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Abstract: An important focus of studies of individuals at ultra-high risk (UHR) for psychosis has been
to identify biomarkers to predict which individuals will transition to psychosis. However, the majority
of individuals will prove to be resilient and go on to experience remission of their symptoms and func-
tion well. The aim of this study was to investigate the possibility of using structural MRI measures col-
lected in UHR adolescents at baseline to quantitatively predict their long-term clinical outcome and
level of functioning. We included 64 UHR individuals and 62 typically developing adolescents (12–18
years old at recruitment). At six-year follow-up, we determined resilience for 43 UHR individuals.
Support Vector Regression analyses were performed to predict long-term functional and clinical out-
come from baseline MRI measures on a continuous scale, instead of the more typical binary classifica-
tion. This led to predictive correlations of baseline MR measures with level of functioning, and
negative and disorganization symptoms. The highest correlation (r 5 0.42) was found between baseline
subcortical volumes and long-term level of functioning. In conclusion, our results show that structural
MRI data can be used to quantitatively predict long-term functional and clinical outcome in UHR indi-
viduals with medium effect size, suggesting that there may be scope for predicting outcome at the
individual level. Moreover, we recommend classifying individual outcome on a continuous scale,
enabling the assessment of different functional and clinical scales separately without the need to set a
threshold. Hum Brain Mapp 38:704–714, 2017. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

The introduction of criteria for individuals at ultra-high
risk (UHR) for developing psychosis in the mid 1990s
[Yung and McGorry, 1996] has resulted in a sizeable litera-
ture investigating the mechanisms of psychosis onset and
disorder progression [for reviews see Addington and
Heinssen, 2012; Fusar-Poli et al., 2013]. Besides clinical pre-
dictors, measures of brain anatomy and function have
been put forward as possible neurobiological predictors
for the onset of psychosis. Such potential predictors
include loss of brain volume and reduced activation in
insular, temporal, parietal, and superior brain areas (for
review see Wood et al., 2013]. To date, such studies have
focused on predicting psychosis onset. Although it is rele-
vant to predict who will make a transition to psychosis
and who will not, it is at least as important to be able to
predict who will recover from their at risk state and go on
to function well, i.e., who will prove to be resilient. This is
particularly important as the rate of transition to psychosis
reported in studies has been becoming lower in recent
years, leading to a call for studies of UHR remission
[Addington et al., 2011; Simon et al., 2011, 2013; de Wit
et al., 2014]. Moreover, the identification of predictors of
resilience could lead to a better understanding of the het-
erogeneity in outcome and ultimately the disorder itself.

We have previously studied remission and explored
brain development in resilient and non-resilient UHR indi-
viduals, defined by long-term functional outcome [De Wit
et al., 2016]. We found widespread differences in brain
volume that were already present at young age, as well as
differences that appeared later in development. The differ-
ences that were already present at young age (12 years)
included reductions in volume of frontal, temporal and
parietal cortex. As these differences were already present
at first assessment, they may be promising for predicting
who will recover from an at-risk state and who will not.

The majority of studies exploring neurobiological
markers have used group-level statistical analysis, thereby
limiting the clinical applicability of findings. Multivariate
pattern recognition methods can be used to overcome
these limitations. These methods provide the possibility to
make inferences about a subject’s health status at an indi-
vidual level and thus are more suited for clinical decision

