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Redox-regulation of mitochondrial metabolism through thioredoxin o1 facilitates
light induction of photosynthesis
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ABSTRACT
Despite the well-known biochemistry of the major pathways involved in central carbon and amino acid
metabolism, there are still gaps regarding their regulation or regulatory interactions. Recent research
demonstrated the physiological significance of the mitochondrial redox machinery, particularly thior-
edoxin o1 (TRXo1), for proper regulation of the tricarboxylic acid cycle, components of the mitochondrial
electron transport chain and photorespiration. These findings imply that TRXo1 regulation contributes to
the metabolic acclimation toward changes in the prevailing environmental conditions. Here, we ana-
lyzed if TRXo1 is involved in the light induction of photosynthesis. Our results show that the trxo1
mutant activates CO2 assimilation rates to a significantly lower extend than wild type in response to
short-term light/dark changes. Metabolite analysis suggests that activation of glycine-to-serine conver-
sion catalyzed through glycine decarboxylase in conjunction with serine hydroxymethyltransferase in
trxo1 is slowed down at onset of illumination. We propose that redox regulation via TRXo1 is necessary
to allow the rapid induction of mitochondrial steps of the photorespiratory cycle and, in turn, to
facilitate light-induction of photosynthesis.
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Considerable attention has been paid to resolve the biochemistry
of themajor pathways involved in central carbon and amino acid
metabolism, including the Calvin-Benson (CB) cycle,1,2 the tri-
carboxylic acid (TCA) cycle,3-6 and photorespiration7-9 in plants.
Moreover, the physiological significance of these metabolic
branches for optimal plant growth has been demonstrated and
the enzyme-encoding genes have been well characterized with
respect to transcriptional regulation and effector-mediated
regulation.10,11,12,6,13 However, there are still open questions
regarding potential regulatory mechanisms of enzyme activities,
particularly via posttranslational modifications, and the interac-
tion of different pathways to orchestrate plant metabolism.

To regulate metabolic fluxes, especially in response to light/
dark transitions, thiol-disulfide redox changes play the most
important role to regulate enzymeactivities at the posttranslational
level.14 Disulfide bond formation between conserved cysteine
residues is, among others, catalyzed by ubiquitous thioredoxins
(TRX). Hence, TRX are involved in either the (de)activation of
enzymes or contribute to correct folding of proteins.15,16 To date,
TRX-mediated enzyme regulation is best studied in chloroplasts.
Within this compartment, a multitude of TRX proteins regulate
the activity of parts of the photosynthetic electron transport chain
and of the CB cycle, whereas the latter becomes activated after
onset of illumination through TRX-mediated reduction of disul-
fide bonds in several participating enzymes.17,18,16,12 Hence, TRX
regulation is key for light induction of photosynthetic CO2 assim-
ilation. Moreover, redox-control is also important to regulate the
activities of different malate dehydrogenase (MDH) isoforms in
various subcellular compartments. For example, NADP-

dependent MDH activity in chloroplasts was shown to increase
around 100-fold within less than a minute after onset of illumina-
tion through redox activation and thus accounts for a major
regulatory component to adjust stromal ATP/NADPH ratios
and the flux through the photosynthetic C4 cycle.19–21 However,
redox regulation of MDH is not restricted to the chloroplast itself
but also contributes to the entire cellularmalatemetabolismvia the
well-known malate valves to exchange redox equivalents between
the different subcellular compartments.22,23 In addition to chlor-
oplasts, plant mitochondria also possess a TRX regulation system.
Whereas the TRXo1 protein was found to exclusively localize to
mitochondria,24 TRXh2 localization is shared between mitochon-
dria, the endoplasmic reticulum and the cytoplasm.25-27 Recently,
both proteins were shown to contribute to the redox regulation of
mitochondrial metabolism. Daloso and colleagues28 provided
compelling evidence that either TRXo1 or TRXh2 are involved
in the regulation of TCA cycle enzyme activities and, thus, are able
to modulate the carbon flux through the entire cycle in hetero-
trophic and photosynthesizing tissue. Moreover, it was demon-
strated that lack of TRXo1 affects the in vivo activation state of the
alternative oxidase (AOX), constituting for a nonphosphorylated
pathway to allow more flexibility to the energy supply via the
mitochondrial electron transport chain.29 Finally, TRXo1 and
TRXh2 also impact on photorespiration, since both contribute to
the redox regulation of the four protein (P, T, H, and L), multi-
enzyme system glycine decarboxylase (GDC), where its regulation
was anticipated to mainly occur at the GDC L-protein
(mtLPD).30,31 Given that mtLPD is shared between GDC, pyru-
vate dehydrogenase, 2-oxoglutarate dehydrogenase, and the
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branched-chain 2-oxoacid dehydrogenase complex,32,33;34 it is
likely that other mitochondrial pathways such as the TCA cycle
and the degradation of branched chain amino acids might be
affected via this mechanism, too.

