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Abstract: Manifestation of the functionalities from the structural brain network is becoming increasingly
important to understand a brain disease. With the aim of investigating the differential structure–function
couplings according to network systems, we investigated the structural and functional brain networks of
patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy con-
trols. The structural and functional networks of the whole brain and motor system, constructed using
deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson
and partial correlation analyses of resting-state functional magnetic resonance images, showed differential
embedding of functional networks in the structural networks in patients. In the whole-brain network of
patients, significantly reduced global network efficiency compared to healthy controls were found in the
structural networks but not in the functional networks, resulting in reduced structural–functional
coupling. On the contrary, the motor network of patients had a significantly lower functional network
efficiency over the intact structural network and a lower structure–function coupling than the control
group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients
was prominent particularly between the probabilistic structural and partial correlation-based functional
networks. Intact (or less deficient) functional network over impaired structural networks of the whole
brain and highly impaired functional network topology over the intact structural motor network might
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subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study sug-
gests that the structure–function relationship, evaluated specifically using sparse functional connectivity,
may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292–5306,
2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

The relationship between structure and function has
recently been framed in terms of networks and is receiving
growing attention not only in exploring organizational
principles of the brain [Deco et al., 2011] but also in under-
standing brain diseases, for example, structural–functional
network couplings in schizophrenia [Cocchi et al., 2014;
van den Heuvel et al., 2013] and amyotrophic lateral scle-
rosis [Schmidt et al., 2014]. The importance of this network
approach to structure–function relationship is not only in
its ability to describe the abnormal reorganization of the
functional network over the structural network but also in
its ability to explain intact (or less deficient) information
exchange among brain regions even after anatomical mal-
formation or damage [Bullmore and Sporns, 2009]. Recent
researches on the structural and functional networks were
promoted by the introduction of in vivo neuroimaging
methods for brain connectivity, including diffusion tensor
imaging (DTI) for structural networks and resting-state
functional magnetic resonance imaging (rs-fMRI) for func-
tional networks (see Park and Friston [2013] for review).

Using neuroimaging methods, we aimed to investigate
the structure–function relationships in the brains of patients
with cerebral palsy (CP), a broad range of diseases with non-
progressive permanent motor impairments. The cause of CP
is multifactorial, including prenatal hypoxic ischemic injury,
asphyxia, infections/inflammation, coagulopathies, and
inheritance [Keogh and Badawi, 2006; Msall, 2004], which
are often associated with cystic or diffuse periventricular
leukomalacia (PVL) as a high risk factor for CP. Out of the
various subtypes of CP, this study focuses on spastic diple-
gic cerebral palsy (SDCP) with PVL.

It has been shown that structural alterations in patients
with CP and PVL are not confined to a PVL zone or
motor-related pathways [Arzoumanian et al., 2003;
Ceschin et al., 2015; Englander et al., 2013; Lee et al.,
2011b; Nagae et al., 2007; Scheck et al., 2012; Thomas et al.,
2005], but are rather widespread across the whole-brain
white matter. Lee et al. [2011b] showed that patients with
SDCP who were born prematurely had low diffusion
anisotropy across the whole brain, as was found in adoles-
cents with very low birth weights [Skranes et al., 2007]
and in preterm children with CP [Ceschin et al., 2015].

However, the effects that these widespread structural
alterations have on information transfer across the whole
brain were rarely explored. Ceschin et al. [2015] showed

reduced global efficiency of structural networks con-
structed using DTI in preterm children with CP. Diffuse
reduction of structural connectivity across the whole brain
was reported in severe compared to mild CP [Englander
et al., 2013]. Despite not being a network analysis, several
functional connectivity studies using resting state fMRI
have revealed lower functional connectivity in patients
with CP, especially in the sensorimotor regions [Burton
et al., 2009; Lee et al., 2011b; Papadelis et al., 2014; Park
et al., 2013b]. As these studies were performed using
independent structural and functional network analyses,
they provided a limited understanding of the divergence
of functional networks from structural networks.

In this study, we explored the divergence of structur-
al–functional networks of the whole brain and the motor
network of SDCP with PVL. The motor network in this
study was composed of the sensory-motor cortex, basal
ganglia, and the thalamic circuits, which are considered to
be primary centers of motor dysfunction, a major symp-
tom of CP [Bottcher, 2010; Burton et al., 2009; Englander
et al., 2013; Lee et al., 2011b; Msall, 2006; Park et al., 2013b;
Thomas et al., 2005]. We evaluated structural and func-
tional networks of patients and healthy controls using
graph theoretical measures, and subsequently examined
coupling between the two networks.