making purposes [Zarogianni et al., 2013]. So far, machine-
learning studies in UHR individuals have been scarce and
although pattern recognition has often been used in other
clinical context [see for reviews: Mourao-Miranda et al.,
2011; Wolfers et al., 2015], classification using neuroimag-
ing data in the UHR field is still in its infancy. A promis-
ing accuracy of 82% was shown in a study discriminating
UHR individuals who developed psychosis from those
who did not using structural MRI and four-year clinical
follow-up data [Koutsouleris et al., 2009]. Only one study
[Kambeitz-Ilankovic et al., 2015] used structural brain
markers to predict individual outcome based on level of
functioning rather than transition to psychosis and found
that cortical surface patterns predicted good versus poor
outcome status at two-year follow-up with an accuracy of
82%. These studies have used support vector machines
(SVM) to classify groups in a binary manner (e.g., transi-
tion vs. non-transition). However, the threshold for divid-
ing the group into transition versus non-transition
subgroups (or good versus poor outcome) is arbitrary by
definition, and there has been much discussion about the
validity of the threshold for psychosis [Fusar-Poli and Van
Os, 2013; Yung et al., 2010]. By using measures on a con-
tinuous scale one does not have to make an artificial divi-
sion in the sample. The technique of Support Vector
Regression (SVR) permits the quantitative prediction of a
variable of interest (e.g., a clinical symptom score) without
the need for a discrete categorical decision (e.g., affected
vs. unaffected), allowing exploration of outcome on a
gradual scale. To date, only Tognin and colleagues have
attempted to predict outcome on a continuous scale [Tog-
nin et al., 2013]. Using the Positive and Negative Syn-
drome Scale (PANSS), they found a correlation of 0.34
between two-year symptom progression and baseline cor-
tical thickness. These results are encouraging, as they sug-
gest brain measures may be useful for predicting later
outcome in a clinically relevant manner. However, two
years is not long in clinical terms and the long-term utility
of such predictions needs to be assessed. Therefore, we
followed up adolescents at UHR for psychosis over a six-
year period and monitored clinical and functional out-
come. We focused on SVR with baseline structural MRI
data to individually predict long-term functional and clini-
cal outcome on a continuous scale. To allow comparison
with earlier studies, we performed complementary SVM
analyses to separate UHR individuals from typically
developing controls and resilient from non-resilient UHR
individuals in a binary manner.

METHODS

Participants

All data were collected at the Department of Psychiatry
at the University Medical Center Utrecht, Brain Center
Rudolf Magnus in the Netherlands. Participants were

Abbreviations

IQ Intelligence quotient
LGI Local gyrification index
LOO Leave-one-out
ROC Receiver operating characteristic
SIPS Structured Interview for Prodromal Syndromes
SVM Support vector machines
TDC Typically developing controls
TE Echo time
TR Repetition time
UHR Ultra-high risk
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between 12 and 18 years of age at the time of recruitment
and were included after the nature of the experimental
procedures was explained and written informed consent
was obtained. The study was approved by the Dutch Cen-
tral Committee on Research Involving Human Subjects.

Recruitment details have been previously described
[Sprong et al., 2008; Ziermans et al., 2011]. Briefly, adoles-
cents at UHR were referred by general practitioners or
other psychiatry clinics. They had to fulfill at least one of
the following criteria: (1) attenuated positive symptoms,
(2) brief, limited, or intermittent psychotic symptoms, (3)
genetic risk for psychosis combined with a deterioration in
overall level of social, occupational/school, and psycholog-
ical functioning in the past year or (4) two or more of nine
basic symptoms of mild cognitive disturbances. The first
three inclusion criteria were assessed using the Structured
Interview for Prodromal Syndromes (SIPS) [McGlashan
et al., 2001] and the Family Interview for Genetic Studies
[Maxwell, 1982]. The fourth inclusion criterion was
assessed using the Bonn Scale for the Assessment of Basic
Symptoms-Prediction List [Schultze-Lutter and Klosterk€ot-
ter, 2002]. Exclusion criteria were: a past or present psy-
chotic episode lasting more than one week, traumatic
brain injury or any known neurological disorder, and ver-
bal intellectual IQ< 75. The typically developing control
(TDC) group consisted of adolescents recruited through
secondary schools in the region of Utrecht. They were
excluded if they met any UHR-criterion, if they or any first
degree relative had a history of any psychiatric illness, or
if they had a second-degree relative with a psychotic
disorder.

At baseline, 64 UHR individuals and 62 TDC completed
clinical assessment and an MRI scan. Clinical follow-up
assessments were conducted at nine months, 18 months,
24 months, and 72 months post-baseline. Follow-up MRI
scans were collected at 24 months and six years post-
baseline. For the purpose of this study only baseline MRI
data were used. To investigate the predictive value of neu-
roimaging for long-term functional and clinical outcome,
the six-year follow-up data of the SIPS interview and the
mGAF scale were used. Of the 64 UHR individuals at
baseline, 41 individuals consented to long-term (six-year)
follow-up. Reasons for discontinuation were: (1) assess-
ments were considered too time consuming by the indi-
viduals (n 5 18), (2) the individual could no longer be
contacted (n 5 4), and (3) the individual had emigrated
(n 5 1).

For the complementary analyses of predicting outcome
on a binary scale, six-year follow-up data was used to
divide the UHR group into “resilient” and “non-resilient”
subgroups. We used the outcome measure “functional out-
come” to define resilience, using the modified Global
Assessment of Functioning (mGAF) scale [Hall, 1995].
Poor functional outcome (non-resilient) was defined as an
mGAF score of< 65 and good functional outcome (resil-
ient) as an mGAF score of� 65 [de Wit, et al., 2016].

Details of this procedure have been described previously
[de Wit, et al., 2016]. Global intellectual functioning (IQ)
was assessed using the Wechsler Intelligence Scales
[Wechsler, 1997; Wechsler, 2002].

Image Acquisition

MRI scans were acquired on a single 1.5-T scanner (Phi-
lips, Best, The Netherlands). Whole brain T1-weighted
three-dimensional fast field echo scans were made with
1.5-mm contiguous coronal slices of the whole head [256
3 256 matrix, FoV 5 256 mm, echo time (TE) 5 4.6 ms, rep-
etition time (TR) 5 30 ms, flip angle 5 308].

Image Processing

Scans were processed and analyzed using FreeSurfer v

5.1.0 software. Technical details of the automated recon-
struction scheme of this well-validated software program
are described elsewhere [Carmona et al., 2009; Dale et al.,
1999; Fischl et al., 1999]. Before quantitative analyses could
be performed, output required qualitative inspection. Sur-
face reconstruction, cortical parcellation and white matter
segmentation were therefore evaluated for accuracy. Man-
ual edits were performed as necessary by a rater blind to
subject identity and group membership. Edits included
removal of non-brain tissue and perfecting the white mat-
ter mask. For these manual interventions standard proce-
dures, documented on the FreeSurfer website, were used.
We calculated average volume (mm3), cortical thickness
(mm), surface area (mm2), and gyrification for the 34 corti-
cal structures in each hemisphere from the Desikan-
Killiany atlas (4 3 34 3 2 5 272 measurements) [Desikan
et al., 2006]. For volume, extra measures included cortical
volume (left, right, and total), cortical white matter volume
(left, right, and total) and total gray matter volume (seven
measurements). For surface area, extra measures included
white surface area (left and right, two measurements).
Gyrification could not be estimated for seven scans,
because of FreeSurfer processing errors. We also measured
the volume of subcortical structures (n 5 25, including ven-
tricular system), as well as total subcortical gray matter
volume and gray and white matter separately for the cere-
bellum (left and right, five measurements). This resulted
in a total of 311 features that were available for the SVM
and SVR models. To correct for possible influences of age
and gender, effects of age and gender were regressed out,
and all brain imaging data were standardized by subtract-
ing the mean and dividing by the standard deviation. To
test the robustness of results, extra analyses were per-
formed on a matched sample of UHR individuals (n 5 53)
and TDC (n 5 53) where individuals were matched on age
and gender. Results of the latter analysis are included in
the Supporting Information.

r de Wit et al. r

r 706 r



Classification Models

To solve our classification problem, we used SVM, a
supervised learning algorithm that is frequently used in
psychiatric neuroimaging [Orr�u et al., 2012]. The SVM
model is trained to classify subjects based on their features
[Vapnik, 1999]. Full details of the modeling procedure
have been described previously [Nieuwenhuis et al., 2012;
Schnack et al., 2014]. Briefly, each subject i is represented
by features congregated into a vector xi. These vectors
exist in a high dimensional feature space, in which a flat
decision surface is constructed to separate the subjects
from different classes. This is accomplished by the intro-
duction of a decision function y(xi):

y xið Þ 5 wT � xi– b;

that vanishes at the decision surface. The weight vector
w is a normal vector to this surface; b is an offset. In the
training phase, each subject has a label ti (e.g., TDC 21;
UHR individuals 1), and the function is optimized by
requiring y(xi)< 0 if ti 5 21, and y(xi)> 0 if ti 5 1. When
applying the model, this decision function is used to clas-
sify the test subjects according to the sign of y(xi). The
weight-vector w provides information on feature impor-
tance, as well as whether it is either an increase or
decrease of a particular feature’s value that contributes to
being classified as either 1 or 21 (in this example UHR
individual or TDC).

There can be many surfaces that separate the classes.
The SVM chooses the so-called optimal separating hyper-
plane (OSH) such that the space between the two classes,
which is called the margin, is made as large as possible.
The position of the OSH is determined by a subset of the
subjects, the so-called support vectors. This is a necessary
condition for generalization of the model to new subjects.
There is a free parameter C in SVM that influences the
narrowness of the margin, which was optimized as
described in Nieuwenhuis et al., 2012.

For this study we focus on SVR. Whereas SVM classi-
fies on a binary scale, the SVM approach has also been
adapted to predict numerical values through SVR [Smola
and Sch€olkopf, 1998]. Instead of constructing a hyper-
plane for classification, SVR derives a function on the
basis of training data to predict numerical values. It uses
the same principles as the SVM for classification, but with
an additional parameter, m, that controls the number of
support vectors and training errors [Smola and Sch€olkopf,
1998].

First, as a proof of principle, we built a model to sepa-
rate UHR individuals from TDCs (model A). Next, we
built models to predict clinical and functional outcome in
UHR individuals at six-year follow-up: one binary model
to separate resilient UHR individuals from non-resilient
UHR individuals at six-year follow-up (model B, binary)
to be able to compare our results to previous studies. The
focus of this study is on the four continuous models

(models C) that we built to predict functional outcome
(model C1) and clinical outcome (models C2-4) on a con-
tinuous scale:

A. UHR-TDC, to separate UHR individuals from TDCs
(binary; SVM)

B. R-NONR, to separate resilient (R) UHR individuals
from non-resilient (NON-R) UHR individuals on a
binary scale (binary; SVM)

(C1) mGAF score at six-year follow-up (continuous, SVR)
(C2) SIPS Positive score at six-year follow-up (continu-

ous, SVR)
(C3) SIPS Negative score at six-year follow-up (continu-

ous, SVR)
(C4) SIPS Disorganization score at six-year follow-up

(continuous, SVR)

All models were built using baseline features of a single
type, respectively: baseline cortical volume, cortical thick-
ness, surface area, gyrification [local gyrification index
(LGI)] and subcortical volumes as described above. In
addition, models based on combinations of different fea-
ture types were also built. As the SIPS “Disorganization”
subscale score differed significantly between resilient and
non-resilient UHR individuals at baseline, we also built
models including MRI-based features and the baseline
SIPS Disorganization score as a predictor.

Performance Measures and Statistical

Significance Testing

The quality of an SVR model was assessed by the corre-
lation coefficient (r) between true and predicted values.

The quality of a SVM model was assessed by three
quantities:

� Sensitivity 5 TP/(TP 1 FN), where TP is the number
of true positives (correctly classified patients), and FP
is it the number of false positives.
� Specificity 5 TN/(TN 1 FP), where TN is the number

of true negatives, and FN is the number of false
negatives.
� Average accuracy 5 (sensitivity 1 specificity)/2.

The accuracy of the models was tested using leave-one-
out (LOO) cross validation [Nieuwenhuis et al., 2012]. In
this procedure each subject is taken out once and used to
test the prediction model built on the other subjects. To test
the statistical significance of the corresponding accuracies
and weights, we randomly permuted the labels of the train-
ing sample and built models from these data. We repeated
this process 1000 times to determine null-distributions of
accuracies, correlation coefficients and weights. P-values of
the accuracy, correlation coefficient and weights were calcu-
lated as the fraction of models from the permutation proce-
dure that had a larger accuracy/correlation coefficient/
weight than the accuracy/correlation coefficient/weight of
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our full model. The size and significance of the weights
provides an indication of the relative importance of the
respective features for classification and prediction. It
should be noted, however, that these values should be
interpreted with care [Haufe et al., 2014].

Finally, we performed a receiver operating characteristic
(ROC) analysis to illustrate the performance of the best
binary classifier model (SVM). The curve was created by
plotting the true positive rate against the false positive
rate at various threshold settings.

Implementation and Statistical Analyses

The open source machine learning library LIBSVM [Chang
and Lin, 2011] was integrated with our own software to car-
ry out the SVR and SVM classifications [Nieuwenhuis et al.,
2012]. During training the model, we weighted the cases
according to the inverse of the number in their respective
groups, using the libsvm ’weight’ option. The statistical

software package IBM SPSS version 22.0 was used (1) to test
for between-group differences in the demographic and clini-
cal data (t-test/Fisher’s exact/Mann Whitney).

RESULTS

Demographic and Clinical Characteristics

When the whole group of UHR individuals was compared
to the group of TDCs, only IQ differed between groups,
with lower IQ for UHR individuals than TDCs (t 5 3.53,
P 5 0.001) [Ziermans et al., 2014]. A full list of demographic
characteristics is provided in the Supporting Information
(Supporting Information Table I). There were no statistical
differences in the demographic variables between resilient
and non-resilient UHR individuals (Table I). Clinically, there
were few differences in baseline symptoms with only ‘Disor-
ganized symptoms’ lower in resilient UHR individuals than
non-resilient UHR individuals (U 5 113,5, P 5 0.016). At six-

TABLE I. Demographic and clinical data of resilient and non-resilient UHR individualsa

Resilient (R) Non-Resilient (NON-R) R vs. NON-R

Number of individuals (n) 17 24 n.s.
Gender, M/F (n) 13/4 14/10 n.s.
Premorbid IQ, mean (SD) 101.18 (12.89) 101.88 (10.46) n.s.
Age at baseline, years

Mean (SD) 15.42 (2.20) 15.86 (2.32) n.s.
Range 12.31–19.64 12.28–19.44

Age at 6-year follow-up, years
Mean (SD) 21.34 (2.58) 20,96 (2.31) n.s.
Range 17.88–25.79 16.84–24.80

SIPS/SOPS baseline, mean (SD)
Total score 21.35 (10.74) 26.25 (13.49) n.s.
Positive symptoms 7.41 (4.53) 8.67 (3.86) n.s.
Negative symptoms 4.24 (4.66) 4.75 (3.88) n.s.
Disorganized symptoms 3.41 (3.30) 5.79 (3.78) U 5 113,5, P 5 0.016
General symptoms 6.29 (4.33) 7.04 (4.81) n.s.

mGAF baseline, mean (SD) 57.06 (13.57) 54.92 (16.59) n.s.
SIPS/SOPS 6-year follow-up, mean (SD)

Total score 11.75 (8.36) 38.71 (17.09) U 5 22.5, P 5<0.001
Positive symptoms 3.88 (3.59) 10.71 (5.90) U 5 57,0, P 5 <0.001
Negative symptoms 3.88 (3.72) 12.92 (7.47) U 5 49.0, P 5 <0.001
Disorganized symptoms 3.19 (2.74) 7.75 (3.57) t 5 4,33, P 5 <0.001
General symptoms 1.50 (1.59) 7.33 (4.59) U 5 42.5, P 5 <0.001

mGAF 6-year follow-up, mean (SD) 77.94 (7.30) 44.08 (11.78) t 5 10.49, P 5 <0.001
Psychotropic medication baseline, any n.s.

No 9 13
Yes 8 11

Psychotropic medication 6-year follow-up, any n.s.
No 13 11
Yes 4 13

Notes: aSubgroups are based on functional outcome at 6-year follow-up; outcome was unknown for 23 UHR individuals not included
here.
UHR 5 Individuals at ultra-high risk for psychosis; IQ 5 intelligence quotient; SD 5 standard deviation; SIPS/SOPS 5.
Structured Interview for Prodromal Symptoms / Scale of Prodromal Symptoms; mGAF 5 Modified Global Assessment of Functioning.
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year follow-up, resilient UHR individuals had lower scores
than non-resilient UHR individuals on all symptom scales,
as well as a higher mGAF score (P< 0.001 for all compari-
sons; Table I). The groups did not differ in terms of the use
of psychotropic medication.

Comparison to Previous Literature

(Binary Classification)

To allow comparison to earlier studies, we first built
binary classification models separating UHR individuals
from TDCs as well as resilient UHR individuals from non-
resilient UHR individuals:

Separation of UHR individuals and TDCs (model A)

The highest average accuracy (using LOO cross valida-
tion) was achieved using subcortical volumes (64%) with
a sensitivity of 59%, a specificity of 68% and significance
of P 5 0.018. Surface area and cortical thickness features
also yielded significant models with a sensitivity of 66%,

a specificity of 56%, and an average accuracy of 61%
(P 5 0.005) for surface area and a sensitivity of 56%, a
specificity of 63%, and an average accuracy of 60%
(P 5 0.007) for cortical thickness. Other brain measures
did not discriminate between UHR individuals and
TDCs. Results are provided in Supporting Information
Table II.

Separation of resilient UHR individuals and non-

resilient UHR individuals (model B)

Models that separated resilient from non-resilient UHR
individuals on a binary scale (model B, Table II) included
those using cortical volume (LOO average accuracy of 69%,
P 5 0.015), gyrification (LOO average accuracy of 73%,
P 5 0.016), and subcortical volumes (LOO average accuracy
of 67%, P 5 0.047). Figure 1 shows the weight-vector w from
the best model (gyrification) mapped onto the brain. Warm
colors indicate that increases in LGI contribute to being clas-
sified as non-resilient, while cool colors indicate that
decreases in LGI contribute to being classified as non-

TABLE II. Results of baseline MRI features separating resilient from non-resilient UHR individuals (models B) and

quantitative predictions of long-term functional and clinical outcome (models C)

Binary models (B) Sensitivity (%) Specificity (%) Average accuracy (%) P

Cortical Volume 71 67 69 0.015*
Surface area 47 42 44 n.s.
Cortical thickness 47 50 49 n.s.
Gyrification 69 78 73 0.016*
Subcortical volume 59 75 67 0.047*
SIPS Disorganization (all) 76 71 74 0.001**
SIPS Disorganization (gyrification subset) 75 78 76 0.002**
Gyrification 1 Subcortical Volume 69 78 73 0.021*
SIPS Disorganization 1 Gyrification 69 83 76 0.005**
SIPS Disorganization 1 Subcortical Volume 76 71 74 0.013*
SIPS Disorganization 1 Cortical Volume 59 75 67 0.002**
SIPS Disorganization 1 Gyrification 1 Subcortical Volume 69 94 82 0.003**

Continuous models (C) r P

Model C1: mGAF score at 6-yr follow-up

Gyrification 0.382 0.048*
Subcortical Volume 0.424 0.008**
SIPS Disorganization 1 Gyrification 1 Subcortical Volume 0.327 n.s.
Model C2: SIPS Positive score at 6-yr follow-up
Cortical thickness 0.258 n.s.
Model C3: SIPS Negative score at 6-yr follow-up
Subcortical Volume 0.349 0.048*
Model C4: SIPS Disorganization score at 6-yr follow-up

Gyrification 0.411 0.044*
Subcortical Volume 0.342 n.s.
SIPS Disorganization 1 Gyrification 1 Subcortical Volume 0.378 n.s.

Notes: aSubgroups are based on functional outcome at 6-year follow-up.
UHR 5 Individuals at ultra-high risk for psychosis; mGAF 5 Modified Global Assessment of Functioning; SIPS 5 Structured Interview
for Prodromal Symptoms; n.s. 5 non-significant.
*P< 0.05.
**P< 0.01.
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resilient. Significant contributions to the model’s discrimi-
native pattern were found for the inferior frontal gyrus
(pars orbitalis), fusiform gyrus, lateral orbitofrontal
gyrus, and precentral gyrus. For subcortical volumes,
substantial contributions were found for the right cere-
bellum, corpus callosum, amygdala, thalamus, and basal
ganglia (pallidum). The binary classification model with

the highest average accuracy included a combination of
gyrification, subcortical volumes, and SIPS disorganiza-
tion (which differed between groups at baseline) with an
average accuracy of 82% (sensitivity 69%, specificity
94%, P 5 0.003). For the model with highest accuracy,
predictive value is shown in a ROC curve in Figure 2
with an Area-Under-the-Curve of 0.753.

Figure 1.

Weight-vector (w-map) of the model best separating resilient from non-resilient UHR individuals

(gyrification). [Color figure can be viewed at wileyonlinelibrary.com]
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Long-Term Outcome Prediction of UHR

Individuals on a Continuous Scale (Models C)

Predictions of clinical and functional outcome at six-year
follow-up on a continuous scale are shown in Table II.
Models with predictive correlation coefficients close to
zero are not listed. Gyrification and subcortical volumes
yielded significant predictive correlations with level of
functioning at six-year follow-up (Model C1: r 5 0.382,
P 5 0.048 and r 5 0.424, P 5 0.008 respectively), negative
symptoms (Model C3: r 5 0.349, P 5 0.048 for subcortical
volumes), and disorganization symptoms (Model C4:
r 5 0.411, P 5 0.044 for gyrification). Predictions and
weights of the model with the highest predictive value
(Model C1, baseline subcortical volumes predicting GAF
score at six-year follow-up) are shown in Figure 3. Sub-
stantial contributions were primarily found for the corpus
callosum, caudate nucleus, thalamus, pallidum, cerebel-
lum, amygdala and third and lateral ventricle. Of these,
only the weight of the corpus callosum (mid posterior
part) reached statistical significance (P 5 0.039). The addi-
tion of SIPS disorganization score to the brain models did
not improve predictive value with correlations of 0.327
with GAF score at six-year follow-up (n.s.) and 0.378 with
SIPS Disorganization score at six-year follow-up (n.s.).

Figure 2.

Receiver-operator-curve of the class probability values obtained

from the SVM model of subcortical volume, gyrification and SIPS

Disorganization. AUC 5 area under the curve; SVM 5 support vector

machine; SIPS 5 Structured Interview for Prodromal Symptoms.

Figure 3.

SVR subcortical volumes predicting GAF-score at 6-year follow-up. (A) Weight-vector bar chart.

(B) Scatter plot with linear trendline. CC 5 corpus callosum; SVR 5 support vector regression;

GAF 5 global assessment of functioning. * 5 P< 0.05. [Color figure can be viewed at wileyonlineli-

brary.com]
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Post-Hoc Analyses on a Matched Sample of UHR

Individuals and TDC

To test the robustness of results, extra analyses were
performed on the same sample of UHR individuals and
TDC, but, instead of regressing gender and age out, the
sample was matched on age and gender. Results are pro-
vided in Supporting Information Tables III and IV and
show that results are comparable with minor differences
between the two strategies.

DISCUSSION

In this paper, we set out to use baseline structural MRI
data to predict long-term functional and clinical outcome
in adolescents at UHR for psychosis on an individual
basis. Predictions of long-term functioning on a continuous
scale led to predictive correlations between baseline MRI
measures and level of functioning (mGAF score), and neg-
ative and disorganization symptoms at six-year follow-up.
The highest correlation (0.42) was found between baseline
subcortical volumes and long-term level of functioning.
Subcortical volumes with substantial contributions to this
model included the corpus callosum, caudate nucleus,
thalamus, pallidum, and amygdala as well as cerebellum
and third and lateral ventricle.

To date, only one other study has tried to make quanti-
tative predictions of clinical symptoms in UHR individuals
at follow-up [Tognin et al., 2013]. Tognin and colleagues
reported a predictive correlation of 0.34 between baseline
cortical thickness and progression of total positive- and
negative symptoms from baseline to two-year follow-up.
In this study, highest prediction accuracies were found
between gyrification and disorganization symptoms
(r 5 0.41) and subcortical volumes and level of functioning
(r 5 0.42). We looked at positive, negative and disorganiza-
tion symptoms separately and found that it was not posi-
tive symptoms, but rather level of functioning and
disorganization symptoms that were most accurately pre-
dicted by baseline MRI data. This underscores the idea
that not only positive symptoms are important for long-
term outcome, but that other symptom clusters and level
of functioning are equally important for the long-term out-
come of UHR individuals [Carri�on et al., 2013; Fusar-Poli
et al., 2013; Fusar-Poli and Borgwardt, 2007]. SVR has been
used more often for predicting brain age in psychiatric dis-
orders, especially in schizophrenia [Koutsouleris et al.,
2014b; Schnack et al., 2016]. By measuring the difference
between chronological and neuroanatomical brain age,
accelerated brain age in schizophrenia as well as the UHR
state was shown. The focus in this study was on predict-
ing clinical and functional outcome, where we attempted
to remove possible influences of age (and sex). In a future
study, it would be valuable to investigate if, using brain
measures that are not corrected for age, these findings of

accelerated aging of the brain can be replicated in our
UHR cohort.

Most machine-learning studies attempting to classify
UHR individuals have focused on binary classification sep-
arating UHR individuals who developed psychosis from
those who did not. The accuracy of their predictions based
on structural MRI data range from 80 to 84% [Koutsouleris
et al., 2009; Koutsouleris et al., 2012; Koutsouleris et al.,
2014a]. To allow comparison to these studies we comple-
mentary separated resilient from non-resilient UHR indi-
viduals in a binary manner. We achieved accuracies
ranging from 67 to 73%, based on gyrification, cortical vol-
ume and subcortical volumes. Substantial contributions to
these models came from frontal (gyrification) and temporal
(cortical volume) brain regions as well as corpus callosum,
amygdala, thalamus, basal ganglia and cerebellum. These
areas are in agreement with earlier UHR studies [for
review see: Wood et al., 2013]. The combination of SIPS
disorganization symptom score and brain measures
improved accuracy, with maximum accuracy of 82%. It
should be noted that this model, with in total 99 features
from three different modalities included, has the highest
complexity as compared to the other models. More com-
plex models are more prone to overfitting and may conse-
quently show poorer generalization in new samples.
Interestingly, specificity was particularly high for this
model, with only one non-resilient individual being mis-
classified as resilient at six-year follow-up. This is of great
importance as this will result in the inclusion of less false-
positive UHR individuals and consequently, might prevent
unnecessary treatment. Only one previous study has com-
pared good and poor functional outcome instead of com-
paring individuals with and without transition to
psychosis [Kambeitz-Ilankovic et al., 2015] and reported an
accuracy of 82%. Intriguingly, their most accurate model
was based on surface area data while we found that sur-
face area did not discriminate between UHR individuals.
We have previously reported that surface area did not dif-
fer between UHR groups at young age (12–18 years), but
that differences appeared with development [De Wit et al.,
2016]. As such, age differences of the samples could
explain the discrepancy.

Also our subcortical findings overlap with those of earli-
er studies classifying UHR individuals with later transition
to psychosis. Especially the thalamus and basal ganglia
have been consistently reported to differ between groups
[Koutsouleris et al., 2009; Koutsouleris et al., 2012; Mittal
et al., 2010; Wood et al., 2008; Wood et al., 2013]. As our
classification is based on functional outcome, this suggests
that changes in subcortical structures may not be specific
for the development of psychosis, but may rather be asso-
ciated with general psychopathology.

Although the majority of studies have focused on binary
classification, we believe it is important to predict long-
term functioning on a continuous scale because of two rea-
sons. First, it is not necessary to set a threshold, which
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could be of great advantage as there has been much dis-
cussion about the validity of the threshold for psychosis
[Fusar-Poli and Van Os, 2013; Yung et al., 2010]. With a
continuous scale it is not only possible to separate the
poor functioning from good functioning UHR individuals
but also to make predictions on a gradual scale within the
poor and good functioning subgroups, possibly increasing
accuracy. Second, it is possible to look at different clinical
scales separately (e.g., positive, negative, and disorganiza-
tion symptoms). This could be relevant information when
choosing appropriate intervention.

Limitations of our study include our relatively modest
sample size and possible confounders. Due to considerable
attrition during our long follow-up, sample sizes are mod-
est, especially when only the UHR group is included for
analysis. With relatively many parameters this may have
caused overfitting. However, the possibility of overfitting
(and also underfitting) affects every learning algorithm
and validation on an entirely independent dataset is there-
fore needed to test the robustness and generazibility of
our results. Second, as a large number of our UHR indi-
viduals were on psychotropic medication, this could have
played a role in the classification. However, the number of
individuals on medication did not differ between resilient
and non-resilient UHR individuals. Another possible con-
founder was the skewed distribution of gender between
resilient and non-resilient groups, even though the differ-
ence did not reach statistical significance. However, as we
were investigating brain anatomy at one time point rather
than its development over time, we chose to regress gen-
der out rather than to match groups for it. With extra anal-
yses on matched groups, we have shown that the results
and the conclusions drawn from them are robust. Strong
points of this paper include the long follow-up period (six
years) and the use of SVR models to predict outcome on a
continuous scale.

In conclusion, our results show that structural MRI data
can be used to quantitatively predict long-term functional
and clinical outcome in UHR individuals with medium
effect sizes, suggesting that there may be scope for predict-
ing outcome at the individual level. This finding is clinical-
ly important, as individual outcome predictions on a
gradual scale might allow personalized medicine. In addi-
tion, of scientific interest, it permits studying different clin-
ical and functional scales separately.
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