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Abstract

Variable temperature electrospray ionization (ESI) is coupled with mass spectrometry techniques 

in order to investigate structural transitions of monoclonal antibody immunoglobulin G (IgG) in a 

100 mM ammonium acetate (pH 7.0) solution from 26 to 70 °C. At 26 °C, the mass spectrum for 

intact IgG shows six charge states +22 to +26. Upon increasing the solution temperature the 

fraction of low-charge states decreases and new, higher-charge state ions are observed. Upon 

analysis it appears that heating the solution aids in desolvation of the intact IgG precursor. Above, 

~50 °C a cleavage event between the light and heavy chains is observed. An analysis of the 

kinetics for this processes at different temperatures yields transition state thermochemistry of ΔH‡ 

= 95 ± 10 kJ·mol−1, ΔS‡ = 8 ± 1 J·mol−1·K−1, and ΔG‡ = 92 ± 11 kJ·mol−1. The mechanism for 

light chain dissociation appears to involve disulfide bond scrambling that ultimately results in a 

non-native Cys199-Cys217 disulfide bond in the light chain product. Above ~70 °C, we are unable 

to produce a stable ESI signal. The loss of signal is ascribed to aggregation that is primarily 

associated with the remaining portion of the antibody after having lost the light chain.

Introduction

The immunoglobulin G antibody (IgG) is a ~147 kDa protein in the immune system that is 

involved in antigen recognition and binding.[1] This molecule is often visualized by the ‘Y’ 

shaped diagram shown in Scheme I. As shown, IgG is comprised of a dimer of heterodimers 

(the heavy and light chains). The heterodimers are linked by two disulfide bonds. The light 

and heavy chains of each heterodimer are bound by a single disulfide bond. Together these 

regions create a highly-specific antigen binding pocket called the FAB portion of the 

molecule that is critical for immune response.[2] In recent years, numerous monoclonal 

antibodies with therapeutic value have been introduced.[3-6] Because of this, an 

understanding of the structures and stabilities of these molecules is of fundamental 

importance.

Although calorimetric studies of antibodies are routinely carried out in the development and 

testing of new therapeutic antibodies these methods provide information about only the 

stability of the ensemble average. That is, the structural change is observed as a two-state 
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cooperative transition, and little is known about the nature of the configurations and 

mechanisms leading to denatured states.[7, 8] In the work presented below, we investigate 

the stability of IgG using a new, variable temperature electrospray ionization (vT-ESI) 

source coupled with mass-spectrometry (MS) measurements.[9, 10] At elevated 

temperatures (above 50 °C) the MS measurements reveal that the light chain of IgG 

dissociates, through a mechanism that involves scrambling of the disulfide bonds, resulting 

in the formation of a light-chain product that adopts non-native Cys199-Cys217 and Cys91-

Cys140 disulfide bonds. From an Arrhenius analysis of the kinetics of dissociation at varying 

temperatures we derive transition state thermochemistry for dissociation process. This 

thermochemistry is discussed.

The present work builds on a number of new MS-based measurements that are being 

developed with the aim of understanding structures and structural transitions of 

biomolecules in solution as well as the gas phase. In the last decade ‘native ESI’ has enabled 

the study of large complexes.[11-16] Analyses of biomolecular conformations from 

solutions of varying composition and temperature now have an extensive history.[17-20] 

Differences in structures found under varying solution conditions can be investigated with a 

range of reaction chemistries and techniques, including: isotopic hydrogen-deuterium (H-D) 

exchange;[21-26] fast photochemical oxidation of proteins;[27-30] chemical cross-

linking[31-33] and other residue-specific modifications;[34, 35] and ion mobility 

measurements.[36-46] Once ionized, an array of physical and chemical methods can be used 

to investigate biomolecular structure in vacuo. These include, low-energy and high-energy 

collisions with buffer gasses[47-52] and surfaces;[53-55] photodissociation techniques;

[56-59] measurements of collision cross sections with many new ion mobility methods;

[60-67] ion-molecule reactions, including proton-transfer[68-71] and H-D exchange 

reactions;[72-75] ion-ion reactions;[76-78] as well as electronic and vibrational 

spectroscopies.[79-82]

Experimental

Variable-temperature electrospray ionization.

The solution temperature of the ESI emitter, is controlled using a home-built variable 

temperature electrospray ionization emitter.[9] This interface holds a borosilicate glass ESI 

emitter which has been pulled to a narrow inner dia. of ~1 to 5 μm using a Flaming/Brown 

P-97 pipette tip puller (Sutter Instruments, Novato, CA, U.S.A.) The emitter interface is 

made of a thermally conductive ceramic block that is resistively-heated using a cartridge 

heater. An ESI voltage of 0.7 to 1.0 kV is applied to a platinum wire that is inserted into the 

back of the emitter, making electrical connection with the solution. The temperature is 

measured (to a precision of ± 0.5 °C) using a K-type thermocouple, that is inserted into the 

ceramic block.

