided in Supporting Information.

2.2 | MRI, PET, and CSF acquisition

All structural MR scans were collected from 1.5 T scanners. We down-

loaded MR images in the Neuroimaging Informatics Technology Initia-

tive (NIfTI) format. All MR images were preprocessed for spatial

distortion correction owing to gradient nonlinearity and B1 field

inhomogeneity.

The FDG-PET images were collected 30–60 min after injection.

The obtained images were averaged, spatially aligned, interpolated to a

standard voxel size, normalized in intensity, and smoothed to a com-

mon resolution of 8 mm full-width at half-maximum.

CSF data were acquired in the morning using a 20- or 24-G spinal

needle after overnight fasting. CSF was frozen within 1 h after acquisi-

tion, and transported to the ADNI biomarker core laboratory at the

University of Pennsylvania Medical Center.

2.3 | Image preprocessing

For simplicity of algorithm comparison, we followed the image prepro-

cessing procedure of other studies that classified AD using multi-modal

data. For the same reason, we used the Kabani template as the MRI

atlas in this study (Kabani et al., 1998). The Kabani template consists of

93 regions including parahippocampal gyrus, hippocampal formation,

and so on. The detailed information about the region is provided in the

Supporting Information, S4.

Both MR and PET images were preprocessed using the following

procedures. First, in the case of MR images, we applied anterior com-

missure (AC)–posterior commissure (PC) correction, and the N3 algo-

rithm to correct the intensity inhomogeneity of MR images using

MIPAV software. Next, skull stripping and cerebellum removal were

performed using both brain surface extractor (BSE) (Shattuck et al.,

2001) and brain extraction tool (BET) (Smith, 2002). We manually

checked whether skull stripping and cerebellum removal were per-

formed properly. After checking all MR images, we segmented the

structural MR images into three tissue types [gray matter (GM), white

matter (WM), and cerebrospinal fluid (CSF)] using FAST in the FSL soft-

ware suite (http://www.fmrib.ox.ac.uk). Finally, the GM, WM, and CSF

of MR images were parcellated into 93 regions of interest (ROIs) by

warping Kabani et al.’s atlas to each subject’s space via the hierarchical

TABLE 1 Characteristics of the subjects used in this study

HC (N5 52) MCI (N5 99) AD (N5 51)

Females/males 18/34 32/97 18/33

Age (mean 6 SD) 75.3 6 5.2 (62–85) 75.3 6 7.0 (55–89) 75.2 6 7.4 (59–88)

Education (mean 6 SD) 15.8 6 3.2 (8–20) 15.9 6 2.9 (8–20) 14.7 6 3.6 (4–20)

MMSE (mean 6 SD) 29 6 1.2 (25–30) 27.1 6 1.7 (24–30) 23.8 6 2.0 (20–26)

CDR (mean 6 SD) 0 6 0 (0–0) 0.5 6 0 (0–0.5) 0.7 6 0.3 (0.5–1)

Note. Abbreviations: CDR5 clinical dementia rating; MMSE5mini-mental state examination; N5number of subjects; SD5 standard deviation
(min – max).
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attribute matching mechanism for elastic registration (HAMMER)

method (Kabani et al., 1998; Shen, & Davatzikos, 2002). As GM is

highly related to both AD and MCI, we only considered the volume of

GM tissue in each ROI and used it as a feature of structural MRI.

In the case of the PET images, we rigidly aligned them to the corre-

sponding MR images using MIPAV software, and used the mean inten-

sity of each ROI as a feature of FDG-PET.

In the case of CSF, CSF Ab42, CSF t-tau, and CSF p-tau were used

as the features of CSF for discriminating the AD/MCI from HC. There-

fore, totals of 93 features from the structural MR image, 93 features

from the FDG-PET image, and 3 features from the CSF data were

obtained for each subject.

3 | METHODS

Figure 1 illustrates all the techniques and procedures of this study. As

shown in Figure 1, GM volume and the mean intensity for each ROI

were extracted from preprocessed MR and PET images, respectively,

and CSF Ab42, CSF t-tau, and CSF p-tau were utilized as CSF features.

First, high-level representations of features extracted from each

modality were individually computed using the stacked sparse ELM

auto-encoder (sELM-AE). Then, another stacked sELM-AE was used to

obtain the joint hierarchical feature representation of three modalities

(MRI, PET, and CSF), taking the high-level representations of each

modality as the input. Finally, we classified the obtained joint hierarchi-

cal feature representation using the kernel-based extreme learning

machine (KELM). We performed this series of processes in an inte-

grated framework called the multi-modal sparse hierarchical extreme

learning machine (MSH-ELM).

We evaluated the effectiveness of MSH-ELM by considering two

binary classification problems (AD vs. HC and MCI vs. HC) based on

the MRI, PET, and CSF biomarkers of 202 baseline subjects in ADNI1

and compared the performance of MSH-ELM with those of SK-SVM,

conventional ELM, MK-SVM, and SAE. To estimate the performances

of the proposed method and comparative classifiers, 10-fold cross-vali-

dation was used in this study. Specifically, we split the dataset into 10

subsets at random, with each subset containing 10% of the total data.

We used nine sets of 10 subsets for training, and the remaining one

was utilized for testing each time. The above process was repeated 10

times. For fair comparison, we compared the proposed method with

SK-SVM, ELM, MK-SVM, and SAE using the same training and test

sets (Liu et al., 2014a; Zhang et al., 2011).

FIGURE 1 Overall framework proposed in the study. The dataset was collected from the ADNI1, which consists of 51 AD, 99 MCI, and
52 healthy control (HC) subjects including structural MRI, FDG-PET, and CSF at baseline. MR images were preprocessed using HAMMER
SUITE and the gray matter of MR images were parcellated into 93 ROIs by warping Kabani et al.’s atlas via HAMMER registration.
FDG-PET images were rigidly registered to their corresponding MR images. Total of 93 GM volume features, 93 GM intensity features, and
3 CSF features was obtained. The performance of MSH-ELM was compared with those of four other classifiers using 10-fold cross-valida-
tion [Color figure can be viewed at wileyonlinelibrary.com]
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3.1 | Extreme learning machine (ELM) and kernel-

based extreme learning machine (KELM)

ELM consists of an input layer, a hidden layer, and an output layer (Huang

et al., 2004). Whereas traditional feedforward neural networks require

weights and biases for all layers to be adjusted by gradient-based learning

algorithms, ELM arbitrarily assigns input weights and hidden layer biases

without iterative adjustment, and computes the output weights by solving

a single linear system (Huang et al., 2012). Thus, ELM learns much faster

than traditional neural networks and is widely employed in various classifi-

cation applications as an efficient learning algorithm (Akusok et al., 2015;

Cao et al., 2015; Chen, Yao, and Basu, 2016).

Specifically, for N training samples {(x jð Þ; l jð ÞÞ j x jð Þ 2 Rp and

l jð Þ 2 Rq, and j51,2, . . ., N}, the output in ELM, oj with nh hidden neu-

rons can be expressed as follows:

oj5
Xnh
i51

bi
Ta wT

i x
jð Þ1bi

� �
5
Xnh
i51

bi
Thi x jð Þ

� �
5h x jð Þ

� �T
b; (1)

where x jð Þ and l jð Þ are the j-th input and target vectors, respectively.

The indices p and q are the dimension of the input and target vector,

respectively. And oj 2 Rq indicates the output of ELM for the j-th

training sample, wi 2 Rp signifies the input weight that connects the

input nodes to the i-th hidden node, bi denotes the bias of the i-th hid-

den node, and a �ð Þ indicates the activation function for the hidden

layer. b5 b1; � � � ;bnh

� �T
is the set of output weights between

the hidden layer and the output neuron. h x jð Þ� �
5

h1 x jð Þ� �
; � � � ; hnh x jð Þ� �� �T

is the output vector of the hidden

layer with respect to the j-th training sample x jð Þ. hi x jð Þ� �
is the output

of the i-th hidden layer for the j-th training sample.

To find the optimal weights of hidden layer, b̂ with respect to N

training samples can be considered to solve the following optimization

problem:

min k
b
jjHb2Ljj21jjbjj2 (2)

where H5 h x 1ð Þ� �
; � � � ; h x Nð Þ� �� �T

and L5 l 1ð Þ; � � � ;
�

l Nð Þ�T. Equation 2 is a linear optimization problem, and its optimal solu-

tion, b̂; can be analytically obtained as follows:

b̂5HT 1
k
I1HHT

� �21

L (3)

where k is a regularization parameter, and I indicates the identity

matrix.

After obtaining the optimal solution; b̂, the output of the ELM on

test data xtest is determined by

otest5h xtestð ÞTHT 1
k
I1HHT

� �21

L (4)

In the case of the output of the kernel-based extreme learning

machine (KELM), HHT is transformed to the kernel matrix as follows:

otest5 k xtest; x 1ð Þ
� �

; . . . ; k xtest; x Nð Þ
� �h i 1

k
I1K

� �21

L (5)

where K5HHT : jij5h x ið Þ� �T
h x jð Þ� �

5k x ið Þ; x jð Þ� �
is the kernel matrix of

KELM based on Mercer’s conditions, and k x ið Þ; x jð Þ� �
is the kernel

function of hidden neurons. Instead, the radial basis function (RBF) ker-

nel k x ið Þ; x jð Þ� �
5exp 2gx ið Þ2x jð Þ2

� �
was used in this study.

3.2 | Sparse ELM autoencoder (sELM-AE)

An autoencoder is an artificial neural network that approximates net-

work parameters to make the reconstructed output similar to the input.

Thanks to the universal approximation capability of ELM, the ELM-

based auto-encoder (ELM-AE) is known to be very effective in many

applications (Wei et al., 2016). In this study, we used a sparse ELM

auto-encoder (sELM-AE) for unsupervised training of the multi-modal

sparse hierarchical extreme learning machine (MSH-ELM). sELM-AE

adds sparse constraints to the auto-encoder optimization of ELM-AE

(Tang et al., 2016). In order words, sELM-AE generates sparser and

more compact features from the inputs by conducting l1 optimization

for the establishment of the ELM auto-encoder (Tang et al., 2016). The

optimization problem of sELM-AE can be expressed as follows:

Ob5min
b

kjjjHb2Xjj21jjbjjl1
n o

(6)

where X5 x 1ð Þ; � � � x Nð Þ� �T
indicates the input data for N train-

ing samples, H5 h x 1ð Þ� �
; � � � ; h x Nð Þ� �� �T

represents the random

mapping output, and b5 b1; � � � ;bnh

� �T
is the weight matrix

for the hidden layer. This optimization problem can be solved by the

fast iterative shrinkage-thresholding algorithm (FISTA) (Tang et al.,

2016). In other words, optimal and sparse weight b̂ can be obtained by

conducting the iterative procedures of the FISTA algorithm. The

detailed procedure employed by FISTA is explained in Beck and

Teboulle (2009).

In this study, analogous to other deep learning algorithms such as

stacked auto-encoder adopting auto-encoder as their basic building

block, we adopted sELM-AE as the basic building block of MSH-ELM.

The weights for each hidden layer were learned by greedy layer-wise

unsupervised training. The detailed procedure for this issue is given in

the ensuing section.

3.3 | Multimodal sparse hierarchical extreme learning

machine (MSH-ELM)

The approach proposed in this article attempts to extract joint hierarch-

ical representation from three different modalities (MRI, PET, and CSF).

The approach employs a proposed hierarchical learning framework,

multi-modal sparse hierarchical extreme learning machine (MSH-ELM).

The training of the proposed multi-modal architecture consists of three

steps: (a) obtain the unsupervised feature representation for each

modality individually, (b) compute the feature fusion representation,

and (c) apply the supervised feature classification technique based on

KELM.

Assuming a training set that consists of N samples

x1 jð Þ; x2 jð Þ; x3 jð Þ; l jð Þ
� �

, where x1 jð Þ 2 RpMRI , x2 jð Þ 2 RpPET , and x3 jð Þ

2 RpCSF are the MRI feature vector, the PET feature vector, and the

CSF feature vector of the j-th subject, respectively. l jð Þ 2 Rq is the label

vector of the j-th subject corresponding to the input data

x1 jð Þ; x2 jð Þ; x3 jð Þ� �
. The parameters pMRI, pPET, and pCSF are the
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3.1 | Extreme learning machine (ELM) and kernel-

based extreme learning machine (KELM)
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weights and biases for all layers to be adjusted by gradient-based learning

algorithms, ELM arbitrarily assigns input weights and hidden layer biases

without iterative adjustment, and computes the output weights by solving
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test data xtest is determined by
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An autoencoder is an artificial neural network that approximates net-

work parameters to make the reconstructed output similar to the input.

Thanks to the universal approximation capability of ELM, the ELM-

based auto-encoder (ELM-AE) is known to be very effective in many

applications (Wei et al., 2016). In this study, we used a sparse ELM

auto-encoder (sELM-AE) for unsupervised training of the multi-modal

sparse hierarchical extreme learning machine (MSH-ELM). sELM-AE

adds sparse constraints to the auto-encoder optimization of ELM-AE

(Tang et al., 2016). In order words, sELM-AE generates sparser and

more compact features from the inputs by conducting l1 optimization

for the establishment of the ELM auto-encoder (Tang et al., 2016). The
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2016). In other words, optimal and sparse weight b̂ can be obtained by

conducting the iterative procedures of the FISTA algorithm. The

detailed procedure employed by FISTA is explained in Beck and

Teboulle (2009).

In this study, analogous to other deep learning algorithms such as

stacked auto-encoder adopting auto-encoder as their basic building

block, we adopted sELM-AE as the basic building block of MSH-ELM.

The weights for each hidden layer were learned by greedy layer-wise

unsupervised training. The detailed procedure for this issue is given in

the ensuing section.

3.3 | Multimodal sparse hierarchical extreme learning

machine (MSH-ELM)

The approach proposed in this article attempts to extract joint hierarch-

ical representation from three different modalities (MRI, PET, and CSF).

The approach employs a proposed hierarchical learning framework,

multi-modal sparse hierarchical extreme learning machine (MSH-ELM).

The training of the proposed multi-modal architecture consists of three

steps: (a) obtain the unsupervised feature representation for each

modality individually, (b) compute the feature fusion representation,

and (c) apply the supervised feature classification technique based on

KELM.

Assuming a training set that consists of N samples

x1 jð Þ; x2 jð Þ; x3 jð Þ; l jð Þ
� �

, where x1 jð Þ 2 RpMRI , x2 jð Þ 2 RpPET , and x3 jð Þ

2 RpCSF are the MRI feature vector, the PET feature vector, and the

CSF feature vector of the j-th subject, respectively. l jð Þ 2 Rq is the label

vector of the j-th subject corresponding to the input data

x1 jð Þ; x2 jð Þ; x3 jð Þ� �
. The parameters pMRI, pPET, and pCSF are the
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dimension of MRI feature, PET feature, and CSF feature, respectively.

The unsupervised learning procedure of the MSH-ELM algorithm is

summarized in Algorithm 1. In the algorithm, three matrices, X1, X2,

and X3 are configured by concatenating an MRI feature set, a PET fea-

ture set, and a CSF feature set for N training samples. L is the class

label matrix corresponding to the training samples. For example, in Fig-

ure 2, three-layer stacked structures (k153Þ are separately constructed

for MRI feature X1, PET feature X2, and CSF feature X3 to obtain high-

level representation before they are fused. If the initial input for the

first layer is set to H0;m 5Xm (m51, 2, 3), the output of the v-th hid-

den layer for H0;m can be iteratively computed as

Hv;m  a Hv21;mb̂
T
v;m1Bv;m

� �
; for m51; 2; 3 (7)

where a(�) represents the activation function, Hv;m signifies the feature

representation of the v-th hidden layer for the m-th modality, and b̂
T
v;m

indicates the optimal weight matrix of the v-th hidden layer for the m-

th modality. Bv;m is the bias matrix for the v-th hidden layer and the m-

th modality. After obtaining the high-level representations, Hk1 ;1, Hk1 ;2,

and Hk1 ;3, from each modality, they are fused using another three-layer

stacked structure k253ð Þ to estimate the joint hierarchical representa-

tion of the three modalities. The combination process is as follows:

Hk15 Hk1 ;1; Hk1 ;2;Hk1 ;3

� �
(8)

Hs  aðHs21b̂
T
s1BsÞ; for k111 � s � k11k2 (9)

where k1 is the number of hidden layers used to estimate the high-

level representation for each modality, and k2 is the number of hidden

layers used to estimate the joint hierarchical representation for the

three modalities.

To train the parameters of the network, we used the ELM sparse

auto-encoder (sELM-AE) described in the previous section. Figure 3

represents the feature learning procedure for the MRI feature X1. It is

similar to the feature learning procedure of other modalites and fusion

learning. As shown in Figure 3, each hidden layer of MSH-ELM is a sep-

arate sELM-AE, each of which operates as an individual feature extrac-

tor with the target as its input. The high-level feature representation of

the input data can be computed by optimizing Equation 6, and it is uti-

lized as input in the next layer. In Figure 3, sparse optimal weight b̂1;1

for the first layer are computed by optimizing Equation 6 with target

matrix T5X1. Feature representation H1;1 of the first layer correspond-

ing to the input X1 can be calculated by as product of X1 and b̂
T
1;1. H1;1

is employed as the input of the sELM-AE for the next layer.

Finally, the feature representation Hk11k2 is utilized as the input of

KELM to model the mapping between hierarchical joint feature repre-

sentation and label. In this study, we used RBF k x ið Þ; x jð Þ� �
5exp

2gx ið Þ2x jð Þ2
� �

as the kernel of KELM.

FIGURE 2 Proposed multi-modal architecture for fusing MRI, PET, and CSF features. High-level feature representations extracted from
each modality are individually computed using the stacked sparse ELM auto-encoder (sELM-AE). Another stacked sELM-AE is utilized to
obtain the joint hierarchical feature representation of MRI, PET, and CSF, taking the high-level representations of each modality as the
input. The obtained joint hierarchical feature representation is classified via the kernel-based extreme learning machine (KELM) [Color figure
can be viewed at wileyonlinelibrary.com]
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3.4 | Experimental setup

We structured a three-layer stacked sELM-AE for MRI (MRI-AE), PET

(PET-AE), and CSF (CSF-AE), respectively, and another three-layer

stacked sELM-AE for fusing the high-level representation of MRI, PET,

and CSF (Joint-AE). We set the number of nodes for MRI-AE, PET-AE,

CSF-AE, and Joint-AE to 200(hidden1)–200(hidden2)–200(hidden3). In

the learning of sELM-AE, we updated the weights with a learning rate

of 1023 for 5,000 iterations. The obtained joint hierarchical feature

representation was classified using the KELM classifier, which is the

final layer of MSH-ELM. RBF was utilized as the kernel of KELM. RBF

kernel parameter, g was set to (1/number of features) in this study.

We compared MSH-ELM to SK-SVM, ELM, MK-SVM, and SAE.

An LIBSVM toolbox was used to train MK-SVM and SK-SVM, and

Neural Network Toolbox in MATLAB 2016a was used to train SAE. In

case of MK-SVM, both linear kernel and RBF kernel were applied. We

set gamma of kernel function to 1/(number of features) and fixed the

trade-off parameter, C5100 for RBF kernel as it shows the best classi-

fication performance in validation set. The other parameters of MK-

SVM such as weights for the multiple kernels were determined via

nested cross-validation.

In case of SAE, greedy layer-wise pretraining learning was per-

formed first, and then supervised fine-tuning was performed to further

optimize the network parameters. The parameters computed from the

pretraining phase prevent the fine-tuning optimization from falling into

a local optimum (Hinton, 2006). The network structure of SAE that pro-

duces the best classification performance was determined via nested

cross-validation only using training dataset.

3.5 | Performance evaluation

TP, TN, FP, and FN represent the true positive, true negative, false pos-

itive, and false negative, respectively. The accuracy (ACC), sensitivity

(SEN), specificity (SPEC), balanced accuracy (BAC), positive predictive

value (PPV), and negative predictive value (NPV) can thus be computed

as follows:

i Accuracy (ACC)5 (TP1TN)/(TP1TN1FP1FN)

ii Sensitivity (SEN)5TP/(TP1FN)

iii Specificity (SPEC)5TN/(TN1FP)

iv Balanced accuracy (BAC)5 (SEN1SPEC)/2

v Positive predictive value (PPV)5TP/(TP1FP), and

vi Negative predictive value (NPV)5TN/(TN1FN)

4 | EXPERIMENTAL RESULTS

Tables 2 and 3 show the performances of the proposed MSH-ELM and

comparative algorithms for the classification of AD from HC and the

classification of MCI from HC, respectively. As can be seen in Tables 2

and 3, the proposed multi-modal classification approach has consis-

tently superior performance to the comparative algorithms for all cases

(AD vs. HC and MCI vs. HC). Specifically, in the classification of AD

from HC, the proposed MSH-ELM method shows mean accuracies of

97.12%, sensitivity of 98.08%, a specificity of 94.12%, balanced accu-

racy of 96.10%, PPV of 94.44%, and NPV of 97.96%, whereas the

mean accuracy of MK-SVM with linear kernel was 93.2%, the mean

accuracy of SAE was 88.35% and the best mean accuracy of SK-SVM

among individual modalities was only 86.41% when using PET image.

In classification of MCI from HC patients, our proposed method

achieved a classification accuracy of 87.09%, sensitivity of 75.00%,

specificity of 91.92%, balanced accuracy of 83.46%, PPV of 82.98%,

and an NPV of 87.50%, whereas the mean accuracy of MK-SVM with

linear kernel was 85.43%, the mean accuracy of SAE was 84.77%, and

the best mean accuracy of SK-SVM among individual modalities was

only 82.78% when using PET images. Interestingly, the average classifi-

cation accuracy of MK-SVM with linear kernel was very close to the

classification accuracy of MHS-ELM. However, in this case, the sensi-

tivity of MK-SVM with linear kernel was much lower than that of

ALGORITHM 1 Multi-modal sparse hierarchical
ELM (MSH-ELM)

Input : MRI feature matrix X15 x 1ð Þ
1 ; x 2ð Þ

1 ; x 3ð Þ
1 ; . . . ; x Nð Þ

1

h iT
, PET

feature matrix X25 x 1ð Þ
2 ; x 2ð Þ

2 ; x 3ð Þ
2 ; . . . ; x Nð Þ

2

h iT
, CSF feature

matrix X35 x 1ð Þ
3 ; x 2ð Þ

3 ; x 3ð Þ
3 ; . . . ; x Nð Þ

3

h iT
and label matrix

L5 l 1ð Þ; l 2ð Þ; l 3ð Þ; . . . ; l Nð Þ
h iT

corresponding to each training

instance, x jð Þ
1 2 RpMRI , x jð Þ

2 2 RpPET ; x jð Þ
3 2 RpCSF ; l jð Þ 2 R2

Output: weight matrixes b̂v;m for v 2 1; k1½ �, m 2 1;3½ �, and b̂s

for s 2 k111; k11k2½ �,
Initialization: Choose separate modality depth k1, fusion
learning model depth k2 and the node number nh

for m5 1 to 3 do
H0;m 5Xm

for v51 to k1 do
Randomly generate hidden input weight matrix Wv;m ,
bias matrix Bv;m ;
Compute hidden layer output Hv;m 5 a
(Wv;mHv21;m1Bv;mÞ ;
Calculate b̂v;m by solving b̂v;m5 argminbv;m

kjjHv;mbv;m2Hv21;mjj21bv;ml1

n o
using fast iterative

shrinkage-thresholding algorithm (FISTA) ;

Update Hv;m 5 a(Hv21;mb̂
T
v;m1Bv;mÞ;

end for
end for
Hk15 Hk1 ;1; Hk1 ;2;Hk1 ;3

� �
for s5 k111 to k11k2 do

Randomly generate hidden input weight Ws, bias
matrix Bs ;
Compute hidden layer output Hs5a WsHs211Bsð Þ ;
Calculate b̂s by solving b̂s5 argminbs

kjjHsbs2Hs21jj21jjbsjjl1
n o

using fast iterative

shrinkage-thresholding algorithm (FISTA)

Update Hs 5 a(Hs21b̂
T
s1BsÞ ;

end for
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Neural Network Toolbox in MATLAB 2016a was used to train SAE. In

case of MK-SVM, both linear kernel and RBF kernel were applied. We

set gamma of kernel function to 1/(number of features) and fixed the
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97.12%, sensitivity of 98.08%, a specificity of 94.12%, balanced accu-

racy of 96.10%, PPV of 94.44%, and NPV of 97.96%, whereas the

mean accuracy of MK-SVM with linear kernel was 93.2%, the mean

accuracy of SAE was 88.35% and the best mean accuracy of SK-SVM

among individual modalities was only 86.41% when using PET image.

In classification of MCI from HC patients, our proposed method

achieved a classification accuracy of 87.09%, sensitivity of 75.00%,

specificity of 91.92%, balanced accuracy of 83.46%, PPV of 82.98%,

and an NPV of 87.50%, whereas the mean accuracy of MK-SVM with
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Input : MRI feature matrix X15 x 1ð Þ
1 ; x 2ð Þ

1 ; x 3ð Þ
1 ; . . . ; x Nð Þ

1

h iT
, PET

feature matrix X25 x 1ð Þ
2 ; x 2ð Þ

2 ; x 3ð Þ
2 ; . . . ; x Nð Þ

2

h iT
, CSF feature

matrix X35 x 1ð Þ
3 ; x 2ð Þ

3 ; x 3ð Þ
3 ; . . . ; x Nð Þ

3

h iT
and label matrix

L5 l 1ð Þ; l 2ð Þ; l 3ð Þ; . . . ; l Nð Þ
h iT

corresponding to each training

instance, x jð Þ
1 2 RpMRI , x jð Þ

2 2 RpPET ; x jð Þ
3 2 RpCSF ; l jð Þ 2 R2

Output: weight matrixes b̂v;m for v 2 1; k1½ �, m 2 1;3½ �, and b̂s

for s 2 k111; k11k2½ �,
Initialization: Choose separate modality depth k1, fusion
learning model depth k2 and the node number nh

for m5 1 to 3 do
H0;m 5Xm

for v51 to k1 do
Randomly generate hidden input weight matrix Wv;m ,
bias matrix Bv;m ;
Compute hidden layer output Hv;m 5 a
(Wv;mHv21;m1Bv;mÞ ;
Calculate b̂v;m by solving b̂v;m5 argminbv;m

kjjHv;mbv;m2Hv21;mjj21bv;ml1

n o
using fast iterative

shrinkage-thresholding algorithm (FISTA) ;

Update Hv;m 5 a(Hv21;mb̂
T
v;m1Bv;mÞ;

end for
end for
Hk15 Hk1 ;1; Hk1 ;2;Hk1 ;3

� �
for s5 k111 to k11k2 do

Randomly generate hidden input weight Ws, bias
matrix Bs ;
Compute hidden layer output Hs5a WsHs211Bsð Þ ;
Calculate b̂s by solving b̂s5 argminbs

kjjHsbs2Hs21jj21jjbsjjl1
n o

using fast iterative

shrinkage-thresholding algorithm (FISTA)

Update Hs 5 a(Hs21b̂
T
s1BsÞ ;

end for
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MHS-ELM. We assume that this result was due to the data imbalance

between the classes, that is, MCI (99 subjects) and NC (52 subjects). Bal-

anced accuracy avoids the inflated performance of unbalanced datasets.

In terms of balanced accuracy, it is clear that the proposed method out-

performed the competition methods in the case of MCI vs. HC.

The performance of MK-SVM with RBF was slightly lower than

that of MK-SVM with linear kernel for both classification problems (AD

vs. HC and MCI vs. HC).

We also investigated the performance of the classifiers after

reducing the number of samples in the MCI group by 50% to check

the effects of data imbalance problems. Similar to the previous

experiment, our proposed method achieved the highest classification

performance among other comparative classifiers. Specifically, MSH-

ELM shows a classification accuracy of 86.53%, whereas the mean

accuracy of MK-SVM was 84.62% and the mean accuracy of SAE

was 72.12%.

FIGURE 3 Detailed illustration of the stacked sparse extreme learning machine auto-encoder (sELM-AE). (a) Structure of the stacked
sELM-AE for obtaining the hierarchical representation of MR images in MSH-ELM. It is similar to the feature learning procedure for other
modalities and fusion learning in MSH-ELM. (b) Structure of sELM-AE. It operates as an individual feature extractor with the target as its
input. The weight b of sELM-AE can be computed by optimizing the objective function denoted in Figure 3c. The calculated weights are uti-
lized as the weights for the hidden layer of stacked sELM-AE, illustrated in Figure 3a. (c) Objective function for computing the sparse
weights of sELM-AE [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Summary of the performances for AD versus HC classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) PPV (%) NPV (%)

SK-SVM MRI 83.50 90.38 76.47 83.43 79.66 88.64

PET 86.41 82.69 90.20 86.44 89.58 83.64

CSF 85.44 80.77 90.20 85.48 89.36 82.14

CONCAT 91.26 96.15 86.27 91.21 87.72 95.65

ELM MRI 83.50 90.38 76.47 83.43 79.66 88.64

PET 86.41 82.69 90.20 86.44 89.58 83.64

CSF 85.44 80.77 90.20 85.48 89.36 82.14

CONCAT 91.26 96.15 86.27 91.21 87.72 95.65

MK-SVM with linear kernel MRI1PET1CSF 93.20 98.08 88.24 93.16 89.47 97.83

MK-SVM with RBF kernel MRI1PET1CSF 92.23 94.23 90.20 92.21 90.74 93.88

SAE CONCAT 88.35 88.24 88.46 88.35 88.24 88.46

MHS-ELM (ELM_RBF) MRI1PET1CSF 97.12 98.08 94.12 96.10 94.44 97.96

Note. Boldface denotes the best performance in individual metric for each classification task.
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On the basis of the results presented above, the proposed method

is clearly superior to MK-SVM and SK-SVM in the problem of classify-

ing AD and MCI from HC.

4.1 | Comparison with other studies

In Table 4, the classification accuracy of the proposed method is

compared with the results of a recently published studies that used

multi-modality data in the classification of AD and MCI from HC.

It should be noted that direct comparison of performance between

methods is not fair because of the different datasets, preprocessing

procedures, and type of features. Nonetheless, it is noteworthy

that the proposed method has the highest accuracy among the

methods reported in the classification problem of AD and MCI

from HC.

4.2 | Effect of feature selection

In the previous section, we applied the proposed multi-modal classifica-

tion method without feature selection for AD and MCI classification. In

this section, the proposed method with feature selection is tested and

compared with the performance of the proposed method without fea-

ture selection. The main objective of this section is to verify whether

feature selection is effective for the proposed method. For this reason,

we simply applied a feature selection method based on the t test and

Least Absolute Shrinkage and Selection Operator (LASSO) which are

widely used in this field. We performed a paired t-test and LASSO on

training samples to choose the optimal subset of features. Table 5

shows the list of top 10 brain regions selected by the t-test-based fea-

ture selection algorithm in AD classification and Figures 4 and 5 pres-

ent the brain areas detected from MRI and PET in the template MRI

TABLE 3 Summary of the performances for HC versus MCI classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) PPV (%) NPV (%)

SK-SVM MRI 70.86 40.38 86.87 63.63 61.76 73.50

PET 82.78 57.69 95.96 76.83 88.24 81.20

CSF 68.21 50.00 77.78 63.89 54.17 74.76

CONCAT 85.43 67.31 94.95 81.13 87.50 84.68

ELM MRI 70.86 40.38 86.87 63.63 61.76 73.50

PET 82.78 57.69 95.96 76.83 88.24 81.20

CSF 68.21 50.00 77.78 63.89 54.17 74.76

CONCAT 85.43 67.31 94.95 81.13 87.50 84.68

MK-SVM with linear kernel MRI1PET1CSF 85.43 65.38 95.96 80.67 89.47 84.07

MK-SVM with RBF kernel MRI1PET1CSF 84.11 71.15 90.91 81.03 80.43 85.71

SAE CONCAT 84.77 89.90 75.00 82.45 87.25 79.59

MHS-ELM (ELM_RBF) MRI1PET1CSF 87.09 75.00 91.92 83.46 82.98 87.50

Note. Boldface denotes the best performance in individual metric for each classification task.

TABLE 4 Comparison of classification accuracy with state-of-the-art methods

Methods Dataset (AD/MCI/HC) AD vs. HC (%) MCI vs. HC (%)

Kohannim et al. MRI1PET1CSF (40/83/43) 90.70 75.80

Walhovd et al. MRI1CSF (38/73/42) 88.80 79.10

Hinriches et al. MRI1PET1CSF1APOE1Cognitive scores (48/119/66) 92.40 n/a

Westman et al. MRI1CSF (96/162/111) 91.80 77.60

Zhang and Shen MRI1PET1CSF (45/91/50) 93.30 83.20

Gray et al. MRI1PET (51/75/35) 89.00 74.60

Liu et al. MRI1PET1CSF (51/99/52) 94.37 78.80

Suk et al. MRI1PET1CSF1 Cognitive scores (51/99/52) 95.90 85.00

Proposed method MRI1PET1CSF (51/99/52) 97.12 87.09

Note. Numbers in parentheses denote the number of AD/MCI/NC subjects in the dataset used. Boldface denotes the best performance in each classifi-
cation task.
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On the basis of the results presented above, the proposed method

is clearly superior to MK-SVM and SK-SVM in the problem of classify-

ing AD and MCI from HC.

4.1 | Comparison with other studies

In Table 4, the classification accuracy of the proposed method is

compared with the results of a recently published studies that used

multi-modality data in the classification of AD and MCI from HC.

It should be noted that direct comparison of performance between

methods is not fair because of the different datasets, preprocessing

procedures, and type of features. Nonetheless, it is noteworthy

that the proposed method has the highest accuracy among the

methods reported in the classification problem of AD and MCI

from HC.

4.2 | Effect of feature selection

In the previous section, we applied the proposed multi-modal classifica-

tion method without feature selection for AD and MCI classification. In

this section, the proposed method with feature selection is tested and

compared with the performance of the proposed method without fea-

ture selection. The main objective of this section is to verify whether

feature selection is effective for the proposed method. For this reason,

we simply applied a feature selection method based on the t test and

Least Absolute Shrinkage and Selection Operator (LASSO) which are

widely used in this field. We performed a paired t-test and LASSO on

training samples to choose the optimal subset of features. Table 5

shows the list of top 10 brain regions selected by the t-test-based fea-

ture selection algorithm in AD classification and Figures 4 and 5 pres-

ent the brain areas detected from MRI and PET in the template MRI

TABLE 3 Summary of the performances for HC versus MCI classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) PPV (%) NPV (%)

SK-SVM MRI 70.86 40.38 86.87 63.63 61.76 73.50

PET 82.78 57.69 95.96 76.83 88.24 81.20

CSF 68.21 50.00 77.78 63.89 54.17 74.76

CONCAT 85.43 67.31 94.95 81.13 87.50 84.68

ELM MRI 70.86 40.38 86.87 63.63 61.76 73.50

PET 82.78 57.69 95.96 76.83 88.24 81.20

CSF 68.21 50.00 77.78 63.89 54.17 74.76

CONCAT 85.43 67.31 94.95 81.13 87.50 84.68

MK-SVM with linear kernel MRI1PET1CSF 85.43 65.38 95.96 80.67 89.47 84.07

MK-SVM with RBF kernel MRI1PET1CSF 84.11 71.15 90.91 81.03 80.43 85.71

SAE CONCAT 84.77 89.90 75.00 82.45 87.25 79.59

MHS-ELM (ELM_RBF) MRI1PET1CSF 87.09 75.00 91.92 83.46 82.98 87.50

Note. Boldface denotes the best performance in individual metric for each classification task.

TABLE 4 Comparison of classification accuracy with state-of-the-art methods

Methods Dataset (AD/MCI/HC) AD vs. HC (%) MCI vs. HC (%)

Kohannim et al. MRI1PET1CSF (40/83/43) 90.70 75.80

Walhovd et al. MRI1CSF (38/73/42) 88.80 79.10

Hinriches et al. MRI1PET1CSF1APOE1Cognitive scores (48/119/66) 92.40 n/a

Westman et al. MRI1CSF (96/162/111) 91.80 77.60

Zhang and Shen MRI1PET1CSF (45/91/50) 93.30 83.20

Gray et al. MRI1PET (51/75/35) 89.00 74.60

Liu et al. MRI1PET1CSF (51/99/52) 94.37 78.80

Suk et al. MRI1PET1CSF1 Cognitive scores (51/99/52) 95.90 85.00

Proposed method MRI1PET1CSF (51/99/52) 97.12 87.09

Note. Numbers in parentheses denote the number of AD/MCI/NC subjects in the dataset used. Boldface denotes the best performance in each classifi-
cation task.
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space, respectively. The selected regions include the amygdala, hippo-

campal formation, and uncus, which is known to be highly related to

the AD by numerous studies based on the group comparison methods.

In particular, the hippocampus, which is found in both Figures 4 and 5,

is a brain area that plays an important role in information integration

from short-term memory to long-term memory and is known as the

first brain area to be damaged by Alzheimer’s disease (Ch�etelat et al.,

2002; Convit et al., 2000; Fox et al., 2004; Jack et al., 1999; Misra

et al., 2009). We computed the classification accuracies according to

the number of selected features and filled out the result of the feature

subset showing the best classification performance in Table 6. Interest-

ingly, there was no significant difference in the results between with

feature selection and without feature selection. We assume that these

results suggest that MSH-ELM itself extracts compact and optimal fea-

ture subsets that are equal to or greater than the t-test-based feature

selection method and LASSO based feature selection method.

However, if the advanced method is used instead of the simple

feature selection method, the above results may be different. There-

fore, further study about the effect of feature selection on the pro-

posed method is needed.

5 | DISCUSSION

5.1 | Comparative algorithms

We compared the performance of MSH-ELM to those of SK-SVM,

ELM, MK-SVM, and SAE. The reasons for choosing SK-SVM, ELM,

MK-SVM, and SAE as comparative algorithms are as follows: (a) SK-

SVM has been widely used as a reference classifier for performance

comparison in AD/MCI classification problem (Cui et al., 2011; Dyrba

et al., 2012; Li et al., 2015; Liu, Wee, Chen, and Shen, 2014a; Liu et al.,

2014b; Suk and Shen, 2013; Zhang et al., 2011). (b) ELM was selected

TABLE 5 Top 10 brain regions for AD classification selected by t-test‐based feature selection method (p value � .001)

MRI PET

1 Amygdala right Precentral gyrus left

2 Amygdala left Angular gyrus left

3 Hippocampal formation right Occipital pole right

4 Hippocampal formation left Medial occipitotemporal gyrus left

5 Uncus left Temporal lobe WM right

6 Middle temporal gyrus right Hippocampal formation right

7 Middle temporal gyrus left Superior parietal lobule right

8 Angular gyrus left Precentral gyrus right

9 Perirhinal cortex right Superior parietal lobule left

10 Lateral occipitotemporal gyrus left Caudate nucleus right

FIGURE 4 Top ten most frequently selected MRI regions by t-test-based feature selection method in AD classification. Different colors
represent different brain regions [Color figure can be viewed at wileyonlinelibrary.com]
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to prove the effectiveness of multi-modal feature extraction perform-

ance of MSH-ELM. (c) MK-SVM is known as one of the most powerful

classifier for AD/MCI classification problem (Zhang et al., 2011). There-

fore, MK-SVM has been used as a comparative algorithm in many stud-

ies related to AD/MCI classification (Dyrba et al., 2012; Liu et al.,

2014b; Suk, Lee, and Shen, 2015; Suk and Shen, 2013). (d) We used

SAE as a comparative algorithm because Suk et al. showed that the

classification performance of SAE is superior to that of MK-SVM in

AD/MCI classification problem (Suk and Shen, 2013). Another reason

to select SAE as comparative algorithm is that SAE is very similar to

MSH-ELM in that SAE is a deep neural network built with many auto-

encoders and trained by greedy layerwise. The major difference

between SAE and MSH-ELM is that ELM-AE is used as a base building

block and multi-modal feature extraction is performed in MSH-ELM.

We expected to verify the effectiveness of ELM-AE and multi-modal

feature extraction through comparison of the performances of the two

algorithms.

5.2 | Performance analysis

The proposed MSH-ELM shows better AD classification performance

than conventional ELM using individual single modality data or simple

concatenation feature of multi-modality data (MRI, PET, and CSF). This

means that MSH-ELM, a deep network, discovered the optimal feature

representation for AD classification that was not found in a conven-

tional ELM, shallow network. In addition, MSH-ELM effectively

extracted AD-related complementary features from multiple modalities

which are helpful for discrimination of AD, MCI, and HC. As shown in

Tables 2 and 3, the ability of MSH-ELM to integrate multi-modal data

is superior to that of MK-SVM, which is widely used in AD classifica-

tion using multi-modal data.

Additionally, we compared the classification performance of MSH-

ELM with SAE which is the back propagation-based multi-layer percep-

tron (MLP) learning algorithm. MSH-ELM showed higher performance

than that of SAE in two binary classification problems (AD vs. HC and

MCI vs. HC).

Furthermore, the computation load of MSH-ELM is much lower

than SAE as the base building block of MSH-ELM is ELM-AE, which

randomly assigns the weights for hidden layer. According to Tang et al.

(2016), MLP using ELM-AE as a base building block is more efficient

than the latest back propagation-based MLP (SAE, deep belief network,

and deep Boltzmann machine) for MNIST and NORB dataset classifica-

tion in terms of classification accuracy and computation speed.

Another interesting aspect of the MSH-ELM is that the MSH-ELM

exhibits excellent classification performance even though the dimen-

sion of the hidden neurons was higher than that of input neuron.

We think that this is because the base building block of MSH-ELM

is a sparse ELM auto-encoder. Imposing the sparsity constraint on the

FIGURE 5 Top ten most frequently selected PET regions by t-test-based feature selection method in AD classification. Different colors
represent different brain regions [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 6 Classification performances of the proposed method with feature selection and without feature selection

Method AD vs. HC MCI vs. HC

ACC (%) SEN (%) SPEC (%) ACC (%) SEN (%) SPEC (%)

Without feature selection 97.12 98.08 94.12 87.09 75.00 91.92

t-test-based feature selection 96.11 98.01 92.12 86.15 75.12 91.95

LASSO-based feature selection 96.03 97.01 91.13 86.17 75.15 91.96

Note. Feature selection was performed based on a paired t-test between two groups (AD vs. HC or MCI vs. HC) or LASSO only using training samples.
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to prove the effectiveness of multi-modal feature extraction perform-

ance of MSH-ELM. (c) MK-SVM is known as one of the most powerful

classifier for AD/MCI classification problem (Zhang et al., 2011). There-

fore, MK-SVM has been used as a comparative algorithm in many stud-

ies related to AD/MCI classification (Dyrba et al., 2012; Liu et al.,

2014b; Suk, Lee, and Shen, 2015; Suk and Shen, 2013). (d) We used

SAE as a comparative algorithm because Suk et al. showed that the

classification performance of SAE is superior to that of MK-SVM in

AD/MCI classification problem (Suk and Shen, 2013). Another reason

to select SAE as comparative algorithm is that SAE is very similar to

MSH-ELM in that SAE is a deep neural network built with many auto-

encoders and trained by greedy layerwise. The major difference

between SAE and MSH-ELM is that ELM-AE is used as a base building

block and multi-modal feature extraction is performed in MSH-ELM.

We expected to verify the effectiveness of ELM-AE and multi-modal

feature extraction through comparison of the performances of the two

algorithms.

5.2 | Performance analysis

The proposed MSH-ELM shows better AD classification performance

than conventional ELM using individual single modality data or simple

concatenation feature of multi-modality data (MRI, PET, and CSF). This

means that MSH-ELM, a deep network, discovered the optimal feature

representation for AD classification that was not found in a conven-

tional ELM, shallow network. In addition, MSH-ELM effectively

extracted AD-related complementary features from multiple modalities

which are helpful for discrimination of AD, MCI, and HC. As shown in

Tables 2 and 3, the ability of MSH-ELM to integrate multi-modal data

is superior to that of MK-SVM, which is widely used in AD classifica-

tion using multi-modal data.

Additionally, we compared the classification performance of MSH-

ELM with SAE which is the back propagation-based multi-layer percep-

tron (MLP) learning algorithm. MSH-ELM showed higher performance

than that of SAE in two binary classification problems (AD vs. HC and

MCI vs. HC).

Furthermore, the computation load of MSH-ELM is much lower

than SAE as the base building block of MSH-ELM is ELM-AE, which

randomly assigns the weights for hidden layer. According to Tang et al.

(2016), MLP using ELM-AE as a base building block is more efficient

than the latest back propagation-based MLP (SAE, deep belief network,

and deep Boltzmann machine) for MNIST and NORB dataset classifica-

tion in terms of classification accuracy and computation speed.

Another interesting aspect of the MSH-ELM is that the MSH-ELM

exhibits excellent classification performance even though the dimen-

sion of the hidden neurons was higher than that of input neuron.

We think that this is because the base building block of MSH-ELM

is a sparse ELM auto-encoder. Imposing the sparsity constraint on the

FIGURE 5 Top ten most frequently selected PET regions by t-test-based feature selection method in AD classification. Different colors
represent different brain regions [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 6 Classification performances of the proposed method with feature selection and without feature selection

Method AD vs. HC MCI vs. HC

ACC (%) SEN (%) SPEC (%) ACC (%) SEN (%) SPEC (%)

Without feature selection 97.12 98.08 94.12 87.09 75.00 91.92

t-test-based feature selection 96.11 98.01 92.12 86.15 75.12 91.95

LASSO-based feature selection 96.03 97.01 91.13 86.17 75.15 91.96

Note. Feature selection was performed based on a paired t-test between two groups (AD vs. HC or MCI vs. HC) or LASSO only using training samples.
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hidden units allows the hidden layers to have larger number of units

than the input dimension (Larochelle et al., 2009; Suk and Shen, 2013).

5.3 | Limitations and future work

In this study, although the proposed multi-modal classification frame-

work exhibits utility in binary classification cases (AD vs. HC and MCI

vs. HC), it has several limitations.

The first limitation is the lack of the number of data samples (52

AD, 99 MCI, and 51 NC) to learn the proposed algorithm. For this rea-

son, we cannot be certain that the joint hierarchical feature representa-

tions extracted from the proposed method are globally optimal.

Therefore, additional research is needed such as learning the optimal

parameters of the deep network structure from large data samples for

practical use in a clinical environment.

Another limitation is that it is difficult to interpret the joint hier-

archical feature representation extracted by the MSH-ELM method

and to provide effective clinical information. Thus, further research is

required to provide clinicians with useful information such as brain

regions that are highly related to AD and MCI.

Next, the training procedure of hierarchical feature extractor and

classifier for MSH-ELM is not performed simultaneously. We expect

that the performance of MSH-ELM would be improved by developing

a way to train hierarchical feature extractors and classifiers together.

Multiple kernel learning (MKL) which has been recently studied for

joint optimal feature fusion might be a suitable way to improve the per-

formance of MSH-ELM. For example, multiple kernel ELM (MK-ELM)

proposed by Liu et al. shows the improvement of classifier by applying

MKL into ELM for Protein, Oxford Flower17, Caltech101 and Alzhei-

mer’s disease data sets (Liu et al., 2015). To estimate the possibility of

joint optimal feature fusion based on MKL and identify the effective-

ness of multi-modal feature extraction capability of MSH-ELM, we

additionally conducted both simpleMKL and MK-ELM for automatic

diagnosis of AD from NC. We used the SimpleMKL toolbox to imple-

ment the simpleMKL method and Multi-Kernel-Extreme-Learning-

Machine toolbox to implement the MK-ELM method (code is available

at http://asi.insa-rouen.fr/enseignants/~arakoto/code/mklindex.html

and https://github.com/xinwangliu/Multi-Kernel-Extreme-Learning-

Machine) (Rakotomamonjy et al., 2008). We conducted simpleMKL and

MK-ELM using (a) raw feature or (b) joint learned feature from multi-

modal feature extractor of MSH-ELM as the input of the classifier. We

used SVM as a classifier for simpleMKL and fixed the tradeoff parame-

ter, C5100 as it shows the best classification performance in valida-

tion set. Linear kernel and Gaussian kernels with 10 different kernel

bandwidths ({223, 222,. . ., 26} multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of features
p

) for

each feature representation was applied to simpleMKL and MK-ELM

(Liu et al., 2013). When using the raw features as the input of the clas-

sifier, the simpleMKL and MK-ELM’s balanced accuracy were around

0.90 very similarly. When using the joint learned features obtained

from the sELM-AE of the MSH-ELM, the simpleMKL’s balance accu-

racy was 0.94 and the MK-ELM’s balance accuracy was 0.93. This

results show that feature extractor of MSH-ELM is very robust for

multi-modal feature extraction, and joint learned features of MSH-ELM

are better classified using the single kernel ELM than using multiple

kernel methods in our case. It is necessary to develop a better method

than existing MKL to improve the performance of AD classification and

extract joint multi-modal optimal feature.

Finally, our multi-modal classification framework only considers

structural MRI, PET, and CSF. However, it is expected that combining

as many modalities as possible would be efficient for discrimination of

AD and MCI from HC. Accordingly, in further studies, we will build a

multi-modal classification framework that combines the multi-modal

data including medical imaging, genetics, proteomics, and cognition.

6 | CONCLUSION

In this article, we proposed a method for obtaining joint hierarchical

feature representation from structural MRI, PET, and CSF called MSH-

ELM. The proposed method uses a stacked sELM-AE to find a high-

level feature representation from individual modalities (MRI, PET, and

CSF), and another stacked sELM-AE to acquire joint hierarchical fea-

ture representation. Unlike MK-SVM, which combines the features

extracted from individual modalities in a kernel technique, the pro-

posed MSH-ELM method extracts the joint hierarchical feature repre-

sentation through a deep neural network structure. The superior

classification performance of our proposed method in terms of various

quantitative metrics compared to those of other comparative methods

indicates that the proposed MSH-ELM method effectively integrates

the complimentary information from MRI, PET, and CSF.
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