Despite widespread structural alterations, the cognitive
impairment in CP is relatively less prevalent (23–44%)
[Odding et al., 2006] and less prominent compared to the
motor deficits. Therefore, we hypothesized that the whole-
brain functional networks responsible for diverse cognitive
functions in CP undergo reorganization under the global
structural network abnormality, and that this would be
reflected in an increased deviation from the structural net-
works. In contrast to relatively intact general cognitive
functions, patients with CP show typical behavioral defi-
cits in motor function. Accordingly, we expected that the
motor network would exhibit a distinctive pattern of struc-
tural–functional network decoupling different from that of
the whole brain network. To test the motor-system specif-
icity in the structural–functional decoupling, we evaluated
two visual systems that were segregated into the dorsal
and ventral streams, the “what” and “where” systems
[Goodale et al., 1982; Goodale and Milner, 1992; Milner
and Goodale, 2006; Wang et al., 1999]. These visual
systems were chosen as reference points because they are
at the similar level within the cognitive hierarchy with the
motor system and are relatively well understood than
other cognitive networks.

r Structure–Function Network Decoupling r

r 5293 r



Technically, structural and functional brain networks
have been defined in two different ways: dense networks
and sparse networks. Probabilistic and deterministic trac-
tography of diffusion weighted images construct dense and
sparse structural networks, respectively. Probabilistic trac-
tography has more power to reduce missing fibers and thus
makes a denser network compared to deterministic tractog-
raphy (which reconstructs a single streamline from a start-
ing point). In constructing functional brain networks,
functional connectivity has mostly been defined using Pear-
son correlation between the signals at two brain regions. As
functional connectivity measured by Pearson correlation
includes indirect interactions between two regions through
a polysynaptic connection or a common modulation, it gen-
erates a denser functional network than a real functional
interaction. Meanwhile, partial correlation analysis reduces
these indirect connections and thus generates sparser func-
tional networks. Till date, these definitions were indepen-
dently used in previous whole-brain network studies and
the relationship between the different types of structural
and functional networks has seldom been investigated.

In this study, we focused on the structure–function cou-
pling of CP with respect to probabilistic tractography and
partial correlation analysis due to the representational power
of structural connectivity and direct functional connectivity.

MATERIALS AND METHODS

Subjects

For this study, we used neuroimaging data from 14
patients with spastic diplegic CP (7 men and 7 women, age

8–29 years, mean age 14.7 years) and 20 healthy control sub-
jects without neurological disorders (12 men and 8 women,
age 7–29 years, mean age 14.5 years) enrolled in previous
studies [Lee et al., 2011b]. The control group was age- and
sex-matched without neurological and psychiatric disor-
ders. All patients had PVL (end-stage), mainly diffuse peri-
ventricular white matter injury, according to the MRI-based
diagnostic criteria: enlargement of the ventricles with irregu-
lar margins of the bodies and trigones of the lateral
ventricles, loss of periventricular white matter, increased T2
signal, and thinning of the corpus callosum.

None of the patients had any significant cortical damage
based on visual analysis. They were born prematurely
(age< 38 weeks, range 26–37 weeks, mean 31.29 6 2.9 weeks)
with a low birth weight (range 0.8–2.8 kg, mean 1.7 6 0.7 kg).
All subjects received orthopedic surgery, such as heel cord
lengthening to reduce spasticity, 3–58 months prior to MRI
scanning. To evaluate the gross motor functions of children
with cerebral palsy, we used the Gross Motor Function Clas-
sification System (GMFCS) level, which is a 5-level classifica-
tion system; patients able to perform moderate movement
(i.e., walking) were classified as GMFCS levels 1 and 2, those
unable to walk without assistance as GMFCS levels 3 and 4,
and those who had severe impairments that prevented move-
ment as GMFCS level 5. GMFCS levels in the current patients
were as follows: level 1, 10 subjects; level 2, 1 subject; level 3, 1
subject; and level 5, 2 subjects. Three of the 14 patients had
mild cognitive impairment, while the rest were within the
normal range according to one of clinical evaluations such as
mini–mental state examination, full-scale intelligence quo-
tient, and functional independence measure scale. The demo-
graphic data of the patients are summarized in Table I. This

TABLE I. Demographic data of patients with cerebral palsy

ID Sex Age
MRI

diagnosis
Birth

weight
Delivery
(month) GMFCS Results Remarks

Cognitive
diagnosis

CP1 F 23 PVL 1.3 32 5 MMSE 29 MQ 112 Normal
CP2 F 8 PVL 0.8 27 1 FSIQ 102 VIQ 122, PIQ 79 Normal
CP3 M 22 PVL 1.7 32 1 FIM SC 7 Normal
CP4 M 13 PVL 1.97 32 5 FIM SC 7 Memory 6 Normal
CP5 M 20 PVL 1.4 32 1 ADL independent Normal
CP6 M 15 PVL 1.5 32 1 FIM SC 6 Comprehension 6 Mild decreases
CP7 F 14 PVL 2 34 2 FSIQ 101 VIQ 122, PIQ 77,

FIM SC 7
Normal

CP8 M 12 PVL 1.4 29 1 FIM SC 7 Normal
CP9 F 16 PVL 1.3 26 1 FSIQ 70 VIQ 93, PIQ 51,

FIM SC 7
Normal

CP10 F 11 PVL 2.8 37 3 FIM SC 6–7 Memory 6 Mild decreases
CP11 M 9 PVL 2 33 1 FSIQ 55 VIQ 79, PIQ 51 Mild decreases
CP12 F 12 PVL 1.58 32 1 High rank at a

public school
Normal

CP13 F 12 PVL 1.6 32 1 FSIQ 82 VIQ 105, PIQ 61 Normal
CP14 M 29 PVL 2.5 28 1 FIM SC 7 Normal

CP, cerebral palsy; F, female; M, male; PVL, periventricular leukomalacia; GMFCS, Gross Motor Function Classification System; MMSE,
Mini Mental Status Examination; FIM, functional independence measure; ADL, activities of daily living; SC, social cognition; MQ, memory
quotient; VIQ, verbal intelligence quotient; PIQ, performance intelligence quotient; FSIQ, full-scale intelligence quotient.
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study was conducted in accordance with institutional guide-
lines based on the Code of Ethics of the World Medical Asso-
ciation (Declaration of Helsinki) and was approved by the
Institutional Review Board of Severance Hospital.

