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Abstract
We established an optimal combination of EEG recording during sparse multiband (MB) fMRI that

preserves high-resolution, whole-brain fMRI coverage while enabling broad-band EEG recordings

which are uncorrupted by MRI gradient artefacts (GAs). We first determined the safety of simulta-

neous EEG recording during MB fMRI. Application of MB factor54 produced <18C peak heating

of electrode/hardware during 20 min of GE-EPI data acquisition. However, higher SAR sequences

require specific safety testing, with greater heating observed using PCASL with MB factor54.

Heating was greatest in the electrocardiogram channel, likely due to it possessing longest lead

length. We investigated the effect of MB factor on the temporal signal-to-noise ratio for a range

of GE-EPI sequences (varying MB factor and temporal interval between slice acquisitions). We

found that, for our experimental purpose, the optimal acquisition was achieved with MB factor53,

3mm isotropic voxels, and 33 slices providing whole head coverage. This sequence afforded a

2.25 s duration quiet period (without GAs) in every 3 s TR. Using this sequence, we demonstrated

the ability to record gamma frequency (55–80 Hz) EEG oscillations, in response to right index fin-

ger abduction, that are usually obscured by GAs during continuous fMRI data acquisition. In this

novel application of EEG-MB fMRI to a motor task, we observed a positive correlation between

gamma and BOLD responses in bilateral motor regions. These findings support and extend previ-

ous work regarding coupling between neural and hemodynamic measures of brain activity in

humans and showcase the utility of EEG-MB fMRI for future investigations.
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1 | INTRODUCTION

Electroencephalography (EEG) and functional magnetic resonance imag-

ing (fMRI) are the two neuroimaging techniques that are often used to

investigate human brain function. Simultaneous EEG-fMRI recordings

provide a wide range of complimentary information and can be advanta-

geous for improving our understanding of brain function, for example:

through investigating the spatiotemporal dynamics of neural activity (for

a review, see Huster, Debener, Eichele, & Herrmann, 2012), or studying

the underlying neurophysiological origins of the measured responses by

comparing neural and hemodynamic signals (Mullinger, Mayhew, Bag-

shaw, Bowtell, & Francis, 2013). The primary advantage of simultaneous

EEG-fMRI acquisition over separate recordings is that it enables

investigation of unpredictable or spontaneous brain activity, and studying

the trial-by-trial covariation in brain processing as measured by the two

techniques (Bagshaw et al., 2004; Becker, Reinacher, Freyer, Villringer, &

Ritter, 2011; Debener et al., 2006; Eichele et al., 2008; Goldman, Stern,

Engel Jerome, & Cohen, 2002; Horovitz et al., 2008; Mayhew, Ostwald,

Porcaro, & Bagshaw, 2013; Mobascher et al., 2009; Mullinger, Mayhew,
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Bagshaw, Bowtell, & Francis, 2014; Olbrich et al., 2009; Scheibe,

Ullsperger, Sommer, & Heekeren, 2010). Thus simultaneous recordings

enable spatial localization of temporally dynamic response features. EEG-

fMRI analysis has provided many novel insights into brain function. For

example, such analyses have demonstrated specific BOLD correlates of:

distinct neurophysiological components including the auditory oddball

(B�enar et al., 2007; Eichele et al., 2005) and the error-related negativity

(Debener et al., 2005); as well as specific neural activity in specific fre-

quency bands (Goldman et al., 2002; Laufs et al., 2003). These studies

have shown that simultaneous EEG-fMRI can provide greater specificity

regarding the spatial arrangement (Goldman et al., 2009; Novitskiy et al.,

2011) or the temporal sequence (Eichele et al., 2005; Mayhew, Li, &

Kourtzi, 2012) of responsive brain areas, compared to that revealed by a

standard analysis of data from a single neuroimaging modality.

Recently, neuronal activity in the gamma frequency band, which is

typically defined as between �30 and 100 Hz, has attracted much

interest because gamma synchronization has been linked with a range

of cognitive and sensory functions (Buschman and Miller, 2007; Buz-

saki and Draguhn, 2004; Colgin et al., 2009; Fries, 2009; Singer and

Gray, 1995). Gamma-band synchronization has been observed in

humans using non-invasive imaging methods during visual

(Hoogenboom, Schoffelen, Oostenveld, Parkes, & Fries, 2006;

Muthukumaraswamy and Singh, 2013), somatosensory (Bauer,

Oostenveld, Peeters, & Fries, 2006), and auditory (Pantev et al., 1991;

Schadow, Lenz, Dettler, Fr€und, & Herrmann, 2009) stimulation. It is

also known to be involved in higher cognitive functions such as mem-

ory processes (Fell et al., 2001; Howard et al., 2003) and motor control

(Brown, Salenius, Rothwell, & Hari, 1998; Cheyne, Bells, Ferrari, Gaetz,

& Bostan, 2008; Crone, Miglioretti, Gordon, & Lesser, 1998; Darvas

et al., 2010; Gaetz, MacDonald, Cheyne, & Snead, 2010; Muthukumar-

aswamy, 2010; Schoffelen, Oostenveld, & Fries, 2005). Therefore, due

to the functional importance of gamma frequency activity, characteriz-

ing the underlying mechanisms of these responses is of great interest.

The majority of previous work investigating the link between

BOLD signals and gamma activity has been conducted using invasive

electrode recordings of local-field potentials in humans (Mukamel et al.,

2005; Murta et al., 2016; Nir et al., 2007), primates (Logothetis, Pauls,

Augath, Trinath, & Oeltermann, 2001; Magri, Schridde, Murayama,

Panzeri, & Logothetis, 2012; Niessing et al., 2005; Scholvinck et al.,

2010; Viswanathan and Freeman, 2007), and rodents (Boorman et al.,

2015; Sumiyoshi et al., 2012). These studies showed the BOLD

response is more strongly coupled to gamma frequency activity,

compared with the activity in the lower (<30 Hz) frequency bands.

While providing novel insights into neurovascular coupling, find-

ings from invasive animal recordings cannot be easily extrapolated to

scalp electrophysiological recordings due to differences in the record-

ing references used and in the spatial scale of the neuronal populations

involved in generating the signals (Hall et al., 2005). In addition,

although the coupling between BOLD and gamma-LFP activity is

widely cited as principle evidence for the neural underpinnings of

hemodynamic-based functional neuroimaging, the majority of these

seminal studies have been conducted in visual cortex (Logothetis et al.,

2001; Viswanathan and Freeman, 2007), with some exceptions in

auditory cortex (Mukamel et al., 2005). A wider understanding in other

brain regions, for example, sensorimotor cortex, is important to fully

establish the fundamental nature of the gamma–BOLD relationship.

Such investigations are particularly important given the recent doubt

cast on the functional importance of narrow-band gamma responses in

visual cortex (Hermes, Miller, Wandell, & Winawer, 2014), and the

BOLD correlates of broader high-frequency activity (Winawer et al.,

2013). Therefore, noninvasive simultaneous EEG-fMRI recordings in

humans offer many potential advantages for relating gamma and BOLD

signals. Possibilities include extending previous studies suggestions of a

strong gamma–BOLD relationship by investigating this coupling in

motor paradigms, which have been widely shown to induce robust

increases in gamma power (Cheyne et al., 2008; Crone et al., 1998;

Gaetz et al., 2010; Muthukumaraswamy, 2010), and gaining a fuller

understanding of the fundamental relationship of these signals to each

other and also to human behavior (Hoogenboom, Schoffelen,

Oostenveld, & Fries, 2010; Womelsdorf, Fries, Mitra, & Desimone,

2006).

However, few simultaneous EEG-fMRI studies have investigated

gamma activity due to technical limitations as detailed below, and con-

sequently the relationship between hemodynamic responses and the

gamma band activity in humans remains incompletely understood (Log-

othetis, 2008). The recording of EEG data in the MRI environment is

technically challenging primarily due to the effect of the MRI on the

EEG data quality. Namely, EEG data are corrupted by the gradient arte-

fact (GA) produced by the time-varying magnetic field gradients needed

for imaging, the pulse artefact produced by cardiac pulse driven motion

in the strong magnetic field of the MR scanner, and motion artefacts

due to head movement in the MR environment (Mullinger & Bowtell,

2011). The frequency characteristics of these artefacts mean that the

GA is the primary problem for studying gamma band activity, with

residual GAs easily obscuring the small amplitude neuronal signal of

interest even after correction (Mullinger, Morgan, & Bowtell, 2008b;

Mullinger, Yan, & Bowtell, 2011).

Despite the technical challenges, a few studies have attempted to

study the gamma band using concurrent EEG and fMRI measures

(Castelhano, Duarte, Wibral, Rodriguez, & Castelo-Branco, 2014; Green

et al., 2017; Leicht et al., 2016; Mantini, Perrucci, Del Gratta, Romani,

& Corbetta, 2007; Michels et al., 2010; Mulert et al., 2010; Rosa, Kilner,

Blankenburg, Josephs, & Penny, 2010; Scheeringa et al., 2011). Of

these, a number limited the frequency range of the measured gamma

band to a range of 30–50 Hz (or narrower) to avoid the high frequen-

cies where the GAs dominate (Mantini et al., 2007; Mulert et al., 2010;

Rosa et al., 2010). However, this band-limiting approach is clearly sub-

optimal when gamma responses that are often reported in the upper

portion of the 30–100 Hz frequency range (Muthukumaraswamy,

2010) have been related to behavior and other neuronal measures, for

example, GABA concentration (Muthukumaraswamy, Edden, Jones,

Swettenham, & Singh, 2009). An alternative approach taken by other

studies, or in addition to band-limiting gamma, has been to adopt a

sparse fMRI sequence (Leicht et al., 2016; Mulert et al., 2010; Scheer-

inga et al., 2011) rather than conventional, continuous fMRI acquisition.

Sparse sequences feature an acquisition time shorter than the
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repetition time (TR) of the MRI sequence in order to provide a time

window with no MRI gradients present in which to collect EEG data.

As a result, this approach enables the full gamma frequency range to

be investigated. However, conventional MRI sequences require a long

TR (>3 s) and/or small number of slices to be acquired to provide the

required sparsity, imposing limitations in the temporal sampling or spa-

tial coverage possible and consequently limiting the utility of the fMRI

data acquired.

Therefore, to optimize simultaneous EEG-fMRI recordings to study

gamma-BOLD coupling, we need to establish a novel method to obtain

cleaner EEG data in the high-frequency (>30 Hz) band. Multiband (MB)

fMRI has the potential to overcome the limitations imposed by conven-

tional sparse fMRI sequences. MB acquisition (Feinberg et al., 2010;

Moeller et al., 2010) can be employed to shorten repetition times (TR),

increase brain coverage for a given TR, or shorten the acquisition time of

whole-head fMRI in a sparse fMRI sequence which would lengthen the

gradient-free time window in which EEG data can be collected. Sparse

MB fMRI acquisitions, therefore, offer great potential for improving EEG

data quality during simultaneous acquisitions. However, due to the addi-

tional radio frequency (RF) power of MB excitation, the safety of EEG-

MB fMRI acquisitions must be assessed (Auerbach, Xu, Yacoub, Moeller,

& Ugurbil, 2013). In addition, as MB methods can affect temporal signal

to noise (tSNR) of fMRI data (Chen et al., 2015; Todd et al., 2016) assess-

ing the implementation of MB and the effect on fMRI tSNR is also impor-

tant to enable optimized EEG-fMRI studies to take place.

Therefore, the aim of this work was to assess the overall feasibility

of recording EEG simultaneously with MB fMRI in humans. This took

place in three parts: (i) assessing the safety implications of EEG-MB

fMRI; (ii) assessing the tSNR of MB fMRI; and (iii) applying an optimized

EEG-MB fMRI approach to investigate single-trial coupling relationships

between MB-BOLD and gamma and beta frequency EEG responses to

a finger-abduction motor task.We chose to investigate motor responses

as an event-related synchronization (ERS) of gamma oscillations (reflect-

ing an increase in power), typically accompanied by desynchronization

(ERD) of beta frequency (15–30 Hz) oscillations (reflecting a reduction

in power), in the primary motor cortex contralateral to the movement

have been well documented using invasive electroencephalography

(ECoG) (Darvas et al., 2010), MEG (Muthukumaraswamy, 2010), and

EEG (Cheyne et al., 2008) (for reviews, see Cheyne and Ferrari, 2013;

Cheyne, 2013; Muthukumaraswamy, 2013). To our knowledge, the

motor gamma–BOLD relationship has not previously been investigated

with simultaneous EEG-fMRI acquisition in humans. Therefore, through

this proof of concept study, we also aim to widen the understanding of

gamma–BOLD coupling across the cortex. We hypothesize that the

single-trial positive BOLD response in contralateral motor cortex will

correlate positively with gamma power ERS and negatively with beta

power ERD.

2 | METHODS

Data were acquired and analyzed in two stages. Stage one consisted of

initial safety testing and image-quality optimization of EEG-MB fMRI;

while stage two involved the application of the optimized scanning

protocol for the concurrent EEG-fMRI study of human brain responses

during motor tasks.

During both stages, EEG data were acquired using BrainAmp

MRplus EEG amplifiers (Brain Products, Munich) with 5 kHz sampling

rate and an MR-compatible 63-channel EEG cap (EasyCap, Herrsching).

The hardware band-pass filters were set to a 0.016–250 Hz range,

with a roll-off of 30 dB/octave at high frequency. Electrode layout fol-

lowed the extended international 10–20 system with an additional

channel for recording the electrocardiogram (ECG). FCz was used as

the reference electrode. A 3 T Philips Achieva MRI scanner with a

body transmit and 32-channel receiver-array head coil was used for

MR data acquisition. The MB implementation for fMRI acquisitions in

this study was from Gyrotools, Zurich. MR-EEG scanner clocks were

synchronized for all EEG data acquisition (Mullinger et al., 2008b). All

data acquisition on humans was performed with approval from the

local ethics committee and informed consent was obtained from all

subjects involved in this project.

3 | STAGE 1: ASSESSING THE SAFETY
AND TSNR OF EEG-MB FMRI

3.1 | Safety testing

Safety testing was performed on a conductive, head-shaped phantom

with a conductivity of about 0.5 X21 m21 to mimic skin conductivity

(Yan, Mullinger, Geirsdottir, & Bowtell, 2010). The phantom was left in

the scanner room over night to equilibrate to the ambient temperature.

The EEG cap was then connected to the phantom using conductive gel

(Abralyte 2000 [EasyCap GmbH, Munich]) and all electrode impedances

were maintained below 15 kX. Fibre-optic thermometers (Luxtron Cor-

poration, Santa Clara, CA, USA) were used to continually monitor (1 Hz

sampling rate) heating effects at seven locations: four scalp electrodes

(Cz, TP7, FCz, & TP8), the ECG lead (connected to the base of the

phantom’s neck), the cable bundle coming from the EEG cap, and the

scanner bore (as a control measurement of heating effects unrelated to

the presence of the EEG system). Thermometer sensors were placed in

the conductive gel under the electrodes and taped to the surface of

the cable bundle and scanner bore. The phantom was then placed at

the MR scanner isocenter. First, a 5 min recording of baseline tempera-

ture at each location was collected without any scanning. Then two

20 min MRI scans, both employing MB factor 4 and spectral presatura-

tion with inversion recovery (SPIR) fat suppression, were performed to

test for heating during the highest realistic values of specific absorption

rate (SAR) for a given sequence type. Please note MB factor 4 was the

highest available in this implementation of MB. The sequences tested

were as follows: (1) gradient echo (GE)-EPI (using: TR/TE51,000/

40 ms, SENSE52, slices548, B1 RMS51.09 lT, SAR/head522%);

(2) pseudo-continuous arterial spin labelling (PCASL)-GE-EPI (using:

TR/TE53,500/9.8 ms, SENSE52, slices532, B1 RMS51.58 lT,

SAR/head546%). Between the two MRI scans, there was a 10 min

period without scanning to allow a return to baseline following any

heating effects from the previous MRI scan.
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3.1.1 | Analysis

The mean baseline temperature at each thermometer location was

determined using the 5 min recording prior to each MRI scan. For each

location, the mean baseline temperature was then subtracted from the

temperature timeseries recorded during each scan to give the change

in temperature across the whole 20 min scan period.

3.2 | Image quality: tSNR

To assess the effect of the implementation of MB excitation on the

fMRI signal tSNR, fMRI data were recorded on 3 healthy adult subjects

(age 3262 years) during five different GE-EPI pulse sequences:

i MB factor51 with equidistant slice acquisition

ii MB factor52 with equidistant slice acquisition

iii MB factor52 with sparse slice acquisition

iv MB factor53 with equidistant slice acquisition

v MB factor53 with sparse slice acquisition

Equidistant acquisition used the full TR period, composed of equal tem-

poral intervals between each slice acquisition. For sparse acquisitions

MR data were acquired in the minimum possible time at the beginning

of the TR period; the rest of the TR period then formed a quiet period

with no MR gradients. A TR53,060 ms and 36 slices were chosen to

ensure that these parameters could be used for all combinations of

MB factors and slice acquisition (in scans i–v) while adhering to

requirements for EEG clock synchronization (Mandelkow, Halder,

Boesiger, & Brandeis, 2006; Mullinger et al., 2008b). Other parameters

were set for all scans as follows: TE540 ms, SENSE52, flip

angle5798, 41 volumes acquired. A T1-weighted anatomical image

was also acquired for each subject.

3.2.1 | Analysis

For each subject, the anatomical image was used to segment the grey

matter (FSL FAST, https://fsl.fmrib.ox.ac.uk/fsl/) (Zhang, Brady, &

Smith, 2001) which formed a mask for subsequent analysis. The tSNR

was calculated in every grey matter voxel (Eq. 1) and then averaged

over voxels for each subject. The group mean and standard deviation

in grey matter of the tSNR was then found for each of the five scans

to assess the change in tSNR with MB factor and slice acquisition

scheme.

tSNRvoxel5
mean signal over timevoxel

standard deviationover timevoxel
(1)

4 | STAGE 2: EEG-FMRI MOTOR STUDY

Twelve right-handed subjects (10 males, 2 females, age526.6 6 5.7

years) took part in the study. After initial data processing, two subjects

were excluded from further analysis due to repeated, excessive head

motion (>4 mm, as assessed from fMRI realignment parameters).

4.1 | Data acquisition

The EEG cap was put on the subject and all electrode impedances

were maintained below 10 kX for the duration of the study. EEG-fMRI

data were acquired using a sparse GE-EPI scheme (TR53,000 ms (of

which, acquisition time5750 ms, quiet period52,250 ms), TE5

40 ms, MB factor53, 33 slices, voxels53 mm3, SENSE52,

FOV5240 3 240 mm, flip angle5798, 192 volumes, SAR/head<7%).

These parameters had been optimized based on the results of Stage 1

and the requirements of the paradigm (see below). High-frequency

(>30 Hz) artefacts were minimized by mechanically isolating the EEG

amplifiers from the scanner bed and minimizing MR scanner room envi-

ronment noise (Mullinger et al., 2013; Mullinger and Bowtell, 2011). In

addition, the subject was positioned such that electrodes Fp1 and Fp2

were at the isocenter in the foot/head direction so as to further reduce

the amplitude of the GAs (Mullinger et al., 2011). Foam padding was

placed around the subject’s head to reduce motion-related artefacts.

The EEG and MR scanner clocks were synchronized (Brain Products

Synchbox), and the TR made equal to a multiple of the EEG sampling

period, to ensure consistent sampling of the GA waveforms (Mandel-

kow et al., 2006, Mullinger et al., 2008b). The onset of every TR period

was marked in the EEG data to facilitate GA correction. Simultaneous

electromyogram (EMG) recordings were made from electrodes

attached over the first dorsal interosseous (FDI) muscle of the right

hand using a Brain Product EXG amplifier. Cardiac and respiratory

cycles were simultaneously recorded using the scanner’s physiological

monitoring system (vector cardiogram (VCG) and respiratory belt). A

T1-weighted anatomical image (MPRAGE sequence) with 1 mm iso-

tropic resolution was also acquired. EEG electrode locations were digi-

tized (Polhemus Fastrak) to facilitate individualized co-registration of

electrode positions with each subject’s anatomical image.

4.2 | Paradigm

Subjects performed abduction movements of the right-hand index fin-

ger in time with an auditory cue (1 kHz tones, 50 ms duration, and

2.5 Hz presentation rate) that was delivered to both ears via head-

phones, as previously employed in an MEG study (Muthukumarasw-

amy, 2010). A single trial consisted of four abduction movements

which were performed briskly following each auditory cue within the

MR gradient quiet period of a single TR. The onset of the first cue was

250 ms after the end of the MR acquisition in that TR, such that the

cues occurred at 1,000, 1,400, 1,800, and 2,200 ms relative to the start

of a given TR, resulting in all movements occurring within a 1.5 s win-

dow for each trial. Abduction trials were separated by a 16 s (five 3 s

TR periods1750 ms MR acquisition1250 ms) resting baseline interval

(Figure 1). Subjects were instructed to fixate on a centrally displayed

cross, to keep their hands by their sides, and to remain as still as possi-

ble throughout the whole experiment. Immediately prior to the first

auditory cue of each trial, a visual cue appeared, the fixation cross

changed to a plus sign for 2 s, warning the subjects to prepare for the

upcoming trial. Subjects performed a 10 min practice outside the scan-

ner (50 trials of the same auditory cued abduction task for 1.5 s,
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separated by an interval of 5.5 s and EEG recorded) to familiarize them-

selves with the paradigm and were then subsequently positioned inside

the MRI scanner where they each completed four runs of 30 trials dur-

ing fMRI, resulting in 120 trials per subject in total.

4.2.1 | Analysis

Electroencephalography

Cardiac R-peaks were detected from the VCG recording and used to

inform pulse artefact correction of data recording inside the scanner (Mul-

linger et al., 2008b). For both EEG and EMG data, gradient and pulse arte-

facts were corrected in BrainVision Analyzer2 using sliding window

templates formed from the averages of 45 and 21 artefacts, respectively,

which were subtracted from each occurrence of the respective artefacts.

Data were subsequently downsampled (600 Hz), bandpass filtered (EEG:

0.5–120 Hz, EMG: 0.5–45 Hz) and epoched into single-trials from 216

to 2 s relative to the onset of the first auditory cue in each trial (BrainVi-

sion Analyzer2). Through visual inspection of the data, noisy EEG chan-

nels and trials that were contaminated with large motion artefacts,

substantial EMG activity during the baseline period, or showed a lack of

abduction movement in the EMG signal, were removed. This resulted in a

group mean (6standard error [SE]) of 8462 trials remaining for further

analysis. Independent component analysis of the EEG data (ICA, EEGLAB,

https://sccn.ucsd.edu/eeglab/) was then used to remove eye-blinks/

movements (Delorme and Makeig, 2004; Jung et al., 2000), with an aver-

age of 2 ICs (SE51) removed per subject, and data were rereferenced to

an average of all non-noisy channels.

Individual, four-layer (scalp, skull, CSF, and brain) boundary ele-

ment (BEM) head models were constructed from the T1 anatomical

image of each subject using the Fieldtrip toolbox (http://www.ru.nl/

neuroimaging/fieldtrip) (Oostenveld, Fries, Maris, & Schoffelen, 2011).

A Linearly Constrained Minimum Variance (LCMV) beamformer (Robin-

son and Vrba, 1999; van Drongelen, Yuchtman, Van Veen, & van Huf-

felen, 1996; van Veen, van Drongelen, Yuchtman, & Suzuki, 1997) was

then employed to separately spatially localize changes in each subject’s

gamma (55–80 Hz) and beta (15–30 Hz) frequency oscillations (filtered

using second-order Butterworth filters implemented in Matlab) in

response to abduction movements. The optimal frequency band for the

localization of gamma ERS was determined based on an iterative pro-

cess of initially investigating time–frequency spectrograms created

from broad gamma band (30–100 Hz) source localization and observing

that consistently, across subjects, the peak gamma ERS was found in

the 55–80 Hz, gamma band range, in agreement with many previous

findings (Ball et al., 2008; Cheyne et al., 2008; Muthukumaraswamy,

2010; for reviews, Cheyne and Ferrari, 2013; Cheyne, 2013; Muthuku-

maraswamy, 2013). For each subject and frequency band (beta or

gamma), source power during the active (0–1.5 s) and passive (29.0 to

27.5 s) time windows, defined relative to the first cue onset, were cal-

culated. The passive window definition in the baseline interval, during

the first MR-quiet period that preceded the visual probe cue of that

trial, was chosen to avoid both the periods of MR acquisition and any

brain activity occurring due to the visual cue. Subsequently, pseudo T-

statistic (T-statistic) maps were computed as the ratio of the difference

in source power between the active and passive windows, divided by

the sum of the noise power estimates inherent to the sensors during

both active and passive windows (Hillebrand and Barnes, 2005; Robin-

son and Vrba, 1999).

The maximum peak T-statistic location of the gamma power ERS

and minimum peak T-statistic location of the beta power ERD in the

contralateral primary motor cortex (cM1) defined the site of a gamma

and a beta virtual electrode (VE). A broadband (1–120 Hz) timecourse

of neural activity was then extracted from these two VE locations, by

multiplying the channel level data by the respective broadband beam-

former weights. Time-frequency spectrograms of gamma and beta VE

data were calculated using a multitaper wavelet approach (Scheeringa

et al., 2011). Windows of 0.4 s duration were moved across the data in

steps of 50 ms, resulting in a frequency resolution of 2.5 Hz, and the

use of seven tapers resulted in a spectral smoothing of 610 Hz. Using

the mean of the passive window data as baseline the spectrograms

were converted to display change in activity relative to baseline. Sepa-

rately for each subject, VE timecourses were filtered into the gamma

and beta bands, Hilbert transformed and then the average power dur-

ing the active window was calculated for each trial (Mayhew, Dirckx,

Niazy, Iannetti, & Wise, 2010; Mullinger et al., 2014). These single trial

power values were then mean-subtracted to form regressors of gamma

and beta power, which represented the trial-by-trial variability in

single-trial stimulus response amplitudes, for subsequent GLM analysis

of fMRI data. The amplitude of rejected trials was set to the mean

value (zero). EEG data recorded outside the scanner were analyzed

using equivalent methodology to provide comparison of data quality

with the inside scanner recordings.

functional Magnetic Resonance Imaging

fMRI data were processed using FSL v5.0.9 (https://fsl.fmrib.ox.ac.uk/

fsl/). Data from each subject were corrected for physiological noise

using an RETROICOR approach (Glover, Li, & Ress, 1999) implemented

FIGURE 1 Schematic of the sparse MB53 fMRI scanning scheme and the motor task paradigm showing when four abduction movements
were performed within the MR gradient quiet period of a single volume, and were followed by a 16 s resting baseline interval for each trial.
This resulted in the movements being performed every 18 s [Color figure can be viewed at wileyonlinelibrary.com]
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using in-house Matlab code, motion corrected (MCFLIRT), spatially

smoothed (5 mm FWHM Gaussian kernel), high-pass temporally fil-

tered (100 s cutoff), registered to their T1 anatomical brain image

(FLIRT), and normalized to the MNI 2 mm standard brain. GLM analyses

were performed using FEAT v6.0. First-level analysis was performed

employing four regressors: (1) boxcar abduction movement, (2) boxcar

visual probe cue, (3 and 4) parametric modulation of single-trial gamma

and beta neuronal responses, respectively. All regressors were con-

volved with the double-gamma HRF. Both positive and negative con-

trasts were assessed for each regressor. For each subject and

frequency band, first-level results were combined across all four runs

using a second-level, fixed effects analysis to calculate an average

response per subject. These results were then combined across all sub-

jects at the third, group-level using an FLAME mixed-effects analysis

(Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004). As our a-

priori hypothesis was to investigate motor fMRI responses and their

correlation with gamma and beta EEG activity, a mask of motor cortex

(Oxford–Harvard cortical atlas, FSL) was applied as prethreshold mask

to all group-level statistical maps before cluster correction. Main effect

(boxcar model of the task) and the single trial EEG regressor correlation

BOLD Z-statistic images were threshold using Z>2.3 and cluster cor-

rected significance threshold of p< .05.

5 | RESULTS

5.1 | Stage 1: Feasibility testing

5.1.1 | Safety testing

The temperature changes measured at all thermometer sensors during

the GE-EPI sequence are plotted in Figure 2. The greatest heating was

observed in the ECG channel, which showed a �0.58C increase. This

temperature increase occurred gradually over the first 10 min and then

stabilized and showed no further change. Nominal heating was

observed in the other channels. The higher SAR of the PCASL

sequence resulted in a greater heating effect than the GE-EPI, again

the largest temperature increase was seen in the ECG channel (�0.98C)

with increases in other channels (TP85�0.88C) also observed (Sup-

porting Information, Figure S1). As this GE-EPI sequence, with parame-

ters chosen to maximize SAR, showed no heating effect close to 18C,

the use of the MB GE-EPI (with parameters resulting in lower SAR)

with the EEG system was regarded safe for the following experiments

(Carmichael et al., 2008; Medicines and Healthcare Products Regula-

tory Agency, 2015).

5.1.2 | Image quality: tSNR

The variation in BOLD tSNR with MB factor51–3 and slice spacing

acquisition is summarized in Table 1. These data indicate that the vari-

ability in tSNR between subjects was far larger than the variability of

tSNR with imaging parameters. Figure 3 shows the spatial variation in

tSNR over a single slice for each subject for the two sparse imaging

acquisition sequences tested, which were the most promising sequen-

ces for our EEG-fMRI application. Visual inspection of the images in

Figure 3 and direct comparison of the mean and standard deviation of

tSNR within subjects shows no clear change in tSNR (12.6622%

between MB factors 2 and 3) between MB factors. As, for sparse

sequences, using an MB factor of 3 compared with 2 results in a 33%

reduction in the time required to acquire the same number of slices the

FIGURE 2 Temperature changes at EEG electrodes, cable bundle, and a control location on the scanner bore during a 20-min GE-EPI
sequence scan (MB factor54, TR/TE51,000/40 ms, SENSE52, slices548, B1 RMS51.09 lT, SAR/head522%) using a Philips Achieva
3 T MRI scanner. Temperature was calculated relative to an initial 5 min baseline recording made before the scan started [Color figure can
be viewed at wileyonlinelibrary.com]

TABLE 1 Mean temporal SNR (tSNR) (6standard deviation)
calculated over grey matter across 3 participants during five MR
sequences: MB: 1–3; acquisition type5 equidistant or sparse

Multiband factor Slice acquisition spacing tSNR

1 Equidistant 74640

2 Equidistant 72639

2 Sparse 67637

3 Equidistant 68637

3 Sparse 74638

All other parameters were constant: TR/TE53060/40 ms; SENSE5 2;
slices536; FA5798; volumes541.
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MB factor of 3 was chosen for the EEG-fMRI experiment, to maximize

the duration of the MR quiet-period for EEG measurements without

degradation of the tSNR.

5.2 | Study 2: EEG-fMRI motor study

All subjects performed the abduction task as instructed, judged by visual

inspection of the EMG data showing increases in power during brisk fin-

ger movements which accurately timed to the auditory cues, and EMG

power returning to rest levels during the baseline periods showing sub-

jects remained still in these periods. Mean rectified EMG activity during

the passive and active periods is shown for three representative sub-

jects in Figure 4.

Figure 5 shows the group average T-statistic map of changes in

both EEG gamma- and beta-power during the active window compared

to the passive window. An increase in gamma power (ERS, positive T

values, Figure 5a) was only observed in contralateral M1, whereas a

decrease in beta power (ERD, negative T values, Figure 5b) was

observed bilaterally in contralateral and ipsilateral M1. Specifically, the

mean of the individual subject VE locations in cM1 for the gamma ERS

was found at [22163,23163, 5963] mm [MNI:x,y,z] (see Figure 5a,

crosshair) and the beta ERD was found at [23963, 23262, 5164]

mm (see Figure 5b, crosshair), where errors denote standard error over

subjects. Both these locations lie in the postcentral gyrus, the gamma

VE location was found to be significantly more medial (t(9)53.76,

p5 .004 paired t-test) than the beta VE location, but no difference in

the y (t(9)50.41, p5 .69) or z (t(9)51.32, p5 .21) co-ordinates was

observed.

Figure 6 shows the group mean time–frequency spectrograms

measured from cM1 for the gamma (Figure 6a,b) and beta (Figure 6c,d)

VE locations. Figure 6a,c displays the mean time–frequency spectro-

gram for the whole 18 s duration of the abduction trial and preceding

intertrial interval, with Figure 6b,d showing the active and passive peri-

ods only. The broadband increases in power (red vertical stripes lasting

�750 ms and occurring every 3 s) show the effect of the residual GAs

caused by the MRI data acquisition on the EEG power spectrum. It is

clear that neuronal EEG responses above 20 Hz recorded during MRI

data acquisition are corrupted by residual GAs with signal degradation

increasing with increasing frequency (Figure 6a,c). Note that, due to

the way the trials were epoched, the increase in <30 Hz power

between 216 and 214 s represents the postmovement alpha/beta

rebound. By selecting the active (0–1.5s) and passive (29 to 27.5 s)

time windows during MR quiet periods a reliable comparison of neuro-

nal signals between rest and task was made for both the gamma and

beta bands (Figure 6b,d). During the active window, when the FDI

abduction movements were performed, ERS of gamma band power

(55–80 Hz) and ERD of beta band power (15–30 Hz) occurred com-

pared with the passive window of baseline resting fixation with no

movement (Figure 6b,d). As expected due to the VE definition, stronger

gamma power ERS was observed in the gamma VE than the beta VE,

FIGURE 3 Spatial maps of tSNR of middle slice of the stack for each
subject for sparse image acquisition sequences with MB factor 2 (top
row) and 3 (bottom row). The values below the each map show the
mean tSNR6SD over all grey matter voxels for a given subject and
scan [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 EMG activity recorded from the right FDI during the
passive (29 to 27.5 s) and active (0–1.5 s) time windows (here the
time windows are concatenated together for visualization
purposes) from three representative subjects. The average
timecourse across all trials is shown. Onset of the first auditory cue
occurred at 0 s relative to index finger abduction movements. Error
bars denote standard deviation across runs
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and stronger beta power ERD was observed in the beta VE than in the

gamma VE. Comparison of these results with those from data recorded

outside the scanner (Supporting Information, Figures S2 and S3) shows

that very similar gamma and beta responses were measured in both

recordings, providing confidence in the quality of our data inside the

scanner.

As expected across 10 subjects, we observed a significant main-

effect (correlation with boxcar regressor) positive BOLD response to

the abduction movements in the motor cortex, with the peak voxel

(Z55.12, p<1 3 10219) lying within the masked region found at

[238, 232, 66] mm [MNI:x,y,z] in cM1, as shown in Figure 7, red–

orange. With a second peak (Z54.97, p<1 3 10219) found on the

midline at [24, 214, 70] mm [MNI:x,y,z]. In addition, a positive correla-

tion between single-trial gamma power ERS and the BOLD response

was observed in cM1, with the peak (Z53.11, p< .001) located at

[232, 242, 60] mm [MNI:x,y,z] (Figure 7, green) with additional

FIGURE 5 Group average (N510) T-statistic beamformer maps showing regions exhibiting power increases and decreases in (a) gamma- and
(b) beta-power, respectively, during the active window (0–1.5 s) as compared with the passive window (29.5 to27 s). The crosshairs represent
the group average of the individual VE locations found in cM1 for the gamma (a) and beta (b) frequency activity [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 6 Group mean (N510) time–frequency spectrograms demonstrating changes in the EEG signal power in cM1 relative to the
passive window (29 to 27.5 s) for (a,b) gamma ERS and (c,d) beta ERD VE location. The passive window was located in an MR quiet period
and before any anticipation of the stimulus. Time is displayed relative to the auditory cue onset. Spectrograms were calculated with
frequency resolution of 2.5 Hz with spectral smoothing of 610 Hz. (a,c) shows 18 s whole-trial duration, note the residual GAs during fMRI
acquisition periods. (b,d) shows the gamma and beta power responses during the active window (0–1.5s) where movement occurred, with
the passive window data appended prestimulus for comparison. Color bars denote the relative change in power from the average power
during the passive window period (baseline measure) of the passive window for each frequency. See Supporting Information, Figure S4 for
absolute power changes of same time–frequency spectrograms [Color figure can be viewed at wileyonlinelibrary.com]
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responses in the ipsilateral primary motor cortex with the peak

(Z53.02, p< .01) located at [34, 242, 60] mm [MNI:x,y,z] and on the

midline with peak (Z52.97, p< .01) located at [2, 236, 56] mm [MNI:x,

y,z]. No significant negative correlations were observed with the boxcar

or gamma band regressors. No significant positive or negative correla-

tions between single-trial beta and BOLD responses were observed.

6 | DISCUSSION

Here, through a series of experiments we show that, with the right

safety precautions and MRI sequence choice, it is safe to simultane-

ously acquire EEG data with MB fMRI data, despite the higher peak RF

power required for MB acquisitions compared with conventional fMRI

acquisitions. We also show that, for the implementation of MB used

here, there is no measurable degradation of the fMRI signal tSNR when

moving to a sparse acquisition with a MB factor of 3 compared with

the conventional continuous equi-spacing acquisition with no MB fac-

tor, allowing for the presence of physiological noise. We finally show

the considerable gains that can be achieved in using MB fMRI with

concurrent EEG data acquisition by studying gamma-BOLD coupling

with a simple motor task. We were able to reliably detect the gamma

response to finger abductions within cM1 and found that this response

was positively correlated with the BOLD response in bilateral primary

motor cortex with activation extending directly posterior to the hand-

knob area of the contralateral motor cortex.

6.1 | Safety and signal quality considerations

We show that for a GE-EPI sequence using an MB factor of 4 resulting

in a B1 RMS51.09 lT, SAR/head522% that the maximum heating

observed over a 20 min period was �0.58C (Figure 2), which is consid-

erably less than the recommended 18C safety limit (Medicines and

Healthcare Products Regulatory Agency, 2015). Furthermore the

majority of this 0.58C temperature increase was observed within the

first 5–6 min of scanning after which the temperature remained

relatively constant suggesting that there is not a linear heating effect

over time. Therefore, even if data were continuously acquired for a lon-

ger period, which is uncommon in neuroimaging studies, the risk to the

subject is unlikely to increase greatly. A similar pattern of heating was

observed for the PCASL sequence where the greatest heating occurred

in the first few minutes before a plateau was reached (Supporting

Information, Figure S1). However, this heating effect was far greater,

up to �0.98C over the electrodes and locations measured, reflecting

the increased B1 power used in that sequence (B1 RMS51.58 lT,

SAR/head546%). As this temperature rise was only just within the

safe limit for human tissue (Medicines and Healthcare Products Regula-

tory Agency, 2015) and given that not all locations on the phantom

were monitored, we would strongly suggest sequences such as MB-

PCASL should not be used with concurrent EEG recordings. Although

we did not record temperature data from occipital electrodes due to

practical limitations, we believe temperature increases at T7/T8 are

likely to approximate the O1/O2 electrodes, due to similar wire

lengths. The greatest heating effect in both GE-EPI and PCASL scans

was observed in the ECG lead. This lead is considerably longer than the

other leads in the EEG cap, which probably resulted in greater RF

absorption in this lead (Mullinger, Debener, Coxon, & Bowtell, 2008a)

causing the larger heating effect observed here. Given the potential to

use the VCG system, supplied by the MRI manufacturer, to monitor

the cardiac cycle (Mullinger et al., 2008b), it would be possible to

reduce the risk of heating effects by removing the ECG lead and elec-

trode from the EEG setup. However, given the increase in temperature

(�0.88C) in the Tp8 electrode, which also has a relatively long lead, the

removal of the ECG lead alone is unlikely to ensure that high SAR

sequences can be run safely with EEG system present. These findings

are in general agreement with recent work that also considered safety

implication of MB (Foged et al., 2017). It is also important to note that

minimal heating effects were observed at the MRI scanner bore loca-

tion suggesting that the MR scanning was not increasing the ambient

temperature of the bore. Therefore, the observed electrode heating

specifically arose from the interaction between the EEG system and

FIGURE 7 Group average (N510) fMRI mixed effects results. Positive correlation of BOLD signal to the boxcar model of right index
finger abduction movements (red–yellow) and areas of positive gamma–BOLD correlation (green). All correlations are cluster corrected with
p< .05, masked with motor cortex. The crosshairs represent the peak positive gamma–BOLD correlation in cM1 (at [232, 242, 60] mm)
[Color figure can be viewed at wileyonlinelibrary.com]
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the RF slice excitation pulses. These data highlight the potential dan-

gers of using MB sequences for EEG-fMRI where high SAR values can

arise from the increased B1 (Collins and Wang, 2011) and the need for

specific safety testing of any sequences used. As there are choices in

how the RF pulses required for MB sequences can be implemented,

with varying effects on SAR (Feinberg and Setsompop, 2013; Norris,

Koopmans, Boyacioglu, & Barth, 2011; Wong, 2012), it is important

that MB implementations by different MR manufactures and software

providers are individually tested before being used in human

experiments.

It is known that the use of MB can reduce image quality and con-

sequently degrade the temporal stability of the signals acquired using

EPI based sequences (Chen et al., 2015; Todd et al., 2016). However,

due to the ability of MB to shorten the TR, the increased temporal

sampling can result in increased signal sensitivity per unit time and

enhanced t-statistics of activation maps (Todd et al., 2016). MB fMRI

has been shown to be useful in a number of different applications as

its conception only a few years ago, with the relative gains in sampling

rate and voxel size that it can provide offsetting any signal quality deg-

radation incurred (Boyacio�glu, Schulz, Koopmans, Barth, & Norris,

2015; Feinberg et al., 2010; Moeller et al., 2010; Olafsson, Kundu,

Wong, Bandettini, & Liu, 2015). Indeed, our own investigations showed

that the variation in tSNR over subjects was far greater than the varia-

tion in tSNR between the sequences tested with different MB factors

and slice acquisition schemes (Table 1). This suggests that the tSNR

measures were dominated by physiological noise and anatomical vari-

ability rather than imaging sequence differences. Even when changes in

tSNR within subjects between MB 2 and 3 were considered there no

clear reduction was seen with increasing MB factor (Figure 3) in these

data. By using MB factor53 with sparse slice acquisition we were able

to maintain whole-head coverage while obtaining a 2.25 s MR quiet

period, within our 3 s TR, in which to study EEG-BOLD coupling.

Therefore, the relative gain in quiet period time far outweighed effects

on tSNR which were encountered.

6.2 | Benefits of MB fMRI for the simultaneous

recording of high-frequency EEG signals

The presence of residual GAs in EEG data at frequencies above 20 Hz

shows the necessity of an MR quiet period to provide the best SNR for

studying beta and gamma band signals. These residual artefacts are

present despite strict adherence to best-current practice acquisition

and the implementation of hardware solutions (synchronization (Man-

delkow et al., 2006; Mullinger et al., 2008b) and optimal positioning

(Mullinger et al., 2011)) and beamforming postprocessing (Brookes,

Mullinger, Stevenson, Morris, & Bowtell, 2008; Brookes et al., 2009)

which are all designed to minimize the residual GAs. While the magni-

tude of the residual GA appears to increase with frequency (Figure 6),

it is actually relatively constant across the frequency bands above 20

Hz (Supporting Information, Figure S4c,d), but the relative contribution

of the GA to the overall signal is increased due to the decrease in the

amplitude of the underlying neuronal activity at higher frequencies

resulting in Supporting Information, Figure S4e,f. These residual

artefacts are likely to be caused by submillimeter movements of the

subject’s head during data acquisition causing small changes in the GA

profile, preventing perfect correction by template subtraction methods

(Ritter, Becker, Graefe, & Villringer, 2007; Yan, Mullinger, Brookes, &

Bowtell, 2009). Given that such small head movements cannot be elim-

inated during acquisition and the current lack of a postprocessing

method to completely remove residual GAs from the EEG data, despite

considerable effort by a number of groups (Brookes et al., 2008; Freyer

et al., 2009; Maziero et al., 2016; Moosmann et al., 2009), the merit of

an MR quiet period, that enables the study of higher frequency neuro-

nal activity unadulterated by concurrent fMRI acquisition, is clear.

Indeed, using a sparse MR sequence incorporating quiet periods

has previously been implemented to allow the study of gamma band

activity during fMRI (Leicht et al., 2016; Mulert et al., 2010; Scheeringa

et al., 2011). We have extended these previous works by showing that

beta and gamma band activity from motor cortex can be measured in

the MRI environment. We observed an ERS of gamma band power dur-

ing the abduction movements compared with rest (Figures 5a and 6a,b)

localized to cM1, in close agreement with previous MEG studies (Ball

et al., 2008; Cheyne, 2013; Darvas et al., 2010; Muthukumaraswamy,

2010). This gamma band response was accompanied by a decrease

(ERD) in beta band power (Figures 5b and 6c,d) which was observed in

bilateral M1, in agreement with previous studies collected outside an

MRI environment (Darvas, Rao, & Murias, 2013; Jurkiewicz, Gaetz,

Bostan, & Cheyne, 2006; Muthukumaraswamy, Singh, Swettenham, &

Jones, 2010). Interestingly, previous invasive and noninvasive electro-

physiological recordings have shown that the gamma ERS is more spa-

tially focal to cM1 than the beta ERD (Darvas et al., 2013; Miller et al.,

2007), which was also observed in our data. In addition to the differ-

ence in the spatial localization of the gamma/beta responses, we also

observed different temporal profiles between the spectral responses

from these locations. The gamma ERS covered a relatively large fre-

quency range (�50–80 Hz) and, while it could be seen for the entire

movement period, it was strongest at initial movement onset (i.e., 0–

0.5 s; Figure 6a). The beta ERD was found to be much stronger and

was present consistently throughout the entire movement period.

Together these differences in spatial location and temporal response

profile suggest different neuronal populations are driving these two

responses, in line with previous findings (Darvas et al., 2010; Miller

et al., 2007).

Given the considerable advantages of MRI for providing excellent

spatial resolution of brain activity (De Martino et al., 2015; Heidemann

et al., 2012), it is highly desirable to take advantage of this feature in

the investigation of the origin of electrophysiological responses, where

noninvasive EEG/MEG recordings are limited. However, previous stud-

ies (Leicht et al., 2016; Mulert et al., 2010; Scheeringa et al., 2011)

have required considerable compromise on spatial resolution (slice

thickness ranging from 4 to 8 mm with slice gaps of 0.4–1 mm) and/or

brain coverage (between 35 and 120 mm) to provide a sufficient quiet

period to TR ratio (ranging between 30% and 90% of time) and sam-

pling rate of MRI responses (TRs between 3 and 3.63 s). With the cur-

rent implementation of MB, we have shown that these tradeoffs can

be minimized such that 3 mm isotropic voxels, with no slice gap and
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99 mm brain coverage with a quiet period to TR ratio of 75%, can be

achieved with a TR of 3 s.

6.3 | BOLD responses and coupling to EEG responses

and future research possibilities

Exploiting the advantages of EEG-MB fMRI has allowed us to show the

potential of this technique for noninvasively investigating brain func-

tion. We found that, out of all our regressors, the boxcar model of the

finger abductions showed the strongest correlation with the BOLD

response, with the largest activations arising in the contralateral post-

central gyrus (M1) [238, 232, 66] mm, and supplementary motor area

[24, 214, 70] mm and bilateral S2. All of which are regions expected

to be activated in a simple sensorimotor task. Interestingly the regions

of gamma–BOLD correlation were smaller and more focal, with peak

activity being observed between the postcentral gyrus and superior

parietal lobule both in contralateral [232, 242, 60] mm, ipsilateral [34,

242, 60] mm regions, and a central peak found between precentral

and postcentral gyrus at [2, 236, 56] mm. The contralateral activation

extends to directly posterior to the hand-knob area of the left sensori-

motor cortex, further suggesting this was a localized, task-specific

response. The bilaterality of this correlation, given the gamma ERS was

lateralized to the left cM1, appears surprising, but falls consistently

within the bilateral somatosensory cortex and therefore is likely to arise

due to the mutual correlation of BOLD signals between the contralat-

eral and ipsilateral regions of the somatosensory network for this task.

It is unsurprising given the robust task employed that the BOLD

response was well characterized by a simple boxcar model and that this

showed the strongest activations in the motor network. However,

single-trial variability in BOLD and gamma ERS response amplitudes

was well coupled in the somatosensory network. This finding supports

previous work showing a tight coupling of natural variability in BOLD

and gamma responses in the visual system (Logothetis, 2003; Scheer-

inga et al., 2011) and extends these findings into the sensorimotor

modality. It is likely that the BOLD-gamma coupling was most evident

in the sensory network where the variability to the task was the great-

est and therefore least explained by the boxcar constant main effect.

We hypothesize that a greater amount of response variability was eli-

cited in the somatosensory network than the motor cortex as the sub-

ject’s abduction movements showed such a high level of consistency in

both timing and amplitude (Figure 4), reflecting similar motor output.

However, it is possible that the sensation of finger movement, and

thus the somatosensory input, may have varied depending on what

external surfaces were touched with the finger when subjects’ arms

were slightly cramped for space inside the scanner. While this cannot

be proven with these data, it provides a basis for further investigation.

The lack of significant correlation between the beta ERD and

BOLD responses appears a surprising result given previous reports of

negative beta–BOLD correlations (Ritter, Moosmann, & Villringer,

2009) and the clear beta band responses which we observed (Figure

5b). However, here we considered the variability in the EEG response

which explained variance in the BOLD data in addition to that

explained by a constant amplitude boxcar model. Further inspection of

our data with a fixed effects cluster corrected Z>2.0 group analysis

showed that beta–BOLD correlations were observed in central and

ipsilateral motor cortex, but these did not survive mixed effects

Z>2.3. Therefore, it seems that the effect size was too weak for the

beta correlation to arise in our data sample. Beta ERD is widely

observed during preparation and execution of movements (Engel and

Fries, 2010; Ritter et al., 2009; Zaepffel, Trachel, Kilavik, & Brochier,

2013); however, there is a sparsity of evidence directly linking parame-

ters of the beta ERD amplitude to the quality of motor performance,

leaving much still to be understood concerning beta oscillations precise

functional role (Engel and Fries, 2010; Kilavik, Zaepffel, Brovelli,

MacKay, & Riehle, 2013; Pogosyan, Gaynor, Eusebio, & Brown, 2009).

Given the beta ERD has been considered to be a simple gating mecha-

nism (Fry et al., 2016; Stevenson, Brookes, & Morris, 2011) required to

allow neuronal activity involved in task execution to take place in other

—typically higher—frequency bands, it is conceivable that the amplitude

variability of the ERD is less related to the task performance and

reflects more of a binarized signal to permit the necessary activation.

In conclusion, we show that EEG can be safely acquired concur-

rently with GE-EPI MB-fMRI data and allows the investigation of neu-

ronal and hemodynamic task responses with high spatial, temporal, and

spectral resolution. We use a simple motor task in this work to show

that tight gamma-BOLD coupling is observed on an individual trial

basis, agreeing with previous invasive recordings in both animal and

human visual/auditory cortex. In the future, such methodologies that

allow detailed integration of a wide frequency range of neural signals

may be used to build a more complete understanding of pathways of

feedforward and feedback neural communication and of how such sig-

nals contribute to neurovascular coupling mechanisms and the genera-

tion of the hemodynamic response.

ACKNOWLEDGMENTS

The authors thank the Birmingham Nottingham Strategic Collabora-

tion Fund for supporting this work and MU and a University of Not-

tingham Anne McLaren Fellowship for funding KJM and a University

of Birmingham Fellowship for funding SDM.

ORCID

Karen J. Mullinger http://orcid.org/0000-0002-8164-0274

REFERENCES

Auerbach, E. J., Xu, J., Yacoub, E., Moeller, S., & Ugurbil, K. (2013). Multi-

band accelerated spin-echo echo planar imaging with reduced peak

RF power using time-shifted RF pulses. Magnetic Resonance in Medi-

cine, 69, 1261–1267. https://doi.org/10.1002/mrm.24719

Bagshaw, A. P., Aghakhani, Y., B�enar, C. G., Kobayashi, E., Hawco, C.,

Dubeau, F., . . . Gotman, J. (2004). EEG-fMRI of focal epileptic spikes:

Analysis with multiple haemodynamic functions and comparison with

gadolinium-enhanced MR angiograms. Human Brain Mapping, 22,

179–192. https://doi.org/10.1002/hbm.20024

Ball, T., Demandt, E., Mutschler, I., Neitzel, E., Mehring, C., Vogt, K., . . .

Schulze-Bonhage, A. (2008). Movement related activity in the high

UJI ET AL. | 1683

http://orcid.org/0000-0002-8164-0274
https://doi.org/10.1002/mrm.24719
https://doi.org/10.1002/hbm.20024


gamma range of the human EEG. NeuroImage, 41, 302–310. https://
doi.org/10.1016/j.neuroimage.2008.02.032

Bauer, M., Oostenveld, R., Peeters, M., & Fries, P. (2006). Tactile spatial

attention enhances gamma-band activity in somatosensory cortex

and reduces low-frequency activity in parieto-occipital areas. Journal

of Neuroscience, 26, 490–501. https://doi.org/10.1523/JNEUROSCI.

5228-04.2006

Becker, R., Reinacher, M., Freyer, F., Villringer, A., & Ritter, P. (2011).

How ongoing neuronal oscillations account for evoked fMRI variabili-

ty. The Journal of Neuroscience, 31, 11016–11027. https://doi.org/10.
1523/jneurosci.0210-11.2011

B�enar, C. G., Sch€on, D., Grimault, S., Nazarian, B., Burle, B., Roth, M., . . .

Anton, J. L. (2007). Single-trial analysis of oddball event-related

potentials in simultaneous EEG-fMRI. Human Brain Mapping, 28,

602–613. https://doi.org/10.1002/hbm.20289

Boorman, L., Harris, S., Bruyns-Haylett, M., Kennerley, A., Zheng, Y., Mar-

tin, C., . . . Berwick, J. (2015). Long-latency reductions in gamma

power predict hemodynamic changes that underlie the negative

BOLD signal. Journal of Neuroscience, 35, 4641–4656. https://doi.

org/10.1523/JNEUROSCI.2339-14.2015

Boyacio�glu, R., Schulz, J., Koopmans, P. J., Barth, M., & Norris, D. G.

(2015). Improved sensitivity and specificity for resting state and task

fMRI with multiband multi-echo EPI compared to multi-echo EPI at

7T. NeuroImage, 119, 352–361. https://doi.org/10.1016/j.neuro-

image.2015.06.089

Brookes, M. J., Mullinger, K. J., Stevenson, C. M., Morris, P. G., & Bowtell, R.

(2008). Simultaneous EEG source localisation and artifact rejection

during concurrent fMRI by means of spatial filtering. NeuroImage, 40,

1090–1104. https://doi.org/10.1016/j.neuroimage.2007.12.030

Brookes, M. J., Vrba, J., Mullinger, K. J., Geirsdottir, G. B., Yan, W. X., Ste-

venson, C. M., . . .Morris, P. G. (2009). Source localisation in concurrent

EEG/fMRI: Applications at 7T. NeuroImage, 45, 440–452. https://doi.
org/S1053-8119(08)01160-9 [pii] 10.1016/j.neuroimage.2008.10.047

Brown, P., Salenius, S., Rothwell, J. C., & Hari, R. (1998). Cortical corre-

late of the piper rhythm in humans. Journal of Neurophysiology, 80,

2911–2917.

Buschman, T. J., & Miller, E. K. (2007). Top-down versus bottom-up con-

trol of attention in the prefrontal and posterior parietal cortices. Sci-

ence, 315, 1860–1862. https://doi.org/10.1126/science.1138071

Buzsaki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical net-

works. Science (New York, N.Y.), 304, 1926–1929. https://doi.org/10.
1126/science.1099745

Carmichael, D. W., Thornton, J. S., Rodionov, R., Thornton, R., McEvoy,

A., Allen, P. J., & Lemieux, L. (2008). Safety of localizing epilepsy

monitoring intracranial electroencephalograph electrodes using MRI:

Radiofrequency-induced heating. Journal of Magnetic Resonance Imag-

ing, 28, 1233–1244. https://doi.org/10.1002/jmri.21583

Castelhano, J., Duarte, I. C., Wibral, M., Rodriguez, E., & Castelo-Branco, M.

(2014). The dual facet of gamma oscillations: Separate visual and deci-

sion making circuits as revealed by simultaneous EEG/fMRI. Human

Brain Mapping, 35, 5219–5235. https://doi.org/10.1002/hbm.22545

Chen, L., Vu, A. T., Xu, J., Moeller, S., Ugurbil, K., Yacoub, E., & Feinberg,

D. A. (2015). Evaluation of highly accelerated simultaneous multi-

slice EPI for fMRI. NeuroImage, 104, 452–459. https://doi.org/10.

1016/j.neuroimage.2014.10.027

Cheyne, D., Bells, S., Ferrari, P., Gaetz, W., & Bostan, A. C. (2008). Self-

paced movements induce high-frequency gamma oscillations in pri-

mary motor cortex. NeuroImage, 42, 332–342. https://doi.org/10.

1016/j.neuroimage.2008.04.178

Cheyne, D., & Ferrari, P. (2013). MEG studies of motor cortex gamma

oscillations: Evidence for a gamma “fingerprint” in the brain? Frontiers

in Human Neuroscience, 7, 1–7, https://doi.org/10.3389/fnhum.2013.

00575

Cheyne, D. O. (2013). MEG studies of sensorimotor rhythms: A review. Experi-

mental Neurology, https://doi.org/10.1016/j.expneurol.2012.08.030

Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen,

O., . . . Moser, E. I. (2009). Frequency of gamma oscillations routes

flow of information in the hippocampus. Nature, 462, 353–357.
https://doi.org/10.1038/nature08573

Collins, C. M., & Wang, Z. (2011). Calculation of radiofrequency electromag-

netic fields and their effects in MRI of human subjects. Magnetic Reso-

nance in Medicine, 65, 1470–1482. https://doi.org/10.1002/mrm.22845

Crone, N. E., Miglioretti, D. L., Gordon, B., & Lesser, R. P. (1998). Func-

tional mapping of human sensorimotor cortex with electrocortico-

graphic spectral analysis II. Event-related synchronization in the

gamma band. Brain, 121, 2301–2315. https://doi.org/10.1093/brain/
121.12.2301

Darvas, F., Rao, R. P. N., & Murias, M. (2013). Localized high gamma

motor oscillations respond to perceived biologic motion. Journal of

Clinical Neurophysiology, 30, 299–307. https://doi.org/10.1097/WNP.

0b013e3182872f40

Darvas, F., Scherer, R., Ojemann, J. G., Rao, R. P., Miller, K. J., & Soren-

sen, L. B. (2010). High gamma mapping using EEG. NeuroImage, 49,

930–938. https://doi.org/10.1016/j.neuroimage.2009.08.041

De Martino, F., Moerel, M., Xu, J., Van De Moortele, P. F., Ugurbil, K.,

Goebel, R., . . . Formisano, E. (2015). High-resolution mapping of mye-

loarchitecture in vivo: Localization of auditory areas in the human

brain. Cerebral Cortex, 25, 3394–3405. https://doi.org/10.1093/cer-
cor/bhu150

Debener, S., Ullsperger, M., Siegel, M., & Engel, A. K. (2006). Single-trial

EEG-fMRI reveals the dynamics of cognitive function. Trends in Cognitive

Sciences, 10, 558–563. https://doi.org/10.1016/j.tics.2006.09.010

Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D. Y., &

Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroence-

phalogram and functional magnetic resonance imaging identifies the

dynamics of performance monitoring. Journal of Neuroscience, 25,

11730–11737. https://doi.org/10.1523/JNEUROSCI.3286-05.2005

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for

analysis of single-trial EEG dynamics including independent compo-

nent analysis. Journal of Neuroscience Methods, 134, 9–21. https://

doi.org/10.1016/j.jneumeth.2003.10.009 S0165027003003479 [pii]

Eichele, T., Calhoun, V. D., Moosmann, M., Specht, K., Jongsma, M. L. A.,

Quiroga, R. Q., . . . Hugdahl, K. (2008). Unmixing concurrent EEG-

fMRI with parallel independent component analysis. International

Journal of Psychophysiology, 67, 222–234. https://doi.org/10.1016/j.
ijpsycho.2007.04.010

Eichele, T., Specht, K., Moosmann, M., Jongsma, M. L. A., Quiroga, R. Q.,

Nordby, H., & Hugdahl, K. (2005). Assessing the spatiotemporal evo-

lution of neuronal activation with single-trial event-related potentials

and functional MRI. Proceedings of the National Academy of Sciences

of the United States of America, 102, 17798–17803. https://doi.org/
10.1073/pnas.0505508102

Engel, A. K., & Fries, P. (2010). Beta-band oscillations-signalling the sta-

tus quo? Current Opinion in Neurobiology, https://doi.org/10.1016/j.

conb.2010.02.015

Feinberg, D. A., Moeller, S., Smith, S. M., Auerbach, E., Ramanna, S.,

Gunther, M., . . . Yacoub, E. (2010). Multiplexed echo planar imaging

for sub-second whole brain FMRI and fast diffusion imaging. PLoS

One, 5, e15710. https://doi.org/10.1371/journal.pone.0015710

Feinberg, D. A., & Setsompop, K. (2013). Ultra-fast MRI of the human

brain with simultaneous multi-slice imaging. Journal of Magnetic Reso-

nance, https://doi.org/10.1016/j.jmr.2013.02.002

1684 | UJI ET AL.

https://doi.org/10.1016/j.neuroimage.2008.02.032
https://doi.org/10.1016/j.neuroimage.2008.02.032
https://doi.org/10.1523/JNEUROSCI.5228-04.2006
https://doi.org/10.1523/JNEUROSCI.5228-04.2006
https://doi.org/10.1523/jneurosci.0210-11.2011
https://doi.org/10.1523/jneurosci.0210-11.2011
https://doi.org/10.1002/hbm.20289
https://doi.org/10.1523/JNEUROSCI.2339-14.2015
https://doi.org/10.1523/JNEUROSCI.2339-14.2015
https://doi.org/10.1016/j.neuroimage.2015.06.089
https://doi.org/10.1016/j.neuroimage.2015.06.089
https://doi.org/10.1016/j.neuroimage.2007.12.030
https://doi.org/S1053-8119(08)01160-9
https://doi.org/S1053-8119(08)01160-9
https://doi.org/10.1126/science.1138071
https://doi.org/10.1126/science.1099745
https://doi.org/10.1126/science.1099745
https://doi.org/10.1002/jmri.21583
https://doi.org/10.1002/hbm.22545
https://doi.org/10.1016/j.neuroimage.2014.10.027
https://doi.org/10.1016/j.neuroimage.2014.10.027
https://doi.org/10.1016/j.neuroimage.2008.04.178
https://doi.org/10.1016/j.neuroimage.2008.04.178
https://doi.org/10.3389/fnhum.2013.00575
https://doi.org/10.3389/fnhum.2013.00575
https://doi.org/10.1016/j.expneurol.2012.08.030
https://doi.org/10.1038/nature08573
https://doi.org/10.1002/mrm.22845
https://doi.org/10.1093/brain/121.12.2301
https://doi.org/10.1093/brain/121.12.2301
https://doi.org/10.1097/WNP.0b013e3182872f40
https://doi.org/10.1097/WNP.0b013e3182872f40
https://doi.org/10.1016/j.neuroimage.2009.08.041
https://doi.org/10.1093/cercor/bhu150
https://doi.org/10.1093/cercor/bhu150
https://doi.org/10.1016/j.tics.2006.09.010
https://doi.org/10.1523/JNEUROSCI.3286-05.2005
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.ijpsycho.2007.04.010
https://doi.org/10.1016/j.ijpsycho.2007.04.010
https://doi.org/10.1073/pnas.0505508102
https://doi.org/10.1073/pnas.0505508102
https://doi.org/10.1016/j.conb.2010.02.015
https://doi.org/10.1016/j.conb.2010.02.015
https://doi.org/10.1371/journal.pone.0015710
https://doi.org/10.1016/j.jmr.2013.02.002


Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C. E., &

Fernandez, G. (2001). Human memory formation is accompanied by

rhinal-hippocampal coupling and decoupling. Nature Neuroscience, 4,

1259–1264. https://doi.org/10.1038/nn759

Foged, M. T., Lindberg, U., Vakamudi, K., Larsson, H. B. W., Pinborg, L.

H., Kj~nr, T. W., . . . Posse, S. (2017). Safety and EEG data quality of

concurrent high-density EEG and high-speed fMRI at 3 Tesla. PLoS

One, 12, https://doi.org/10.1371/journal.pone.0178409

Freyer, F., Becker, R., Anami, K., Curio, G., Villringer, A., & Ritter, P.

(2009). Ultrahigh-frequency EEG during fMRI: Pushing the limits of

imaging-artifact correction. NeuroImage, 48, 94–108. https://doi.org/
10.1016/j.neuroimage.2009.06.022

Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental

process in cortical computation. Annual Review of Neuroscience, 32,

209–224. https://doi.org/10.1146/annurev.neuro.051508.135603

Fry, A., Mullinger, K. J., O’neill, G. C., Barratt, E. L., Morris, P. G., Bauer,

M., . . . Brookes, M. J. (2016). Modulation of post-movement beta

rebound by contraction force and rate of force development. Human

Brain Mapping, 37, 2493–2511. https://doi.org/10.1002/hbm.23189

Gaetz, W., MacDonald, M., Cheyne, D., & Snead, O. C. (2010). Neuro-

magnetic imaging of movement-related cortical oscillations in children

and adults: Age predicts post-movement beta rebound. NeuroImage,

51, 792–807. https://doi.org/10.1016/j.neuroimage.2010.01.077

Glover, G. H., Li, T. Q., & Ress, D. (1999). Image-based method for retro-

spective correction of physiological motion effects in fMRI: RETROI-

COR. Magnetic Resonance in Medicine, 44(1), 162–167. https://doi.

org/10.1002/mrm.1522-2594(200007)44

Goldman, R. I., Stern, J. M., Engel Jerome, J., & Cohen, M. S. (2002).

Simultaneous EEG and fMRI of the alpha rhythm. NeuroReport, 13,

2487–2492. https://doi.org/10.1097/01.wnr.0000047685.08940.d0

Goldman, R. I., Wei, C. Y., Philiastides, M. G., Gerson, A. D., Friedman, D.,

Brown, T. R., & Sajda, P. (2009). Single-trial discrimination for integrat-

ing simultaneous EEG and fMRI: Identifying cortical areas contributing

to trial-to-trial variability in the auditory oddball task. NeuroImage, 47,

136–147. https://doi.org/10.1016/j.neuroimage.2009.03.062

Green, J. J., Boehler, C. N., Roberts, K. C., Chen, L.-C., Krebs, R. M.,

Song, A. W., & Woldorff, M. G. (2017). Cortical and subcortical coor-

dination of visual spatial attention revealed by simultaneous EEG–
fMRI recording. The Journal of Neuroscience, 37, 7803–7810. https://
doi.org/10.1523/JNEUROSCI.0326-17.2017

Hall, S. D., Holliday, I. E., Hillebrand, A., Singh, K. D., Furlong, P. L., Hadji-

papas, A., & Barnes, G. R. (2005). The missing link: Analogous human

and primate cortical gamma oscillations. NeuroImage, 26, 13–17.
https://doi.org/10.1016/j.neuroimage.2005.01.009

Heidemann, R. M., Ivanov, D., Trampel, R., Fasano, F., Meyer, H.,

Pfeuffer, J., & Turner, R. (2012). Isotropic submillimeter fMRI in the

human brain at 7 T: Combining reduced field-of-view imaging and

partially parallel acquisitions. Magnetic Resonance in Medicine, 68,

1506–1516. https://doi.org/10.1002/mrm.24156

Hermes, D., Miller, K. J., Wandell, B. A., & Winawer, J. (2014). Stimulus

dependence of gamma oscillations in human visual cortex. Cerebral

Cortex, 1–9. https://doi.org/10.1093/cercor/bhu091

Hillebrand, A., & Barnes, G. R. (2005). Beamformer analysis of MEG data.

International Review of Neurobiology, https://doi.org/10.1016/S0074-

7742(05)68, 006-3

Hoogenboom, N., Schoffelen, J. M., Oostenveld, R., & Fries, P. (2010).

Visually induced gamma-band activity predicts speed of change

detection in humans. NeuroImage, 51, 1162–1167. https://doi.org/

10.1016/j.neuroimage.2010.03.041

Hoogenboom, N., Schoffelen, J. M., Oostenveld, R., Parkes, L. M., &

Fries, P. (2006). Localizing human visual gamma-band activity in

frequency, time and space. NeuroImage, 29, 764–773. https://doi.

org/10.1016/j.neuroimage.2005.08.043

Horovitz, S. G., Fukunaga, M., De Zwart, J. A., Van Gelderen, P., Fulton, S.

C., Balkin, T. J., & Duyn, J. H. (2008). Low frequency BOLD fluctuations

during resting wakefulness and light sleep: A simultaneous EEG-fMRI

study. Human Brain Mapping, 29, 671–682. https://doi.org/10.1002/
hbm.20428

Howard, M. W., Rizzuto, D. S., Caplan, J. B., Madsen, J. R., Lisman, J.,

Aschenbrenner-Scheibe, R., . . . Kahana, M. J. (2003). Gamma oscilla-

tions correlate with working memory load in humans. Cerebral Cortex,

13, 1369–1374. https://doi.org/10.1093/cercor/bhg084

Huster, R. J., Debener, S., Eichele, T., & Herrmann, C. S. (2012). Methods

for simultaneous EEG-fMRI: An introductory review. The Journal of

Neuroscience, 32, 6053–6060. https://doi.org/10.1523/JNEUROSCI.

0447-12.2012

Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., &

Sejnowski, T. J. (2000). Removal of eye activity artifacts from visual

event-related potentials in normal and clinical subjects. Clinical

Neurophysiology, 111, 1745–1758. https://doi.org/S1388-2457(00)

00386-2 [pii]

Jurkiewicz, M. T., Gaetz, W., Bostan, A. C., & Cheyne, D. (2006). Post-

movement beta rebound is generated in motor cortex: Evidence from

neuromagnetic recordings. NeuroImage, 32, 1281–1289.

Kilavik, B. E., Zaepffel, M., Brovelli, A., MacKay, W. A., & Riehle, A.

(2013). The ups and downs of beta oscillations in sensorimotor cor-

tex. Experimental Neurology, https://doi.org/10.1016/j.expneurol.

2012.09.014

Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Prei-

bisch, C., & Krakow, K. (2003). EEG-correlated fMRI of human alpha

activity. NeuroImage, 19, 1463–1476.

Leicht, G., Vauth, S., Polomac, N., Andreou, C., Rauh, J., Mu??Mann, M., . . .

Mulert, C. (2016). EEG-informed fMRI reveals a disturbed gamma-

band-specific network in subjects at high risk for psychosis. Schizophrenia

Bulletin, 42, 239–249. https://doi.org/10.1093/schbul/sbv092

Logothetis, N. K. (2008). What we can do and what we cannot do with

fMRI. Nature, 453, 869–878. https://doi.org/10.1038/nature06976

Logothetis, N. K. (2003). The underpinnings of the BOLD functional

magnetic resonance imaging signal. The Journal of Neuroscience, 23,

3963–3971.

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A.

(2001). Neurophysiological investigation of the basis of the fMRI

signal. Nature, 412, 150–157. https://doi.org/10.1038/35084005

Magri, C., Schridde, U., Murayama, Y., Panzeri, S., & Logothetis, N. K.

(2012). The amplitude and timing of the BOLD signal reflects the

relationship between local field potential power at different frequen-

cies. Journal of Neuroscience, 32, 1395–1407. https://doi.org/32/4/

1395 [pii] 10.1523/JNEUROSCI.3985-11.2012

Mandelkow, H., Halder, P., Boesiger, P., & Brandeis, D. (2006). Synchro-

nization facilitates removal of MRI artefacts from concurrent EEG

recordings and increases usable bandwidth. NeuroImage, 32, 1120–

1126. https://doi.org/10.1016/j.neuroimage.2006.04.231

Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M.

(2007). Electrophysiological signatures of resting state networks in

the human brain. Proceedings of the National Academy of Sciences of

the United States of America, 104, 13170–13175. https://doi.org/10.

1073/pnas.0700668104

Mayhew, S. D., Dirckx, S. G., Niazy, R. K., Iannetti, G. D., & Wise, R. G.

(2010). EEG signatures of auditory activity correlate with simultane-

ously recorded fMRI responses in humans. NeuroImage, 49, 849–864.
https://doi.org/10.1016/j.neuroimage.2009.06.080

UJI ET AL. | 1685

https://doi.org/10.1038/nn759
https://doi.org/10.1371/journal.pone.0178409
https://doi.org/10.1016/j.neuroimage.2009.06.022
https://doi.org/10.1016/j.neuroimage.2009.06.022
https://doi.org/10.1146/annurev.neuro.051508.135603
https://doi.org/10.1002/hbm.23189
https://doi.org/10.1016/j.neuroimage.2010.01.077
https://doi.org/10.1002/mrm.1522-2594(200007)44
https://doi.org/10.1002/mrm.1522-2594(200007)44
https://doi.org/10.1097/01.wnr.0000047685.08940.d0
https://doi.org/10.1016/j.neuroimage.2009.03.062
https://doi.org/10.1523/JNEUROSCI.0326-17.2017
https://doi.org/10.1523/JNEUROSCI.0326-17.2017
https://doi.org/10.1016/j.neuroimage.2005.01.009
https://doi.org/10.1002/mrm.24156
https://doi.org/10.1093/cercor/bhu091
https://doi.org/10.1016/S0074-7742(05)
https://doi.org/10.1016/S0074-7742(05)
https://doi.org/10.1016/j.neuroimage.2010.03.041
https://doi.org/10.1016/j.neuroimage.2010.03.041
https://doi.org/10.1016/j.neuroimage.2005.08.043
https://doi.org/10.1016/j.neuroimage.2005.08.043
https://doi.org/10.1002/hbm.20428
https://doi.org/10.1002/hbm.20428
https://doi.org/10.1093/cercor/bhg084
https://doi.org/10.1523/JNEUROSCI.0447-12.2012
https://doi.org/10.1523/JNEUROSCI.0447-12.2012
https://doi.org/S1388-2457(00)00386-2
https://doi.org/S1388-2457(00)00386-2
https://doi.org/10.1016/j.expneurol.2012.09.014
https://doi.org/10.1016/j.expneurol.2012.09.014
https://doi.org/10.1093/schbul/sbv092
https://doi.org/10.1038/nature06976
https://doi.org/10.1038/35084005
https://doi.org/32/4/1395
https://doi.org/32/4/1395
https://doi.org/10.1016/j.neuroimage.2006.04.231
https://doi.org/10.1073/pnas.0700668104
https://doi.org/10.1073/pnas.0700668104
https://doi.org/10.1016/j.neuroimage.2009.06.080


Mayhew, S. D., Li, S., & Kourtzi, Z. (2012). Learning acts on distinct proc-

esses for visual form perception in the human brain. The Journal of

Neuroscience, 32, 775–786. https://doi.org/10.1523/JNEUROSCI.

2033-11.2012

Mayhew, S. D., Ostwald, D., Porcaro, C., & Bagshaw, A. P. (2013). Spon-

taneous EEG alpha oscillation interacts with positive and negative

BOLD responses in the visual-auditory cortices and default-mode

network. NeuroImage, 76, 362–372. https://doi.org/10.1016/j.neuro-
image.2013.02.070

Maziero, D., Velasco, T. R., Hunt, N., Payne, E., Lemieux, L., Salmon, C. E.

G., & Carmichael, D. W. (2016). Towards motion insensitive EEG-

fMRI: Correcting motion-induced voltages and gradient artefact insta-

bility in EEG using an fMRI prospective motion correction (PMC) sys-

tem. NeuroImage, 138, 13–27. https://doi.org/10.1016/j.neuroimage.

2016.05.003

Medicines and Healthcare Products Regulatory Agency (2015). Safety

guidelines for magnetic resonance imaging equipment in clinical use.

Michels, L., Bucher, K., L€uchinger, R., Klaver, P., Martin, E., Jeanmonod,

D., & Brandeis, D. (2010). Simultaneous EEG-fMRI during a working

memory task: Modulations in low and high frequency bands. PLoS

One, 5, 1–15. https://doi.org/10.1371/journal.pone.0010298

Miller, K. J., Leuthardt, E. C., Schalk, G., Rao, R. P. N., Anderson, N. R.,

Moran, D. W., . . . Ojemann, J. G. (2007). Spectral changes in cortical

surface potentials during motor movement. Journal of Neuroscience,

27, 2424–2432. https://doi.org/10.1523/JNEUROSCI.3886-06.2007

Mobascher, A., Brinkmeyer, J., Warbrick, T., Musso, F., Wittsack, H. J.,

Saleh, A., . . . Winterer, G. (2009). Laser-evoked potential P2 single-

trial amplitudes covary with the fMRI BOLD response in the medial

pain system and interconnected subcortical structures. NeuroImage,

45, 917–926. https://doi.org/10.1016/j.neuroimage.2008.12.051

Moeller, S., Yacoub, E., Olman, C. A., Auerbach, E., Strupp, J., Harel, N., &

Ugurbil, K. (2010). Multiband multislice GE-EPI at 7 Tesla, with 16-

fold acceleration using partial parallel imaging with application to

high spatial and temporal whole-brain fMRI. Magnetic Resonance in

Medicine, 63, 1144–1153. https://doi.org/10.1002/mrm.22361

Moosmann, M., Sch€onfelder, V. H., Specht, K., Scheeringa, R., Nordby,

H., & Hugdahl, K. (2009). Realignment parameter-informed artefact

correction for simultaneous EEG-fMRI recordings. NeuroImage, 45,

1144–1150. https://doi.org/10.1016/j.neuroimage.2009.01.024

Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., & Malach, R.

(2005). Coupling between neuronal firing, field potentials, and FMRI

in human auditory cortex. Science (New York, N.Y.), 309, 951–954.
https://doi.org/10.1126/science.1110913

Mulert, C., Leicht, G., Hepp, P., Kirsch, V., Karch, S., Pogarell, O., . . .

McCarley, R. W. (2010). Single-trial coupling of the gamma-band

response and the corresponding BOLD signal. NeuroImage, 49, 2238–
2247. https://doi.org/10.1016/j.neuroimage.2009.10.058

Mullinger, K. J., & Bowtell, R. (2011). Combining EEG and FMRI. Methods

in Molecular Biology (Clifton, N.J.), 711, 303–326.

Mullinger, K. J., Debener, S., Coxon, R., & Bowtell, R. (2008a). Effects of

simultaneous EEG recording on MRI data quality at 1.5, 3 and 7

tesla. International Journal of Psychophysiology, 67, 178–188. https://
doi.org/10.1016/j.ijpsycho.2007.06.008

Mullinger, K. J., Mayhew, S. D., Bagshaw, A. P., Bowtell, R., & Francis, S.

T. (2014). Evidence that the negative BOLD response is neuronal in

origin: A simultaneous EEG-BOLD-CBF study in humans. NeuroImage,

94, 263–274.

Mullinger, K. J., Mayhew, S. D., Bagshaw, A. P., Bowtell, R., & Francis, S.

T. (2013). Poststimulus undershoots in cerebral blood flow and

BOLD fMRI responses are modulated by poststimulus neuronal activ-

ity. Proceedings of the National Academy of Sciences of the United

States of America, 110, 13636–13641. https://doi.org/10.1073/pnas.
1221287110

Mullinger, K. J., Morgan, P. S., & Bowtell, R. W. (2008b). Improved arti-

fact correction for combined electroencephalography/functional MRI

by means of synchronization and use of vectorcardiogram recordings.

Journal of Magnetic Resonance Imaging, 27, 607–616. https://doi.org/
10.1002/jmri.21277

Mullinger, K. J., Yan, W. X., & Bowtell, R. (2011). Reducing the gradient

artefact in simultaneous EEG-fMRI by adjusting the subject’s axial

position. NeuroImage, 54, 1942–1950. https://doi.org/S1053-8119

(10)01281-4 [pii] 10.1016/j.neuroimage.2010.09.079

Murta, T., Hu, L., Tierney, T. M., Chaudhary, U. J., Walker, M. C., Carmi-

chael, D. W., . . . Lemieux, L. (2016). A study of the electro-

haemodynamic coupling using simultaneously acquired intracranial

EEG and fMRI data in humans. NeuroImage, 142, 371–380. https://
doi.org/10.1016/j.neuroimage.2016.08.001

Muthukumaraswamy, S. D. (2013). High-frequency brain activity and muscle

artifacts in MEG/EEG: A review and recommendations. Frontiers in Human

Neuroscience, 7, 1–11. https://doi.org/10.3389/fnhum.2013.00138

Muthukumaraswamy, S. D. (2010). Functional properties of human pri-

mary motor cortex gamma oscillations. Journal of Neurophysiology,

104, 2873–2885. https://doi.org/10.1152/jn.00607.2010

Muthukumaraswamy, S. D., Edden, R. A. E., Jones, D. K., Swettenham, J.

B., & Singh, K. D. (2009). Resting GABA concentration predicts peak

gamma frequency and fMRI amplitude in response to visual stimula-

tion in humans. Proceedings of the National Academy of Sciences of the

United States of America, 106, 8356–8361. https://doi.org/10.1073/
pnas.0900728106

Muthukumaraswamy, S. D., & Singh, K. D. (2013). Visual gamma oscilla-

tions: The effects of stimulus type, visual field coverage and stimulus

motion on MEG and EEG recordings. NeuroImage, 69, 223–230.
https://doi.org/10.1016/j.neuroimage.2012.12.038

Muthukumaraswamy, S. D., Singh, K. D., Swettenham, J. B., & Jones, D.

K. (2010). Visual gamma oscillations and evoked responses: Variabili-

ty, repeatability and structural MRI correlates. NeuroImage, 49, 3349–
3357. https://doi.org/10.1016/j.neuroimage.2009.11.045

Niessing, J., Ebisch, B., Schmidt, K., Niessing, M., Singer, W., & Galuske,

R. (2005). Hemodynamic signals correlate tightly with synchronized

gamma oscillations. Science (80-.), 309, 948–951. https://doi.org/10.
1126/science.1110948

Nir, Y., Fisch, L., Mukamel, R., Gelbard-Sagiv, H., Arieli, A., Fried, I., &

Malach, R. (2007). Coupling between neuronal firing rate, gamma

LFP, and BOLD fMRI is related to interneuronal correlations. Current

Biology, 17, 1275–1285. https://doi.org/10.1016/j.cub.2007.06.066

Norris, D. G., Koopmans, P. J., Boyacioglu, R., & Barth, M. (2011). Power

independent of number of slices (PINS) radiofrequency pulses for

low-power simultaneous multislice excitation. Magnetic Resonance in

Medicine, 66, 1234–1240. https://doi.org/10.1002/mrm.23152

Novitskiy, N., Ramautar, J. R., Vanderperren, K., De Vos, M., Mennes, M.,

Mijovic, B., . . . Wagemans, J. (2011). The BOLD correlates of the vis-

ual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI

recordings during a spatial detection task. NeuroImage, 54, 824–835.
https://doi.org/10.1016/j.neuroimage.2010.09.041

Olafsson, V., Kundu, P., Wong, E. C., Bandettini, P. A., & Liu, T. T. (2015).

Enhanced identification of BOLD-like components with multi-echo

simultaneous multi-slice (MESMS) fMRI and multi-echo ICA. Neuro-

Image, https://doi.org/10.1016/j.neuroimage.2015.02.052

Olbrich, S., Mulert, C., Karch, S., Trenner, M., Leicht, G., Pogarell, O., &

Hegerl, U. (2009). EEG-vigilance and BOLD effect during simultane-

ous EEG/fMRI measurement. NeuroImage, 45, 319–332. https://doi.
org/10.1016/j.neuroimage.2008.11.014

1686 | UJI ET AL.

https://doi.org/10.1523/JNEUROSCI.2033-11.2012
https://doi.org/10.1523/JNEUROSCI.2033-11.2012
https://doi.org/10.1016/j.neuroimage.2013.02.070
https://doi.org/10.1016/j.neuroimage.2013.02.070
https://doi.org/10.1016/j.neuroimage.2016.05.003
https://doi.org/10.1016/j.neuroimage.2016.05.003
https://doi.org/10.1371/journal.pone.0010298
https://doi.org/10.1523/JNEUROSCI.3886-06.2007
https://doi.org/10.1016/j.neuroimage.2008.12.051
https://doi.org/10.1002/mrm.22361
https://doi.org/10.1016/j.neuroimage.2009.01.024
https://doi.org/10.1126/science.1110913
https://doi.org/10.1016/j.neuroimage.2009.10.058
https://doi.org/10.1016/j.ijpsycho.2007.06.008
https://doi.org/10.1016/j.ijpsycho.2007.06.008
https://doi.org/10.1073/pnas.1221287110
https://doi.org/10.1073/pnas.1221287110
https://doi.org/10.1002/jmri.21277
https://doi.org/10.1002/jmri.21277
https://doi.org/S1053-8119(10)01281-4
https://doi.org/S1053-8119(10)01281-4
https://doi.org/10.1016/j.neuroimage.2016.08.001
https://doi.org/10.1016/j.neuroimage.2016.08.001
https://doi.org/10.3389/fnhum.2013.00138
https://doi.org/10.1152/jn.00607.2010
https://doi.org/10.1073/pnas.0900728106
https://doi.org/10.1073/pnas.0900728106
https://doi.org/10.1016/j.neuroimage.2012.12.038
https://doi.org/10.1016/j.neuroimage.2009.11.045
https://doi.org/10.1126/science.1110948
https://doi.org/10.1126/science.1110948
https://doi.org/10.1016/j.cub.2007.06.066
https://doi.org/10.1002/mrm.23152
https://doi.org/10.1016/j.neuroimage.2010.09.041
https://doi.org/10.1016/j.neuroimage.2015.02.052
https://doi.org/10.1016/j.neuroimage.2008.11.014
https://doi.org/10.1016/j.neuroimage.2008.11.014


Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip:

Open source software for advanced analysis of MEG, EEG, and inva-

sive electrophysiological data. Computational Intelligence and Neuro-

science, 2011, 156869. https://doi.org/10.1155/2011/156869

Pantev, C., Makeig, S., Hoke, M., Galambos, R., Hampson, S., & Gallen, C.

(1991). Human auditory evoked gamma-band magnetic fields. Pro-

ceedings of the National Academy of Sciences of the United States of

America, 88, 8996–9000. https://doi.org/10.1073/pnas.88.20.8996

Pogosyan, A., Gaynor, L. D., Eusebio, A., & Brown, P. (2009). Boosting corti-

cal activity at beta-band frequencies slows movement in humans. Current

Biology, 19, 1637–1641. https://doi.org/10.1016/j.cub.2009.07.074

Ritter, P., Becker, R., Graefe, C., & Villringer, A. (2007). Evaluating gradi-

ent artifact correction of EEG data acquired simultaneously with

fMRI. Magnetic Resonance Imaging, 25, 923–932. https://doi.org/10.
1016/j.mri.2007.03.005

Ritter, P., Moosmann, M., & Villringer, A. (2009). Rolandic alpha and beta

EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in

primary somatosensory and motor cortex. Human Brain Mapping, 30,

1168–1187. https://doi.org/10.1002/hbm.20585

Robinson, S. E., & Vrba, J. (1999). Functional neuroimaging by synthetic

aperture magnetometry (SAM). Recent Advances in Biomagnetism,

302–305.

Rosa, M. J., Kilner, J., Blankenburg, F., Josephs, O., & Penny, W. (2010).

Estimating the transfer function from neuronal activity to BOLD

using simultaneous EEG-fMRI. NeuroImage, 49, 1496–1509. https://
doi.org/10.1016/j.neuroimage.2009.09.011

Schadow, J., Lenz, D., Dettler, N., Fr€und, I., & Herrmann, C. S. (2009).

NeuroImage Early gamma-band responses re fl ect anticipatory top-

down modulation in the auditory cortex. NeuroImage, 47, 651–658.
https://doi.org/10.1016/j.neuroimage.2009.04.074

Scheeringa, R., Fries, P., Petersson, K.-M., Oostenveld, R., Grothe, I., Nor-

ris, D. G., . . . Bastiaansen, M. C. M. (2011). Neuronal dynamics under-

lying high- and low-frequency EEG oscillations contribute

independently to the human BOLD signal. Neuron, 69, 572–583.
https://doi.org/10.1016/j.neuron.2010.11.044

Scheibe, C., Ullsperger, M., Sommer, W., & Heekeren, H. R. (2010).

Effects of parametrical and trial-to-trial variation in prior probability

processing revealed by simultaneous electroencephalogram/func-

tional magnetic resonance imaging. Journal of Neuroscience, 30,

16709–16717. https://doi.org/30/49/16709 [pii] 10.1523/JNEURO-

SCI.3949-09.2010

Schoffelen, J., Oostenveld, R., & Fries, P. (2005). Neuronal coherence as

a mechanism of effective corticospinal interaction. Science, 308, 111–
113. https://doi.org/10.1126/science.1107027

Scholvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H., & Leopold, D. A.

(2010). Neural basis of global resting-state fMRI activity. Proceedings

of the National Academy of Sciences of the United States of America,

107, 10238–10243. https://doi.org/0913110107 [pii] 10.1073/

pnas.0913110107

Singer, W., & Gray, C. M. (1995). Visual feature integration and the tem-

poral correlation hypothesis. Annual Review of Neuroscience, 18, 555–
586. https://doi.org/10.1146/annurev.neuro.18.1.555

Stevenson, C. M., Brookes, M. J., & Morris, P. G. (2011). b-Band corre-

lates of the fMRI BOLD response. Human Brain Mapping, 32, 182–
197. https://doi.org/10.1002/hbm.21016

Sumiyoshi, A., Suzuki, H., Ogawa, T., Riera, J. J., Shimokawa, H., & Kawa-

shima, R. (2012). Coupling between gamma oscillation and fMRI sig-

nal in the rat somatosensory cortex: Its dependence on systemic

physiological parameters. NeuroImage, 60, 738–746. https://doi.org/
10.1016/j.neuroimage.2011.12.082

Todd, N., Moeller, S., Auerbach, E. J., Yacoub, E., Flandin, G., & Weiskopf,

N. (2016). Evaluation of 2D multiband EPI imaging for high-

resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity

and slice leakage artifacts. NeuroImage, 124, 32–42. https://doi.org/
10.1016/j.neuroimage.2015.08.056

van Drongelen, W., Yuchtman, M., Van Veen, B., & van Huffelen, A.

(1996). A spatial filtering technique to detect and localize multiple

sources in the brain. Brain Topography, 9, 39–49.

van Veen, B. D., van Drongelen, W., Yuchtman, M., & Suzuki, A. (1997).

Localization of brain electrical activity via linearly constrained mini-

mum variance spatial filtering. IEEE Transactions on Biomedical Engi-

neering, 44, 867–880. https://doi.org/10.1109/10.623056

Viswanathan, A., & Freeman, R. D. (2007). Neurometabolic coupling in

cerebral cortex reflects synaptic more than spiking activity. Nature

Neuroscience, 10, 1308–1312. https://doi.org/10.1038/nn1977

Winawer, J., Kay, K. N., Foster, B. L., Rauschecker, A. M., Parvizi, J., &

Wandell, B. A. (2013). Asynchronous broadband signals are the prin-

cipal source of the BOLD response in human visual cortex. Current

Biology, 23, 1145–1153. https://doi.org/10.1016/j.cub.2013.05.001

Womelsdorf, T., Fries, P., Mitra, P. P., & Desimone, R. (2006). Gamma-

band synchronization in visual cortex predicts speed of change detec-

tion. Nature, 439, 733–736. https://doi.org/10.1038/nature04258

Wong, E. (2012). Optimized phase schedules for minimizing peak RF

power in simultaneous multi-slice RF excitation pulses, in: Proceed-

ings of the 20th Annual Meeting of ISMRM. Melbourne, Australia, p.

2209.

Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith,

S. M. (2004). Multilevel linear modelling for FMRI group analysis using

Bayesian inference. NeuroImage, 21, 1732–1747. https://doi.org/10.

1016/j.neuroimage.2003.12.023 S1053811903007894 [pii]

Yan, W. X., Mullinger, K. J., Brookes, M. J., & Bowtell, R. (2009). Under-

standing gradient artefacts in simultaneous EEG/fMRI. NeuroImage,

46, 459–471.

Yan, W. X., Mullinger, K. J., Geirsdottir, G. B., & Bowtell, R. (2010). Physi-

cal modeling of pulse artefact sources in simultaneous EEG/fMRI.

Human Brain Mapping, 31, 604–620. https://doi.org/10.1002/hbm.

20891

Zaepffel, M., Trachel, R., Kilavik, B. E., & Brochier, T. (2013). Modulations of

EEG beta power during planning and execution of grasping movements.

PLoS One, 8, 1–10. https://doi.org/10.1371/journal.pone.0060060

Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR

images through a hidden Markov random field model and the

expectation-maximization algorithm. IEEE Transactions on Medical

Imaging, 20, 45–57. https://doi.org/10.1109/42.906424

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Uji M, Wilson R, Francis ST, Mullinger

KJ, Mayhew SD. Exploring the advantages of multiband fMRI

with simultaneous EEG to investigate coupling between gamma

frequency neural activity and the BOLD response in humans.

Hum Brain Mapp. 2018;39:1673–1687. https://doi.org/10.

1002/hbm.23943

UJI ET AL. | 1687

https://doi.org/10.1155/2011/156869
https://doi.org/10.1073/pnas.88.20.8996
https://doi.org/10.1016/j.cub.2009.07.074
https://doi.org/10.1016/j.mri.2007.03.005
https://doi.org/10.1016/j.mri.2007.03.005
https://doi.org/10.1002/hbm.20585
https://doi.org/10.1016/j.neuroimage.2009.09.011
https://doi.org/10.1016/j.neuroimage.2009.09.011
https://doi.org/10.1016/j.neuroimage.2009.04.074
https://doi.org/10.1016/j.neuron.2010.11.044
https://doi.org/30/49/16709
https://doi.org/10.1126/science.1107027
https://doi.org/0913110107
https://doi.org/10.1146/annurev.neuro.18.1.555
https://doi.org/10.1002/hbm.21016
https://doi.org/10.1016/j.neuroimage.2011.12.082
https://doi.org/10.1016/j.neuroimage.2011.12.082
https://doi.org/10.1016/j.neuroimage.2015.08.056
https://doi.org/10.1016/j.neuroimage.2015.08.056
https://doi.org/10.1109/10.623056
https://doi.org/10.1038/nn1977
https://doi.org/10.1016/j.cub.2013.05.001
https://doi.org/10.1038/nature04258
https://doi.org/10.1016/j.neuroimage.2003.12.023
https://doi.org/10.1016/j.neuroimage.2003.12.023
https://doi.org/10.1002/hbm.20891
https://doi.org/10.1002/hbm.20891
https://doi.org/10.1371/journal.pone.0060060
https://doi.org/10.1109/42.906424
https://doi.org/10.1002/hbm.23943
https://doi.org/10.1002/hbm.23943

	l