Instrumentation.

Initial experiments were performed on Waters Synapt G2 and remaining kinetics 

experiments were preformed Waters Synapt G2s instrument. Both instruments were used in 

with the source interlocks overridden to accommodate the vT-ESI source.[9, 83] Source 
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pressures and voltages that minimize ion activation were used for initial studies, summarized 

below.[84, 85] Backing pressures were increased to ~ 8 mbar using Speedivalve (Edwards, 

Burgess Hill, UK). Gas control were optimized to minimize ion activation and increase ion 

transmission; including flow rates in the source (20.9 mL/min), trap (10 mL/min), helium 

cell (180 mL/min) and IMS cell (90 mL/min). We additionally optimized and used 

instrument settings; including sampling cone voltage (62 V), extraction cone (1.6 V), source 

temperature (50 °C), cone gas (10 L/h), flow gas (0.6 bar), purge gas (100 L/hr), trap 

collision energy (12.6 collision energy). Finally, TriWave DC voltages were also optimized: 

entrance voltage (3.2 V), bias (45.3 V), trap DC (1.7 V) and exit voltage (1.3 V). We note 

that there are different source configurations between the Synapt G2 and the Synapt G2S 

that can contribute to charge state shifts, presumably due to collisional activation. This may 

be the origin of the charge state shift between the two sets of mass spectra presented. The 

analysis presented below uses only the time-of-flight mass analyzer. That is, the quadrupole 

is fixed to transmit all ions. The data were originally acquired as nested ion mobility mass 

spectra, however only the mass dimension was used for this analysis as there were no 

resolvable changes in drift time distributions for these species.

Analysis of the data.

Each dataset was collected by systematically increasing the temperature from 26 to 70 °C. 

Samples were allowed to incubate at each temperature for at least three minutes. After this 

time the mass spectra recorded at low solution temperatures (26 to 45 °C) do not appear to 

change for an extended period and it appears that we have reached an equilibrium (on this 

timescale). At higher temperatures the antibody dissociates. Kinetics experiments of this 

process were carried out by increasing the temperature to a set point, and then collecting a 

series of three minute acquisitions until spray was lost. Unidec[86] (Oxford, UK) was used 

for deconvolution of native charge state distributions. Data from both experiments were 

exported using TWIM extract (University of Michigan, Ann Arbor, MI) and processed using 

Origin2018 (OriginLab Corporation, Northampton, MA, U.S.A.). Kinetic data were fit using 

a first order reaction rate of formation. Measured rate constants, k, were plotted as a function 

of the temperature in an Arrhenius plot and fit linearly to obtain transition state chemistry.

Sample preparation.

Immunoglobulin G (IgG1, universal antibody standard, human, ≥ 90% purity) was 

purchased from Sigma Aldrich (St. Louis, MO, U.S.A.). IgG (1 mg) was resolubilized in 

100 mM ammonium acetate solution (pH 7.0, 500 μL). Sample was buffer exchanged using 

a spin concentrator (molecular weight cut off = 30,000 Da, 100 to 500 μL × 3, Millipore 

Sigma, Burlington, MA, U.S.A.). IgG was brought to a final concentration of 80 μM in 100 

mM ammonium acetate (Sigma Aldrich, St. Louis, MO, U.S.A).

Results and discussion

Changes in ESI charge state distribution of IgG precursor with temperature.

Figure 1 shows representative mass spectra for intact IgG recorded upon electrospraying a 

100 mM ammonium acetate solution at 28, 32, 42 and 52 °C. At low temperatures (28 to 

42 °C) a narrow distribution of IgG charge states from +22 to +26 and centered at +24 is 
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observed. As the solution temperature is increased beyond this point, a new peak 

corresponding to the +27 species is observed and the +25 and +26 species increase in 

relative abundance. When the peaks in the mass spectrum are examined more carefully (see 

the inset in Figure 1) we find that at low temperatures peaks are broader and extend to higher 

masses. As the solution temperature is increased each charge state becomes noticeably 

shaper and the distribution of charge states changes. From ~28 to 42 °C the abundances of 

the lower-charge state +22 and +23 species decrease with increasing temperature; in this 

same temperature region the populations of +24 through +27 also increase. Above 42 °C, the 

+24 species decreases in abundance and the +25 species is favored. This ion reaches a 

maximum abundance at ~54 °C and decreases above this temperature. The +26 and +27 

continue to increase until ~70 °C, where we no longer maintain a stable ion signal. At this 

temperature, the clear solution becomes turbid due to the formation of insoluble aggregates,

[87, 88] likely originating from IgG unfolding. The slight shift in charge state observed here 

is similar to the that seen when tetrameric concanavalin A is heated, which was coupled to a 

structural change.[89] While we do not observe a change in the collision cross sections for 

IgG, there have been reports that IgG undergoes structural changes between 25 and 70 °C 

under acidic pH.[90, 91] In these cases, highly charged MS peaks emerged at elevated 

temperatures, indicating that the protein had unfolded. We also find that the peaks decrease 

in width at elevated temperatures, suggesting that IgG emerges from hot electrospray 

droplets with fewer species adducted.