Data Acquisition and Image Processing

All MRI data were acquired using a Philips 3.0-T scan-
ner (Philips Intera; Philips Medical System, Best, The
Netherlands) with an 8-channel SENSE head coil. All data
were acquired using the same set of MRI protocols. High-
resolution structural data were obtained from each subject
using a three-dimensional T1-weighted MRI sequence
(field of view, 220 mm; voxel size, 0.98 3 0.98 3 1.2 mm3;
repetition time (TR), 3000 ms; echo time (TE), 125 ms).

Diffusion-weighted images were obtained using single-
shot echo planar imaging (EPI) sequences from 45 noncollin-
ear, noncoplanar diffusion-encoded gradient directions with
the following parameters: 128 3 128 acquisition matrix;
220 mm field of view; 70 slices per volume; 1.72 3 1.72 3

2 mm3 voxels; TE, 60 ms; TR, 7.384 s; b factor, 600 s/mm2;
and no cardiac gating.

Resting-state fMRI data were acquired axially using T2*-
weighted single-shot EPI using a 3.0 T Philips MRI scanner

(Philips Systems, The Netherlands) with the following
parameters: voxel size, 2.75 3 2.75 3 4.5 mm3; slice number,
31 (interleaved); matrix, 80 3 80; TR, 2000 ms; TE, 30 ms;
and field of view, 220 3 220 mm2 for 330 s (165 scans). Dur-
ing resting-state fMRI scanning, subjects were instructed to
keep their eyes closed, without sleeping or specific thinking.
After scanning, the subjects were asked to report their sleep-
iness and general condition. Foam pads were used to reduce
head motion during all MRI scans.

Figure 1 summarizes all the procedures conducted in
this study.

We first parcellated the cerebral brain based on the auto-
mated anatomical labeling (AAL) map [Tzourio-Mazoyer
et al., 2002]. As some labels in the initial AAL map are not
parcellated accurately enough to locate the cortical gray mat-
ter according to the cortical folding pattern, we modified the
label map manually in the International Consortium for
Brain Mapping (ICBM) template brain, which was used for
the fMRI and DTI analysis in this study.

To define structural networks, we first defined 90 cerebral
nodes in the individual diffusion tensor space. For this pur-
pose, we co-registered T1-weighted images to DTI using a
nonlinear registration algorithm between the T1-weighted
images and the non-diffusion-weighted b0 images in DTI for
each individual. The nonlinear co-registration algorithm

Figure 1.

Analyses of structure–function network couplings. Sparse and

dense structural brain networks of individuals were constructed

using the deterministic (SC) and probabilistic (pSC) fiber trac-

tography of diffusion tensor image (DTI) among pairs of 90 cere-

bral regions. The connectivity matrix or structural network is

defined with the number of estimated fibers between the ROIs.

Dense and sparse functional networks were derived from Pear-

son (FC) and partial correlation analysis (pFC) of resting-state

fMRI (rs-fMRI) time series at 90 regions after preprocessing.

Graph-theoretic properties of the structural and functional net-

works and their functional-to-structural ratios were compared

between patients with spastic diplegic cerebral palsy and healthy

controls. Structural–functional network coupling was also evalu-

ated between the groups. All structure–function relationship

analyses in cerebral palsy and healthy controls were evaluated

on the whole-brain, motor, and dorsal and ventral visual stream

networks. [Color figure can be viewed at wileyonlinelibrary.

com]
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maximizes normalized mutual information between DTI
and T1-weighted images resampled on second-order B-
Spline basis functions. This co-registration was conducted
after adjusting for eddy-current effects and removing
motion artifacts [Nam and Park, 2011]. The modified AAL
map in the MNI template space was transformed into the
individual T1-weighted MRI by applying the inverse nonlin-
ear transformation from individual T1-weighted MRI to the
ICBM T1-weighted MRI using the DARTEL toolbox in SPM8
[Ashburner, 2007]. The label map in the individual T1 space
was transformed to individual DTI space by applying co-
registration from T1-weighted images to DTI as described
above.

Preprocessing of fMRI data was conducted using statisti-
cal parametric mapping (SPM8, http://www.fil.ion.ucl.ac.
uk/spm/) [Friston et al., 1995]. All EPI data underwent
standard preprocessing steps, including correction of
acquisition time delays between different slices, correction
for head motion by realigning all consecutive volumes to
the first image of the session, and co-registration of T1-
weighted images to the first EPI data using the nonlinear
registration algorithm described above. Co-registered T1-
images were used to spatially normalize the functional EPI
into MNI template space using nonlinear transformation
in SPM8.

fMRI time series for 90 cerebral regions out of the modi-
fied AAL map were extracted from the normalized fMRI
data in the MNI template space. Principal component anal-
ysis was applied to extract a representative time series for
multiple voxels in each region. Time series of eigenvalues
corresponding to the first eigenvector, that is, the mode
was used as a representative activity for the region. After
discarding the first five scans due to stability issues, we
preprocessed the fMRI time series by regressing out effects
of six rigid motions and their derivatives, three principal
components of the white matter and the cerebrospinal
fluid masks, linear repressors, quadratic repressors, and
high-pass filtering with a cutoff frequency 0.009 Hz. The
white matter and cerebrospinal fluid masks were seg-
mented using individual T1 images.