In light of the multitude of targets of the mitochondrial
TRX system, it is likely to assume that TRX are involved in
the acclimation of metabolic fluxes toward changes in the
prevailing environment. Indeed, Fonseca-Pereira and
colleagues,35 showed participation of the mitochondrial TRX
system under drought. Additionally, absence of TRXo1-
affected carbon metabolism in response to changes in the
light intensity.29 Here we analyzed whether or not TRXo1
regulation in mitochondria is somehow involved in the light
induction of metabolism, particularly photosynthesis, given
that impairment of mitochondrial performance was reported
to negatively affect chloroplastidial functions.36,37

Photosynthesis measurements on trxo1 mutant-plants
grown under standard conditions did not show major
changes.29,31 However, the trxo1 mutant is characterized by
lower photosynthetic rates (A) and an increased CO2 com-
pensation point under conditions that require an elevated
photorespiratory flux.31 Interestingly, trxo1 mutant plants
show also decreased A, if measured in alternating light/dark

cycles (Figure 1a). As shown before, A of trxo1 is comparable
to the wild type if determined at a light intensity similar to the
light applied during plant growth (150–200 µmol m−2 s−1)
without previous dark adaption. However, if the measure-
ments were performed after the light was switched off for
15 min and plants were reilluminated at 200 following
500 µmol m−2s−1, a significant decrease in A was seen. The
difference was even more pronounced when measured after
another two phases of dark incubation, and if measurements
were carried out with stepwise increasing light intensities
from 50 to 1000 µmol m−2 s−1 (Figure 1a). Despite the
changes in photosynthesis, very minor effects on dark respira-
tion (Rd) were observed during our experiment (Figure 1a).
Given that photorespiration and photosynthesis form an over-
lapping network, and both rates show positive correlation,39,40

we assumed absence of proper redox regulation of photore-
spiration at the GDC/serine hydroxymethyltransferase
(SHMT) step might impair the flux through photorespiration
and in turn photosynthesis. Indeed, the quantification of both
metabolites involved in the GDC/SHMT reaction cycle, gly-
cine and serine, respectively, revealed that lack of TRXo1
affects glycine-to-serine conversion. As expected, no changes
were found in the dark (inactive photorespiration). However,

Figure 1. Light acclimation of photosynthesis and absolute glycine and serine contents in leaves of the wild type and the trxo1 mutant. Depicted are (a) net CO2

uptake (A) and dark respiration (Rd) rates of wild-type and trxo1 plants grown in normal air (390 ppm CO2) to growth stage 5.138 with a 12/12 h day/night cycle (20/
18°C) and a light intensity of 150 µmol m−2 s−1. Fully expanded leaves were incubated into the measuring chamber of a Licor-6400. Then, A and Rd were determined
for at least 15 min in each condition during alternating light/dark cycles as indicated. Absolute glycine and serine contents (b) were determined by liquid
chromatography coupled to tandem mass spectrometry (LC-MS/MS) as described previously.31 Plants were grown under the same conditions as indicated above and
leaf-material harvested in the end of the dark phase (5 min prior onset of illumination) and 2, 5, and 30 min after light was switched on (150 µmol m−2 s−1). Shown
are mean values ± SD from three independent biological replicates. Asterisks indicate significant alterations of the trxo1 mutant compared to the wild type according
to Student’s t test (*p < .05, n.s. – not significant).
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after onset of illumination on dark-incubated plants for 2 and
5 min (active photorespiration), trxo1 leaves accumulated
significantly increased glycine contents compared to wild
type, whereas the serine levels showed the opposite behavior,
that is, they were lower in trxo1 at both time points (signifi-
cant after 5 min). Interestingly, elevated glycine accumulation
and the decrease in serine disappeared 30 min after light was
switched on (Figure 1b). Such unaltered levels in both amino
acids are in agreement with our previous metabolite analysis
of trxo1 at later stages in the light phase.31

Collectively, the results presented here suggest that TRXo1-
mediated redox regulation is essential for short-term acclima-
tion of mitochondrial metabolism, mainly activation of the
photorespiratory GDC/SHMT reaction cycle after onset of
illumination. Hence, the mitochondrial TRX system is
a pivotal feature for rapid light induction of photosynthesis
(Figure 1a). Adaptation to fluctuations in light intensities
might also involve the TRXo1 protein as previously also
suggested by Florez-Sarasa et al.29 However, on the longer
time scale, mitochondria are able to adjust their metabolism
to alterations in light intensities including adjustment in the
transcriptional and translational regulation of photorespira-
tion as reported previously41 and also in the absence of
TRXo1. Currently, we assume that other TRX proteins, pre-
sumably TRXh2,30 compensate for the loss of TRXo1 to pre-
vent from severe damage to mitochondrial metabolism. To
fully elucidate potential redundancy within the mitochondrial
thiol redox system future work is needed, including the pro-
duction of multiple mutants and comprehensive analysis
under different environmental conditions.
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