High-temperature dissociation of the light chain.

At low temperatures IgG remains stable for long times. We monitored the mass spectra of a 

solution at 45 °C for up to ~15 hours, and it shows no measureable change. At elevated 

temperatures IgG is known to dissociate by loss of the light chain.[92, 93] Figure 2 shows 

mass spectra acquired after incubating solutions at 65 °C for 3, 18 or 42 min. At relatively 

short incubation times (3 min.) the mass spectrum is dominated by peaks associated with the 

IgG precursor. At longer times, (18 min. as shown in Figure 2), the relative abundances of 

the IgG peaks decrease and a new, well-defined set of peaks m/z < 3000 are observed. These 

peaks increase in magnitude with increasing incubation time. The theoretical molecular 

weight of the light chain species is 22,942 Da. Using this value, we determine that the major 

peaks correspond to +9 through +13 charge states of the light chain. Once the charge states 

are assigned our experimental measurement yields m = 22,943 ± 1 Da, in close agreement 

with the theoretical value. It is interesting that we do not observe the complementary 

remaining IgG fragment, which should have m ~ 124 kDa, although aggregation of this 

species is known to occur rapidly.[88, 92]

Mechanism of light chain dissociation.

Before describing the kinetics experiments, we first present a possible mechanism for the 

covalent bond cleavage leading to the release of the light chain species. Dissociation of the 

light chain from the heavy chain must involve cleavage of the Cys217-Cys224 disulfide bond, 

between the two chains (Scheme 1). It is established that during the dissociation of the light 

chain, disulfide bonds can scramble.[92, 94, 95] The precursor IgG antibody used in our 

study has a single free Cys91 residue on each of the light chains. As we think about 

thermodynamic considerations we see that disulfide scrambling upon dissociation of the 
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light chain could stabilize the products. That is, if only the native Cys224-Cys217 bond 

between the heavy and light chains were cleaved, three free, unbound Cys residues would be 

available (Cys224 on the heavy chain, and Cys217 and Cys91 on the light chain). Consider 

one scenario. After the Cys224-Cys217 bond is cleaved the freed light chain might refold and 

in doing so scramble its disulfide bonds in order to stabilize this product. For example, if the 

Cys199-Cys140 disulfide bond were also to cleave, we might form a non-native Cys199-

Cys217 linkage. In this case the newly freed Cys140 residue could form a second disulfide 

bond with the Cys91 residue and the resulting covalent Cys140-Cys91 bond would further 

stabilize the light chain product. With this change, the only free Cys residue is located on the 

heavy chain (Cys224) and the light chain is no longer covalently linked to the heavy chain. 

Overall, this process is a disulfide mixing[96, 97] step with nearby Cys residues both 

making and breaking covalent bonds, a process that has been described previously for light-

chain dissociation from IgG under mildly denaturing conditions.[92, 98-101] It is likely that 

at elevated temperatures a similar disulfide bond scrambling will occur.

With this idea in mind, we carried out studies to identify the location of the non-native 

disulfide bond. After incubation at 65 °C for 90 min. we alkylated the free Cys residues with 

iodoacetimide. The products of antibody dissociation were then proteolytically digested and 

the tryptic peptides that were formed were analyzed using a combination of 

chromatographic separations with MS detection (see supporting information). An analysis of 

the cross-linked peptides provides evidence for the non-native Cys199-Cys217 disulfide bond. 

Although we anticipate that the Cys91-Cys140 disulfide bond should also stabilize this 

fragment, we did not detect this cross linked peptide in our analysis. We note that it would 

be difficult for us to fragment this species with our experiment due to its size (60 amino 

acids); so, the dearth of experimental information does not rule it out entirely. Overall, this 

result supports the idea that the mechanism for light-chain dissociation involves disulfide 

bond scrambling.

Kinetics measurements at varying temperatures.