End-stage PVL leads to enlargement of the ventricles
due to loss of periventricular white matter. To determine
the group-wise average location of PVL in this study, we
conducted a statistical parametric mapping using the cere-
brospinal fluid (CSF) probability maps of patients and
healthy controls. The CSF probabilistic maps were gener-
ated by segmenting individual T1-weighted MRI in the
template space (after spatial normalization) using SPM8.
Subsequently, we conducted voxel-wise two-sample t tests
for the CSF probability maps using SPM8.

Structural Network Construction:

Probabilistic Tractography

To construct a probabilistic structural network (pSC), we
conducted probabilistic tractography using FMRIB’s diffusion

toolbox (FDT v3.0, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT).
We performed “BedpostX” that samples propagation direc-
tions according to probabilistic orientation distribution at each
voxel in the Bayesian framework using Markov Chain Monte
Carlo sampling [Behrens et al., 2007]. Probabilistic fiber density
was estimated using “ProbtrackX” with the following parame-
ters: 5,000 samples within each voxel, 0.2 curvature threshold,
0.5mm step length, and 2,000 steps per sample. Using this
probabilistic fiber tracking, a structural connectivity matrix for
the motor network of each individual was constructed by
counting the number of fibers that interconnected every pair of
the 90 brain regions. We made the connectivity matrix
symmetric by averaging bidirectional connectivity to evaluate
structure–function couplings in this network.

Functional Network Construction: Partial

Correlation Analysis

We used partial correlation (pFC) as a primary index for
functional connectivity. The partial correlation matrix of
the mode time series (eigenvalue time series of the first
principal component of fMRI time series at each brain
region) among the 90 regions was calculated using the
graphical Least Absolute Shrinkage and Selection Operator
(gLASSO) technique [Friedman et al., 2008]. As a gLASSO
method, we used sparse inverse covariance estimation
(SICE) [Huang et al., 2010]. The regularization parameter
k was determined using Stability Approach to Regulariza-
tion Selection (StARS) [Liu et al., 2010]. As edges generally
shrink after gLASSO, we adjusted the edges to reflect
connectivity strength properly [Zou et al., 2015] using a
sample covariance matrix and a sparse structure of origi-
nal precision matrix [Dempster, 1972]. Functional networks
were constructed by thresholding pFC with r> 0, as
gLASSO shrinks unrelated interactions (edges) to zero.

Network Analysis and Structure–Functional

Network Coupling Measures

We conducted graph theoretical network analysis to
investigate the topological properties (i.e., local and global
properties) of whole-brain networks in patients with CP and
healthy controls. We also calculated network properties
within the motor network, and the dorsal and ventral visual
stream networks. The motor network was composed of 16
nodes, including the precentral gyrus, the supplementary
motor area, the postcentral gyrus, the paracentral lobule, the
caudate, the putamen, the pallidum, and the thalamus in
both hemispheres based on previous studies [Kahan et al.,
2014; Lee et al., 2011b; Park et al., 2013a; Taniwaki et al.,
2003; Wei et al., 2014] (Fig. 2A). Two visual stream networks
were defined according to previous literatures [Goodale
et al., 1982; Goodale and Milner, 1992; Milner and Goodale,
2006; Wang et al., 1999] (Fig. 2A). The dorsal visual stream
network consists of 20 brain regions—the bilateral superior/
inferior parietal gyrus, the supramarginal gyrus, the angular
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gyrus, the precuneus, the cuneus, the calcarine sulcus, and
the superior/middle/inferior occipital gyrus. The bilateral
fusiform gyrus, the lingual gyrus, the parahippocampus, the
inferior temporal gyrus, the calcarine sulcus, and the supe-
rior/middle/inferior occipital gyrus were included for the
ventral visual stream network (total 16 regions).

We calculated global properties (global node strength,
global, and local efficiencies) and local properties (node
strength, node efficiency, and betweenness centrality) using
the BCT toolbox [Rubinov and Sporns, 2010] for structural
and functional networks of whole-brain networks and three
subnetworks.

The global and local network properties are explained in
detail in Rubinov and Sporns [2010]. Briefly, node strength
of a node is the sum of all connection weights between the
node and the other nodes. Node efficiency of a node is
defined as the mean of all pairs of shortest path lengths
between the node and the other nodes. Global node
strength is the average of all node strengths. Global effi-
ciency [Latora and Marchiori, 2001] is the average of all
node efficiencies. Local efficiency is the global efficiency
calculated on node neighborhoods.

We defined the coupling between structural and func-
tional networks for each subject using a correlation coeffi-
cient between strengths of the structural connections
(numbers of fibers) and their functional counterparts. Con-
sidering the influences of negative correlations reported in
Skudlarski et al. [2008], we correlated structural connectiv-
ity with positive functional connectivity after regarding
the negative functional connectivity as zero. A correlation
coefficient between structural and functional connectivity
matrices in each individual was calculated after vectoriz-
ing both connectivity matrices. We evaluated the structur-
al–functional couplings both in the whole-brain network
and in the three subnetworks.

For each individual, we also evaluated the ratio of net-
work properties (global efficiency, global strength, and
local efficiency) of the functional and structural networks
to examine directional changes in the functional network
property, normalized by the structural network property.
Since changes in functional couplings did not provide
directionality in the (functional) information exchange,
that is, whether this decoupling appears to increase or
decrease the information exchange within each structural

Figure 2.

Whole-brain network regions, subnetwork regions, periventricu-

lar leukomalacia (PVL) locations, and probabilistic structural

pathways. Brain regions for the whole-brain network (modified

AAL 90 regions), the motor network (16 regions), the dorsal

visual pathway network (20 regions), and the ventral visual path-

way network (16 regions) are displayed (A). Rendering and slice

displays of increased cerebrospinal fluid (CSF) probability in

cerebral palsy (CP) compared to healthy controls (HC) with a

threshold at P< 0.005 and more than 73 continuous voxels

were displayed as PVL locations (B). Examples of probabilistic

maps of the structural connectivity for a patient (CP1) were

overlaid on the T1-weighted image of the patient (C). The prob-

abilistic pathways between the right thalamus (THL) and the

right precentral gyrus (PrC) were colored in red, between the

right thalamus and the right postcentral gyrus (PoC) in blue,

between the right thalamus and the right middle occipital cortex

(mOC) in pink, and between the right putamen (PUT) and the

right precentral gyrus in green. R: right, L: left. [Color figure can

be viewed at wileyonlinelibrary.com]
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network system, this ratio index would be useful in clarifying
this directionality in decoupling; greater values indicate
increased efficiency in functional networks when normalized
by structural efficiency while the reverse is true for smaller
values.

Two-sample t tests were applied to evaluate all the mea-
sures. For the local node properties and edge degrees, statisti-
cal differences were considered to be significant if P values
passed the threshold of false discovery rate (FDR) <0.05 to
correct for multiple testing.

RESULTS

Structural and Functional Networks in Cerebral

Palsy (CP) and Healthy Controls (HC)

Figure 2A displays the whole-brain network and three
subnetworks (motor and dorsal and ventral visual stream
networks) evaluated in this study. The group-wise average
location of PVL in the current patient group is displayed in
Figure 2B, which shows an enlarged CSF space (increased
CSF probability map) in the medial and posterior part of
the brain. Figure 2C displays examples of probabilistic
maps of structural connectivity for a patient (CP1). The
probabilistic pathways between the thalamus and the pre-
central gyrus, postcentral gyrus, and the middle occipital

cortex, and between the putamen and the precentral gyrus
were overlaid on the T1-weighted image of the patient.

The whole-brain networks of healthy controls and
patients constituted by dense structural connectivity and
sparse functional connectivity are displayed in Figure 3A.
The statistical group differences in node strengths of struc-
tural and functional networks measured using probabilistic
tractography and partial correlation analysis are summa-
rized in Table II and Figure 3B. Significantly lower structural
node strengths in patients with CP compared to healthy con-
trols were widely distributed across the whole brain (Fig.
3B). However, there were no statistically significant differ-
ences in the node strengths between the sparse functional
network groups (Fig. 3B and Table II).

The structural and functional connectivity maps in the
motor network are presented in Figure 3C. Patients and
healthy controls showed similar structural but different func-
tional network patterns. The statistical group differences are
summarized in Table II.

Global Efficiency of Structural and

Functional Networks

Table II summarizes the statistical group-wise differ-
ences in the global properties of structural and functional

Figure 3.

Structural and functional networks in cerebral palsy (CP) and

healthy controls (HC). Group-average structural and functional

networks are presented in blue lines for HC and in red lines for

patients with CP (A). Structural connectivity was evaluated using

probabilistic tractography (pSC) and functional connectivity was

derived using partial correlation analysis (pFC). Brain regions

having significantly reduced node strength of the structural net-

work in CP are displayed (FDR< 0.01) (B). Group adjacency

matrices (connectivity matrices) of structural and functional

motor networks are presented (C). [Color figure can be viewed

at wileyonlinelibrary.com]
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networks in the whole-brain network and three specialized
networks.

The structural network based on probabilistic connec-
tions showed significantly reduced global properties
(global node strength and global efficiency) in the whole-
brain network of patients with CP than those in healthy
controls (Table II). Meanwhile, only the sparse functional
networks and not the dense functional networks of CP
showed reduced global and local efficiency compared to
control subjects (Table II). Figures 4 and 5 summarize the
group-wise differences in the global efficiency of sparse
(partial correlation-based) functional networks, dense
(probabilistic) structural networks, and their couplings in
the whole-brain, motor, and two visual networks.

In the motor network, there were no statistical differ-
ences between the two groups for global network proper-
ties of dense (probabilistic) structural networks. However,
the global and local efficiencies of the functional network
derived from partial correlations were significantly lower
in CP than healthy controls (global efficiency: P 5 0.003,
local efficiency: P 5 0.002; Table II).

The global properties of the structural network in both
the dorsal and ventral visual stream networks showed

similar tendency and tended to be generally lower in
patients with CP compared to healthy controls (Table II).
However, these visual stream networks of CP showed
increased global node strengths in functional networks,
particularly in the dorsal stream network, compared to the
healthy controls.

Global Efficiency Ratio of Functional Network

to Structural Network

The ratios of global network properties of sparse func-
tional networks to those of dense structural networks were
summarized in Table II. The ratios of the global node
strength and the global efficiency of sparse whole-brain
functional networks to those of dense structural networks
were significantly higher in CP patients compared to
healthy controls (Fig. 5A and Table II). Meanwhile, in the
motor network, the ratios of global and local efficiencies of
sparse functional networks to those of dense structural
networks were significantly lower in CP patients than in
healthy controls. In the dorsal visual stream network, the
ratios of global node strength and local efficiency were sig-
nificantly higher in CP compared to healthy controls. No

Figure 4.

Global efficiency of dense structural (pSC) and sparse functional

networks (pFC) in the whole-brain, motor, and dorsal and ven-

tral visual stream networks. Structural global efficiency of

patients with cerebral palsy (CP) is significantly lower than that

of healthy controls (HC) in the whole-brain network (A).

However, there are no significant differences in the motor net-

work (A). Functional network shows significantly reduced global

efficiency of CP compared to HC in the whole-brain network

and motor network (B).
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significant group-wise differences in the ratios of global
network properties were found in the ventral visual
stream network.

Couplings of Structural–Functional Networks

Structure–function network couplings—dense structural
and sparse functional networks—in patients and controls
are presented in Figure 5B and Table II. In the whole-brain
network, patients with CP showed significantly lower
structure–function network couplings compared to healthy
controls when dense structural network was correlated
with sparse functional network (two sample t tests,
pSC–pFC: HC 5 0.21 6 0.03, CP 5 0.19 6 0.02, P 5 0.007).
The motor networks in CP patients also showed signifi-
cantly reduced structure–function couplings (pSC–pFC:
HC 5 0.24 6 0.04, CP 5 0.18 6 0.07, P 5 0.004). We found
that there were no significant group-wise differences in
structure–function decoupling of the dorsal stream net-
work and the visual stream network.

DISCUSSION

We investigated the brain networks in CP from the per-
spective of a structural and functional relationship; this is
an important issue in understanding the brain, according to
the reviews of Buckner et al. [2008], Honey et al. [2009], Van
Dijk et al. [2010], and Park and Friston [2013]. Using graph-
theoretical analysis of the structural–functional relationship,
we found that functional networks embedded differently in
the structural networks of patients with CP compared to
healthy controls based on the network systems.

Consistent with the results of a previous study on preterm
children with CP [Ceschin et al., 2015], patients with SDCP
had significantly lower structural connections with other
brain regions (node strength at each node) than healthy con-
trols across the whole brain, except for the left motor cortical
areas, left angular gyrus, bilateral orbitofrontal lobes, and
anterior temporal lobes. The reduced global node strength
(average node strength across the whole brain) and global
efficiency (Table II) imply the inefficient structural network
architecture for information exchange in CP.

Figure 5.

Ratios of global efficiency of sparse functional network (pFC) to

dense structural network (SC) and structural–functional net-

work couplings in the whole-brain, motor, and dorsal and ven-

tral visual stream networks. The ratio of the global efficiencies

of whole-brain sparse functional network to dense structural

network is significantly higher in cerebral palsy (CP) than healthy

controls (HC), whereas the ratios of the motor network are

significantly lower in CP compared to HC (A). Structure–func-

tion coupling (Pearson correlation coefficient) between a vector-

ized dense structural connectivity matrix and a sparse functional

connectivity matrix was significantly reduced in CP at the

whole-brain network and motor network, but not at the dorsal

and ventral visual stream networks (B).
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Functional networks in the whole brain, however, did
not behave in the same way as structural networks.
Patients with SDCP showed intact functional interaction
with other brain regions (global node strength) or slightly
inferior capacity for information exchange (global effi-
ciency) over the whole-brain network than healthy con-
trols. Most brain regions maintained functional connection
with other brain regions (node strength at each node) over
reduced structural paths. Although the reduction in the
global efficiency of partial correlation-based functional net-
work passed the statistical significance test (P 5 0.013), the
amount of reduction was less prominent than in the struc-
tural network (Table II). This was obvious in the signifi-
cantly increased function–structure ratios of global
efficiency in CP compared to controls (Fig. 5A), which sug-
gest less reduced (relatively enhanced) functional network
information flow over the impaired structural networks.
The intact functional network (specifically, in global node
strength) over the altered structural network of the whole
brain explains the decreased structure–function coupling,
that is, increased deviation of the functional network from
the structural network in CP patients compared to the con-
trol group (Table II).

In contrast to the whole-brain network, the motor network
showed a different structure-function relationship, with
relatively intact (or less deficient) structural but impaired
functional network topologies. The left precentral and para-
central gyri of CP patients had intact structural node
strengths compared to healthy controls (Fig. 3B). Indeed, the
PVL location in CP does not highly overlap with the cortico-
spinal tract, thalamocortical pathway, or pathways among
regions in the motor network (Fig. 2B). Patients with CP also
had relatively preserved global efficiency, local efficiency,
and global node strength in the structural network of the
motor network (Table II). However, patients had reduced
global efficiency in the functional network, with a signifi-
cantly reduced function–structure ratio. Deviation (or
decoupling) of the functional network from the structural
network was also found in the motor network of CP. Despite
similar deviation found in the whole-brain network, the
structure–function decoupling in the motor network of CP
may be associated with reduced efficiency in the functional
motor network. This result may support the network-
theoretic explanation for the dominance of motor-related
dysfunction in CP despite the widespread effects of prenatal
injuries.

This structure–function alteration was relatively motor
network-specific as the visual stream networks, particularly
the ventral visual stream network, did not show divergence
from the normal structure–function relationship found in the
motor network. No significant intergroup differences were
found in the structural and functional network properties
and their relationships in the ventral visual stream network.
The network properties (global node strength and global effi-
ciency) of the dorsal stream network showed similar trends
of group differences (patients vs healthy controls) with those

of the ventral stream network, but there were more significant
group differences. There was an increase in local efficiency of
the functional network and in the functional–structural ratios
of global node strength and local efficiency in the dorsal
stream network of CP compared to healthy controls. These
properties are part of the typical patterns of the whole brain
network except for the normal decoupling between structural
and functional networks in CP.

Although we evaluated two visual stream networks as
reference points for evaluating exclusive changes in the
motor system, the manifestations of motor impairment in
CP may not be separable from the visual network, as these
systems are interconnected with high complexity. In previ-
ous studies, patients with PVL had a relatively high inci-
dence of cerebral visual impairment such as oculomotor
disorders, low visual acuity, and reduced visual fields
[Cioni et al., 1997], and high-level visual perception,
related to deficits in the visuo-motor connectivity for eye
movements and mental visual construction, requiring
mental simulation of movement and transformation
[Bottcher, 2010]. These faculties are more associated with
the dorsal stream regions than the ventral stream regions
[Milner, 2012; Schenk and McIntosh, 2010]. The prominent
deficit in the dorsal stream regions may possibly be associ-
ated with PVL locations, which are closely positioned near
the dorsal stream pathway as shown in Figure 2B. How-
ever, this study lacks data to provide a strong evidence for
vision-specific alterations in the visual stream network
topology that would be consistent with the previous stud-
ies, except for the observation that there was stronger
deviation from healthy network properties in the dorsal
visual stream network than in the ventral stream network.
We may attribute these findings to the fact that recruited
patients had mostly mild motor impairments (GMFCS lev-
els 1 and 2). As we did not measure visual performance of
patients that participated in this study, the conclusion for
the relationship between visuo-motor behaviors and visual
networks requires further study.

What caused different patterns of structure–function rela-
tionships in the whole brain and other subnetworks is still
an open question. Previous studies have suggested that
structural alterations in CP with PVL are rather widespread
across the whole brain white matter [Ceschin et al., 2015;
Englander et al., 2013; Lee et al., 2011b; Skranes et al., 2007].
Despite widespread structural alterations, the prevalence of
cognitive impairment in CP is relatively less (23–44%),
depending on the subtype of CP [Odding et al., 2006]. The
relationship between the cognitive impairments and struc-
tural deficits in CP is not fully resolved [Fennell and Dikel,
2001]. We speculated that the brain systems responsible for
cognitive functions in CP undergo functional reorganization
over the structural network with altered pathways. This is
partly evidenced by the intact functional node strengths
over a damaged structural network.

As the brain has great ability to compensate for neuronal
injury during the developmental period [Juenger et al., 2008;
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Staudt, 2007], compensatory mechanisms might reduce
wide-spread effects of prenatal insults during development,
except in motor-related regions. Functional reorganization
might be achieved by means of maintaining functional con-
nectivity with other brain regions over the limited structural
pathways. Although the biological basis of functional main-
tenance (or relative enhancement) over reduced structural
connectivity might not be resolved in this study, we note
that the functional connectivity is not only governed by
extrinsic axonal projections (reflected in DTI tractography
for the structural network construction), but also modulated
by regional intrinsic or indirect factors such as changes in
synaptic efficacy, neuromodulation, and/or polysynaptic
connectivity [Park and Friston, 2013].

Similarly, impaired functional networks over intact (or less
impaired) structural networks in the motor regions of CP can
be explained by alterations in intraregional neuronal proper-
ties rather than inter-regional structural connectivity. As an
evidence for intraregional alterations, previous studies using
18F-fluoroflumazenil (18F-FFMZ) positron emission tomogra-
phy (PET) showed increased regional gamma-aminobutyric
acid type A (GABA-A) receptor binding potential in the pos-
terior and medial brain regions, including bilateral motor
areas in children with SDCP [Lee et al., 2007, 2011b]. The
increased GABA-A receptor binding potential in the local
area may be associated with abnormal functional connectivity
in other brain regions. Indeed, GABA-A distribution was also
higher in the ipsilateral motor-related brain areas of patients
with hemiplegic CP, but demonstrated reduced functional
connectivity [Park et al., 2013b].

However, we cannot disregard the possibility of reorgani-
zation in the structural white matter pathways in the motor
network. For example, Lee et al. [2011b] showed a signifi-
cant positive correlation between symptom severity
(GMFCS score) and fractional anisotropy of diffusion tensor
imaging in the corticospinal tract (white matter in motor
cortical areas), while there was a negative correlation in
most other brain regions. This suggests that patients with
severe symptoms have increased structural connectivity in
the white matter near the primary motor areas or cortico-
spinal tracts. This positive correlation may explain the rela-
tively intact global efficiency in the structural network of
the motor systems, despite the severe reduction in func-
tional network efficiency, possibly due to intraregional fac-
tors explained above. To better understand the underlying
mechanism affecting the motor cortex in CP, further studies
would be necessary.

Besides the neurobiological findings of CP networks, this
study also suggests the importance of a network-centric per-
spective of the brain disorders. We found reduced node
strengths in most structural network brain areas. As the node
strength is the sum of fiber counts that interconnect with all
the other brains, structural alteration may exist not simply in
a single edge level, but in a multitude of edges and thus can
be sensitively detected using a multivariate approach like
node strength.

Our main finding in the functional motor network of CP
was an altered network topology over an alteration in the
single edges (interaction between two nodes). As discussed
by Park and Friston [2013], a network is not a simple combi-
nation of individual pathways, but rather, a systematic orga-
nization of interactions within the network. Thus, an altered
corticospinal pathway or thalamocortical pathway found in
previous studies on CP [Arzoumanian et al., 2003; Lee et al.,
2011b; Pannek et al., 2014; Scheck et al., 2012; Thomas et al.,
2005] or altered functional connectivity in CP [Dinomais
et al., 2012; Lee et al., 2011a; Papadelis et al., 2014] may not
be sufficient enough to explain the topological architecture
of the motor-related brain regions, including cortical and
subcortical regions. What is more important might be the
nature of circuits and a combination of edges [Marder,
2012].

In the construction of structural and functional networks,
one should carefully consider “dense” versus “sparse” con-
nections. Variations in structural connectivity metrics can
affect the characterization of structural connections between
different regions [Khalsa et al., 2014]. Probabilistic tractogra-
phy accounts for the uncertainty of local fiber orientations or
distributed connectivity [Craddock et al., 2013]. Thus, struc-
tural connections derived from deterministic tractography
tend to be sparser than those measured by probabilistic trac-
tography [Bonilha et al., 2015]. As measures of functional con-
nectivity, we used partial correlation in constructing sparse
functional brain networks. We also evaluated dense func-
tional networks using Pearson-correlation, but we did not
find a significant difference in the structure–function cou-
pling between the groups (Supporting Information). Pearson
correlation method cannot factor out the latent effects of a
third and/or a fourth node that may modulate between the
two nodes. This makes interpretation of the correlative
activities unclear, whether they are from intrinsic structural
connections or from polysynaptic inductions, common mod-
ulatory effects, or common feed-forward projections via the
thalamus [van den Heuvel et al., 2009]. On the contrary, par-
tial correlation was more efficient in revealing direct associa-
tions between the brain areas. In this study, partial correlation
showed good sensitivity in detecting structural and func-
tional differences in the global network efficiency and struc-
ture–function coupling between the groups. In consistent
with the current result, partial correlation is known to be
closer to structural brain network than Pearson correlation
[Marrelec et al., 2006; Smith et al., 2011].

This study had several limitations. We could not correlate
structure–function relationships with motor performances
owing to small samples of narrowly distributed motor symp-
tom scales (mostly GMFCS 1), and with individual cognitive
performances owing to the lack of behavioural measures. As
healthy controls were gathered from different studies, no con-
sistent measures of cognitive function other than age and gen-
der could be used. The situation was similar for the patients
except that consistent motor scores and birth-related informa-
tion, essential for researches about movement disorders, were
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gathered. Thus, the association between structure–function
relationships and well-documented cognitions remains to be
discovered. We do not disregard the possibility of errors in
the network construction methods, such as missing fibers due
to limitations of DTI, artifacts in fMRI, and in the definition of
network nodes. Although each processing step was con-
trolled carefully by visual analysis and use of in-house soft-
ware, the technical challenges remain for further
advancement of data acquisition and analysis methods. Mul-
tivariate graph-theoretical measures used in this study may
mitigate the estimation errors inherent with single connectiv-
ity estimation. In the graph theory of the human connectome,
measures for network properties are initially developed on
the structural network. However, we believe that the same
measures are also meaningful on the functional network as
an index for efficiency of information flow over the structural
network.

In summary, we investigated brain networks in SDCP
with PVL from the perspective of the relationship between
structure and function. We found severely altered struc-
tural networks, but improved (or less severe) information
exchange (functional network) among regions in the whole
brain, suggesting reorganization. Meanwhile, the motor
network in CP showed highly impaired information
exchange over intact pathways. This result is clearly
detected in partial-correlation-based functional networks.
This study suggests that graph theoretic approach is
advantageous in describing the neurobiology of brain dis-
order and that the structure–function relationship plays an
important role in understanding CP.
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