We next carried out a series of kinetics experiments at specified 57, 60, 62, and 65 °C using 

the vT-ESI source. Because we do not observe the IgG fragment that complements the light 

chain, we report kinetics based on only the increase in the light chain signal and the decrease 

of the intact IgG precursor (see supporting information for details). As mentioned above, it 

is interesting that we do not observe the complementary heavy-chain fragment. We suspect 

that this species aggregates soon after the dissociation process. At our longest times at each 

temperature, where the dissociation of the intact IgG precursor approaches completion, the 

ESI signal is lost, consistent with this idea, and the experiment is terminated.

Examples of kinetics data recorded at several temperatures (60, 62, and 65 °C) are shown in 

Figure 3 for the increase in the light-chain abundance with increasing time (the 57 °C data 

are not included because the figure appears crowded; but, an example for these data can be 

found in the supporting information). Examination of the kinetics shows that this process 

follows a simple, first order reaction rate, and can be modeled with equation 1,

Bt = 1 − I0 × e−kt
(1)
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where Bt is the intensity of the light chain signal at time t, I0 is the final light chain signal 

upon reaction completion, and k is the rate constant.

Transition state thermochemistry associated with formation of the light chain.

The rate constants obtained from the kinetics experiments shown above were used to 

generate the Arrhenius plot in Figure 4. This plot yields a pre-exponential factor, A = 4.33 

± 0.8 × 1013 s−1 and activation energy, Ea = 96 ± 28 kJ·mol−1. This value of A indicates that 

accessing the transition state is very efficient – occurring near the vibrational frequency that 

is expected for a simple bond cleavage of a small molecule. We suggest that this may 

indicate that the transition state involves a very localized motion associated with cleavage of 

the native Cys224-Cys217 bond in the intact precursor IgG. These values can be converted 

into transition state thermochemistry, yielding: ΔG‡ = 92 ± 11 kJ‡mol−1, ΔH‡ = 95 ± 10 

kJ·mol−1, and ΔS‡ = 8 ± 1 J·mol·K−1. The large enthalpic barrier is consistent with the 

cleavage of a covalent disulfide bond. Furthermore, the relatively small entropy change at 

the transition state suggests little change in structure. Overall, this thermochemistry is 

consistent with a sequential process. First, the native Cys224-Cys217 bond in the IgG 

precursor is cleaved. Upon cleavage the light-chain fragment refolds such that at least one 

(and possibly two) new non-native disulfide bridges (the scrambled Cys217-Cys199 bond that 

was detected, and the Cys140-Cys91 bond that we anticipate could be formed, but was not 

directly detected) are formed, stabilizing the light chain product. The complementary heavy 

chain product of dissociation, having the single reduced free Cys224 rapidly aggregates, and 

is not detected in our experiments.

Conclusions

Variable temperature ESI and mass spectrometry have been used to investigate thermal 

transitions in the IgG antibody. It is found that IgG dissociates through loss of the light 

chain, a process that involves disulfide bond scrambling. Kinetics studies at multiple 

temperatures were used to determine transition state thermochemistry of ΔH‡ = 95 ± 10 

kJ·mol−1, ΔS‡ = 8 ± 1 J·mol−1K−1, and ΔG‡ = 92 ± 11 kJ·mol−1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Mass spectrum showing the charge state shift observed for IgG charge states 22 to 27 at 28, 

32, 42, and 52 °C (left). Inset shows +22 species at 28 and 52 °C. The relative abundance 

plotted as a function of temperature for charge states +22, +23, +24, +25, +26 and +27. 

Above ~70°C spray stability is lost.
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Figure 2: 
Mass spectrum showing formation of light chain charge states +9 through +13 after 

incubation at 65 °C for 3, 18, and 42 min.
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Figure 3: 
Light chain signal monitored over time at 60, 62, and 65 °C, as open squares, triangles, and 

circles, repectively. Change in light chain abundance with time is shown modeled with first 

order kinetics (black lines).
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Figure 4: 
Arrhenius plot showing triplicate reaction rate of formation versus inverse temperature. 

Error bars represent the standard deviation of the triplicate analysis.
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Scheme 1: 
IgG schematic showing light chain (red), heavy chain (blue), the antigen binding region 

(FAB) and the crystallizable region (FC). Cys or disulfide bonded cysteines are shown as 

black lines. Cys residues discussed in main text are labeled. Single free cysteine is shown on 

each light chain.

Brown et al. Page 17

J Am Soc Mass Spectrom. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Experimental
	Variable-temperature electrospray ionization.
	Instrumentation.
	Analysis of the data.
	Sample preparation.

	Results and discussion
	Changes in ESI charge state distribution of IgG precursor with temperature.
	High-temperature dissociation of the light chain.
	Mechanism of light chain dissociation.
	Kinetics measurements at varying temperatures.
	Transition state thermochemistry associated with formation of the light chain.

	Conclusions
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Scheme 1:

