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Abstract: Much of the literature exploring differences between intrinsic and task-evoked brain architec-
tures has examined changes in functional connectivity patterns between specific brain regions. While
informative, this approach overlooks important overall functional changes in hub organization and net-
work topology that may provide insights about differences in integration between intrinsic and task-
evoked states. Examination of changes in overall network organization, such as a change in the concen-
tration of hub nodes or a quantitative change in network organization, is important for understanding
the underlying processes that differ between intrinsic and task-evoked brain architectures. The present
study used graph-theoretical techniques applied to publicly available neuroimaging data collected
from a large sample of individuals (N 5 202), and a within-subject design where resting-state and sev-
eral task scans were collected from each participant as part of the Human Connectome Project. We
demonstrate that differences between intrinsic and task-evoked brain networks are characterized by a
task-general shift in high-connectivity hubs from primarily sensorimotor/auditory processing areas
during the intrinsic state to executive control/salience network areas during task performance. In addi-
tion, we demonstrate that differences between intrinsic and task-evoked architectures are associated
with changes in overall network organization, such as increases in network clustering, global efficiency
and integration between modules. These findings offer a new perspective on the principles guiding
functional brain organization by identifying unique and divergent properties of overall network orga-
nization between the resting-state and task performance. Hum Brain Mapp 38:1992–2007, 2017. VC 2017
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INTRODUCTION

A great deal of fMRI research has been devoted to the
study of correlated spontaneous fluctuations in the blood
oxygen level-dependent (BOLD) signal between areas of
the brain while participants are at rest (e.g., lying still with
eyes closed or staring at a fixation cross) [Biswal et al.,
1995; Buckner et al., 2009; Bullmore and Sporns, 2009; Cal-
houn et al., 2008; Fox and Raichle, 2007; Fox et al., 2005;
Greicius et al., 2003]. This observed functional network
organization is often considered “intrinsic,” meaning that
such organization emerges in the absence of external stim-
ulation. A question under active investigation is the nature
of the modulation of this intrinsic organization by the
administration of stimuli or task demands. Previous stud-
ies have emphasized the consistency of intrinsic functional
connectivity from rest to various tasks [Buckner et al.,
2009], while others have emphasized significant reorgani-
zation from rest to task [DeSalvo et al., 2014; Fransson,
2006; Hasson et al., 2009; Tomasi et al., 2014]. For example,
Calhoun et al. [2008] and Fransson [2006] found that the
same brain areas functionally connected at rest were con-
nected during task performance (auditory oddball and 2-
back working memory tasks, respectively), but both found
that the spatial extent of this connectivity was modulated
during the task. More recently, Cole et al. [2014] demon-
strated a high degree of correspondence between function-
al connectivity estimates at rest and during a variety of
task scans across two large datasets. The spatial correlation
estimate in functional connectivity values between the
averaged multi-task network and resting-state network
was surprisingly strong (i.e., r 5 0.90 for both datasets).
However, a small task-dependent re-organization of func-
tional connectivity was observed as well that was consis-
tent across all tasks, suggesting a task-general change in
functional connectivity from rest.

While the findings from these studies are informative,
the focus on correspondence in functional connectivity
estimates between brain areas across rest and task may
overlook important task-dependent changes in hub organi-
zation or overall network topology. Such important overall
network changes (e.g., a shift in concentration of hub
nodes or a quantitative change in network integration) can
occur even though there may be strong correspondence
overall in the pair-wise functional connectivity estimates
between brain areas across rest and task scans. Thus, a
focus on functional network organization, as opposed to
overall correspondence in pair-wise functional connectivity
estimates, may reveal new insights into similarities and
differences between intrinsic and task-evoked brain
architectures.

A graph theoretical approach is well suited to character-
ize these changes in network organization. Graph theory
allows the representation and quantification of the func-
tional relationships among brain areas described as net-
works of nodes and edges. Various graph-theoretical
methods have been developed to describe the organization

and properties of networks. These metrics have been
applied to numerous network types, including networks
of social interactions, power grids, the internet, disease
transmission, and functional and structural brain imaging
data [Achard et al., 2006; Bassett et al., 2011; Simpson
et al., 2013; Sporns, 2014; Telesford et al., 2011].

Previous graph theoretical studies examining changes in
brain network organization from rest to task have been
somewhat inconsistent in their findings. One issue with
these studies is the use of between-subject designs to
study changes in network organization between intrinsic
and task-evoked architectures [Buckner et al., 2009; Di
et al., 2013]. For example, Buckner et al. [2009] did not
find any significant changes between rest and task scans
in hub structure using separate samples of participants.
However, it’s difficult to determine in these studies wheth-
er differences in intrinsic and task-evoked architectures
are due to differing sample characteristics. Other studies
have observed a shift in network organization from rest to
task in several whole-brain metrics and hub structure
[Moussa et al., 2012; Rzucidlo et al., 2013; Stanley et al.,
2015]. However, these studies were limited in sample size
and only compared resting-state to one or two tasks. To
address these concerns, we used graph-theoretical techni-
ques on a large sample of individuals (N 5 202) provided
by the Human Connectome Project [HCP; Barch et al.,
2013] and a within-subject design in which resting-state
and several task scans are collected from the same partici-
pant, accounting for between-subject variability in network
organization. We assessed hub organization for all datasets
to enable comparison of the anatomical distribution of hub
nodes for each task and resting-state dataset. Additionally,
three widely-used graph-metrics were computed to assess
differences in overall network organization between rest
and task scans: clustering coefficient, global efficiency, and
the ratio of between- to within-module connections. We
hypothesized that despite largely similar overall functional
connectivity patterns between task and resting conditions,
as previously demonstrated, overall functional changes in
hub organization and network topology would be observed.

MATERIALS AND METHODS

Participants

Neuroimaging data from 202 unrelated, healthy, right-
handed adults (Mean age 5 28.61 years (SD: 3.85, range:
22–36); 103 female) made available through the Human
Connectome Project (HCP) 2014 release were used for this
study. Participants were recruited from the surrounding
area of Washington University (St. Louis, MO). All partici-
pants gave informed consent before participating in the
study, as described in Van Essen et al. [2013]. Further
demographic information is provided in Table I. For each
subject, 28 min of resting-state fMRI data and 7 task scans
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(16 subjects had at least one scan missing) were used for
analysis, resulting in a total of 1,583 scans overall.

Data Acquisition and Preprocessing

Whole-brain echo-planar imaging acquisitions were col-
lected using multiband (factor 8) pulse sequences for fast
TR sampling [U�gurbil et al., 2013] on a 3T Siemens Skyra
scanner with a 32-channel head coil (TR 5 720 ms,
TE 5 33.1 ms, flip angle 5 528, FOV 5 208 mm 3 180 mm,
matrix size 5 104 3 90, 72 slices, 2 mm isotropic voxels).
To reduce the signal loss and distortions from the high-
resolution acquisition, all rest and task runs were acquired
in two encoding directions (right–left and left–right,
respectively). Data were collected over the course of two
scanning sessions, spanning 2 days. Resting-state scans
were collected on each day, but only the resting-state scan
for the first day was used in the current analysis. The 7
task scans were collected over the course of the 2 days.

Minimally preprocessed data provided through the HCP
were used for further analyses. The minimal preprocessing
pipeline involved gradient distortion correction, motion
correction, registration to the Montreal Neurological Insti-
tute (MNI) template, and intensity normalization. The
details of the minimal preprocessing pipeline are described
in Glasser et al. [2013]. Additional preprocessing steps
included demeaning, variance normalization (normalizing
the data to their standard deviations from the mean, z-
score) and concatenation of the time series from the right-
left and left–right scans, respectively for the resting-state
data and each task using the Connectome Workbench
[Marcus et al., 2011]. Time courses were despiked using
AFNI’s 3dDespike, an interpolative scrubbing procedure,
and the functional data were spatially smoothed (4mm full

width at half maximum) using the Connectome Work-
bench. In addition, the time courses were detrended (line-
ar and higher order polynomials), nuisance covariate
regression was performed (Friston’s 24 motion parameters,
namely each of the 6 motion parameters of the current
and preceding volume, plus each of these values squared,
ventricle and white matter signals) and the time courses
were band-pass filtered (0.01–0.1 Hz) to isolate the low-
frequency band at which the BOLD signal is most correlat-
ed among brain regions [Fransson, 2005] using the Data
Processing and Analysis for Brain Imaging (DPABI) tool-
box [Yan et al., 2016]. While some studies [Cole et al.,
2014] have not band-pass filtered task fMRI data to pre-
serve possible high-frequency task-activation information,
band-pass filtering in the low-frequency range (0.01–0.1
Hz) was conducted to ensure that differences in network
properties were not the result of differences in high-
frequency noise. No participants included in the analysis
displayed gross motion (relative Root-Mean Squared-
Framewise Displacement [Jenkinson et al., 2002]; RMS-
FD< 0.55 mm; [Satterthwaite et al., 2013]).

Task and Resting-State Datasets

For the resting-state scans (two 14 min sessions; 1,200
volumes each) subjects were instructed to lie with eyes
open and stare at a white fixation cross on a dark back-
ground [Smith et al., 2013]. Seven task runs were also col-
lected for each subject. The seven tasks were collected in
the following order: n-back working memory task (�10
min, data missing from 4 participants), card guessing
game (�6:30 min, data missing from 3 participants), motor
task (�7 min, data missing from 2 participants), story-
comprehension task (�8 min, data missing from 6 partici-
pants), theory of mind task (�7 min, data missing from 5
participants), shape matching (�6 min, data missing from
6 participants), and emotional face matching (�4:30 min,
data missing from 5 participants) (see Table I in Supple-
mentary Materials and Methods). Here we refer to the tasks
as the working-memory task, gambling task, motor task,
language task, social task, relational task, and emotion
task, respectively. The resting-state, working-memory task,
gambling task, and motor task were collected on day 1.
The language task, social task, relational task and emotion
task were collected on day 2.

A brief description of each task is presented here. For
more details see Barch et al. [2013]. The working-memory
task was an N-back task with 0-back and 2-back blocks
with faces, places, tools, and body parts presented as stim-
uli. The gambling task was a card guessing game which
involved guessing the number on a mystery card to win
or lose money in “mostly win” or “mostly lose” outcome
blocks. In the motor task participants were directed to per-
form particular motor movements from the fingers, toes or
tongue in response to visual cues. The language task was
a story-comprehension task with interleaved blocks of

TABLE I. Participant demographics. Demographic infor-

mation on the participants included in this study

(n 5 202)

Age in years

M(SD) 28.61 (3.85)
Gender

# male(%) 99 (0.49)
# female(%) 103 (0.51)
Handedness

M(SD) 77.98 (20.2)
Race

White 134
Black 52
Asian/Pacific Is. 3
More than one 6
Unknown 7
Ethnicity

Not Latino/Hispanic 160
Latino/Hispanic 41
Unknown 1
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brief auditory stories and simple arithmetic problems (e.g.,
“fourteen plus twelve.”). The social task was a Theory of
Mind task where participants are presented with short
video clips of either interacting or randomly moving
shapes. In the relational task, participants are presented
with pairs of objects and were told to distinguish them on
participant or experimenter-specified dimensions. In the
emotion task participants were told to match emotionally
expressive faces (e.g., angry or fearful) or shapes presented
at different locations on a screen.

Network Construction

Following the approach of previous comparisons of rest
and task scans [Buckner et al., 2009; Cole et al., 2014;
Najafi et al., 2016], region-of-interest (ROI) time courses
were extracted using a 264 ROI (6mm spheres) data-driven
functional parcellation scheme [Power et al., 2011; see Fig-
ure 1 in Supplementary Materials and Methods] and correlat-
ed across all ROIs to generate a correlation matrix of
functional connectivity (FC) values between each pair of
ROIs. Networks were then binarized using a proportional
thresholding method, such that FC values above some
arbitrary percent threshold were included as connections,
while the rest were set to zero. The proportional threshold-
ing method that fixes the number of connections across
networks is preferred to a fixed threshold method (e.g.,
significance threshold), a method which is known to con-
found further analyses [van Wijk et al., 2010]. To ensure
that analyses were not contingent upon the choice of one
proportional threshold, all analyses were conducted across
a variety of thresholds (top 10%, 15%, 20%, 25%, 30%,
35%, 40%, 45%, and 50%). A network was created for each
condition (rest, working-memory, gambling, motor, lan-
guage, social, relational, and emotion), resulting in approx-
imately 8 networks for each participant and 1,583
networks overall. In addition, to ensure results were not
contingent on binarized networks, we performed a robust-
ness analysis with weighted networks created with a low
(50%) and high (20%) threshold and surviving connections
were weighted by the magnitude of the Pearson correla-
tion coefficient between the two nodes (negative weights
were set to zero).

Hub Identification

To further explore differences in network organization
between rest and task scans, differences in the spatial dis-
tribution of hub nodes between rest and task networks
were examined. To examine hubs of resting and task scans
we calculated node centrality using the GraphVar interface
for Brain Connectivity Toolbox (BCT) functions [Krusch-
witz et al., 2015; Rubinov and Sporns, 2010]. Because there
are multiple measures of node centrality or “hubness”
[Power et al., 2013; van den Heuvel and Sporns, 2013], the

centrality of a node was calculated using four centrality
metrics:

Degree Centrality (D): the number of connections of each
node. Degree is the most commonly used metric for node
centrality [Buckner et al., 2009; Tomasi and Volkow, 2011]
and provides an estimate of how connected the node is to
the rest of the network.

Closenness Centrality (C): the inverse of the mean dis-
tance (shortest path length) between the node and all other
nodes in the graph [Freeman, 1978]. Nodes with high val-
ues of closeness centrality are “closer” in terms of geodesic
distance, and exert greater influence in the network.

Eigenvector Centrality (E): the sum of the centralities of a
node’s directly connected neighbors [Lohmann et al.,
2010]. Eigenvector centrality is derived from the eigenvec-
tor associated with the largest eigenvalue (k1, known as
the first principal component) of the network matrix (i.e.,
matrix of 1’s and 0’s representing connections and non-
connections). A node with a large number of connections
does not necessarily have a high eigenvector centrality,
but is considered central if it connects to other important
nodes.

Participation Coefficient (PC): the proportion of connec-
tions each node has outside of its own module (i.e., inter-
modular connections). Importantly, the calculation of
participation coefficient (PC) requires an accurate parcella-
tion of the network into modules, and here we adopted
the standard a priori network partition of Power et al.
[2011] for this purpose.

An overall centrality (D, C, E, and PC) for each node in
every network was calculated by summing each node’s
centrality across threshold parameters from top 10% to top
50% thresholds in 1% increments [Power et al., 2013].
Those nodes in the top 10% of the distribution of centrality
values for that network were considered hub nodes, con-
sistent with thresholds used in previous studies [Bolt
et al., 2016; Moussa et al., 2012; Rzucidlo et al., 2013]. The
hub analysis was also conducted with a top 20% distribu-
tion threshold to ensure the results were not contingent
upon the chosen top 10% threshold. Consistency of hub
node classification (the number of times the node was clas-
sified as a hub) for that task scan was used as a measure
of that node’s importance for that task [Hayasaka and
Laurienti, 2010; Moussa et al., 2012]. Nodes with high
overlap of hub classification across networks were consid-
ered more central for that task. In addition to the binarized
consistency approach for calculating hub centrality, we cal-
culated weighted versions of the four centrality metrics (as
described by Rubinov and Sporns [2010]) for weighted net-
works (top 50% and top 20% threshold) and averaged
node centrality values across networks for each task.
Nodes with higher average centrality values for that task
were considered more central for that task.

To test for overall differences in the spatial distribution
of hub nodes between rest and task scans, a recently
developed permutation testing framework that takes into
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account the consistency of hub nodes within and between
groups or conditions was implemented for each centrality
metric [Simpson et al., 2013]. We briefly describe the
approach here. The Jaccard index (JI), a similarity function
used to quantify the union between two sets (e.g., net-
works), was used to quantify overlap in hub nodes between
rest and task networks. If the two scans (e.g., Rest versus
Emotion) are sufficiently different in the consistency in the
spatial distribution of its hub nodes, it is expected that the
calculated J will be, on average, smaller between scans,
compared with the calculated J within the same scan. The
ratio of the average within-scan JI to average between-scan
JI, the Jaccard Ratio (RJC), assessed differences in hub struc-
ture between resting and task scans. An RJC> 1 indicates
greater within-scan similarity compared with between scan
similarity, signifying the scans differ significantly in the
spatial distribution of its hub nodes. An RJC � 1 indicates
that there is no difference in the spatial distribution of hub
nodes between the two scans. Because of the within-subject
design of the study, a paired two-sample permutation test
was used. Thus, to construct the null distribution of no dif-
ferences between the two scans, the scan labels were per-
muted within each participant and the statistic was
computed again for the permuted sample. This was repeat-
ed 100,000 times to construct a null distribution. The
observed value was compared with the constructed null
distribution to determine significance.

In addition to the test of overall differences in hub struc-
ture for each centrality metric, we examined the nodes with
the top consistency values in both resting and task scans.
Because the consistency values for all four centrality metrics
were highly correlated in our data (see Fig. 2 in Supplemen-
tary Materials and Methods), we performed a principal com-
ponents analysis (PCA) on the combined matrix of node 3

metric consistency values to form a single centrality or
“hubness” metric, rather than examining each hub metric
separately (D, E, C, and PC). This approach was conducted
for both binary-consistency and weighted approaches. The
combined matrix was formed by first vertically concatenat-
ing the z-scored matrix of node consistency values for each
task, then horizontally concatenating the z-scored consisten-
cy values for each metric into a 2,112 (node) 3 4 (centrality
metric) matrix. The first component was extracted and com-
ponent scores were calculated for each node in each task on
the first component. Of note, the loadings of each metric on
the first component were approximately equal (D: 0.53, E:
0.5, C: 0.49, PC: 0.45 for the binary approach and D: 0.53, E:
0.54, C: 0.49, PC: 0.44 for the weighted approach). The score
on this component represented a composite measure of the
node’s “hubness” (H) for that scan.

Whole-Brain Network Metrics

Network metrics were calculated using BCT functions
[Kruschwitz et al., 2015; Rubinov and Sporns, 2010]. The
following metrics were calculated for each network:

Clustering Coefficient (CC): the fraction of a node’s neighbors
that are also neighbors of each other [Watts and Strogatz,
1998]. This was averaged across all nodes of the network to
get an average CC for the network. Higher values represent
the presence of more average clustered connectivity around
individual nodes. As this value has been shown to be associ-
ated with average network density [van Wijk et al., 2010], val-
ues for each network were normalized to 20 corresponding
random networks with preserved number of nodes, connec-
tions and degree distribution [Smit et al., 2008].

Global Efficiency (Eglob): is the inverse of characteristic
path length, which is a measure of the average number of
minimum connections that should be passed to join any
two nodes in a network [Latora and Marchiori, 2001].
Global efficiency is a scaled measure that ranges from 0 to
1, with a value of 1 signifying maximum distributed proc-
essing. As this value has been shown to be associated with
average network density [van Wijk et al., 2010], values for
each network were normalized to 20 corresponding ran-
dom networks with preserved number of nodes, connec-
tions and degree distribution.

Ratio of Between- to Within-Module Connections: the average
number of connections between nodes within a module divid-
ed by the average number of connections between nodes from
different modules. The a priori parcellation of Power et al.
[2012] was used as a high-resolution modular partition to cal-
culate within- and between-module connections.

To ensure the results were robust to the thresholding
method employed, weighted versions of these metrics
were computed on weighted networks thresholded at a
low (top 50%) and high (top 20%) threshold. The values
for each network were normalized to 20 corresponding
weighted random networks with preserved number of
nodes, connections, and weight distribution.

Statistical Analysis of Whole-Brain Network

Metrics

To quantify differences in graph metrics across resting-
state and task scans, a linear mixed-model with scan (e.g.,
rest and working-memory) as a categorical factor and sub-
ject modeled as a random effect was performed for each
metric. This statistical approach was chosen over the more
common repeated-measures ANOVA, which assumes a
compound symmetry form of the within-subject variance-
covariance matrix. However, this assumption is likely to
be violated given the unequal intervals of collection, with
some tasks collected on the same day, and others separat-
ed by a day. To correct for possible covariance differences
among tasks that were/were not separated by scanning
session, an unstructured covariance matrix was used in
which all elements of the variance-covariance matrix are
estimated, rather than assuming a homogenous variance-
covariance matrix that may bias results. In addition, a sum-
mary motion statistic, average relative RMS-FD and average
respiration volume (RVT) that was derived from
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measurements from the Siemen’s respiratory belt placed on
the participant’s abdomen during each scan (average RVT
was calculated by simply averaging across the RVT time
course from each scan) were included as covariates in the
model, as motion and respiration are known to affect FC
estimates [Birn, 2012; Power et al., 2012]. In addition, the
same linear mixed-modeling approach was used to estimate
possible task-general differences in average motion or respi-
ration to ensure results were not driven by these effects.
Parameters were estimated using the restricted Maximum
Likelihood (ReML) method. All statistical analyses were car-
ried out in the Statistical Package for the Social Sciences
(IBM SPSS Statistics for MAC, Version 22.0).

Analyses Controlling for Task-Activation Effects

To ensure that differences between rest and task net-
work configurations were not driven by task-related acti-
vations influencing task-related functional connectivity, we

conducted the above analyses with the blocked events from
each task regressed out of each region’s time series. This
involved convolving regressors of each block from each of the
seven tasks with a double-gamma Hemodynamic Response
Function (HRF), and fitting the task-specific convolved block
regressors to each region’s time series from each subject using
the General Linear Model (GLM). The residuals from this lin-
ear model were then used to calculate FC matrices. The
graph-theoretical results from this analysis were then com-
pared with the original graph-theoretical analyses.

RESULTS

Overall Task Versus Rest Correlations

To compare FC values between the resting-state and the
seven task scans, individual FC matrices for each scan
were Fisher-z transformed and then averaged across partici-
pants to form an average FC matrix for each scan (Fig. 1;
average FC matrices were converted back to r values for

Figure 1.

The spatial correlations between the average resting-state FC

matrix and the average task FC matrices. (Un—Uncertain,

SMS—Sensorimotor, CTC—Cingulo-Opercular task control,

Aud—Auditory, DMN—Default Mode Network, Mem—Memo-

ry, Vis—Visual, ECN—Executive control (fronto-parietal task

control), Sal—Salience, SubC—subcortical, VA—Ventral Atten-

tion, Cereb—Cerebellum, DA—Dorsal Attention). The correla-

tions range from 0.64 to 0.82 and demonstrate that the average

FC matrices of rest and task scans are highly similar. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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presentation). Correlations between the resting-state and
task FC matrices reveal a moderate to strong degree of simi-
larity between the rest and task scans in average FC values,
ranging from r 5 0.64 to r 5 0.81 (emotion: r 5 0.82, gam-
bling: r 5 0.71, language: r 5 0.73, motor: r 5 0.76, relational:
r 5 0.64, social: r 5 0.70, working-memory: r 5 0.68).

Hub Nodes in Resting-State and Task Scans

Networks were created at the individual level by binar-
izing each individual’s FC matrix through proportional
thresholding (see Network Construction). To explore differ-
ences in network organization between rest and task scans,
node centrality metrics were computed for all individual
networks. Hub nodes for each network were defined as
those nodes in the top 10% of the summed-over-thresholds
centrality distribution for that network. Permutation tests
for each centrality metric were used to determine if there
were any significant differences in the spatial distribution
of hubs between rest and each task. The results reveal sig-
nificant overall differences in the distribution of hub nodes
between the resting-state and each task scan for all central-
ity metrics (all p< 0.05; corrected for multiple compari-
sons; see Table II in Supplementary Materials and Methods).
Overall, the emotion task was most similar to the resting-
state (MJC 5 1.23), while the social task was most dissimi-
lar to the resting-state (MJC 5 1.44).

A PCA was used to derive a single composite “hubness”
metric (H; see Hubness Identification in Materials and Methods)
from the four centrality metrics examined. Component
scores for each node on the first component (which
explained 86.59% of the variance in the 4 centrality metrics)
represented its hubness score. Correlations between resting-
state and task hubness values reveal a moderate to strong
correspondence in hub nodes between the resting-state and
task-scans, ranging from r 5 0.59 to r 5 0.75 (emotion: r 5

0.75, gambling: r 5 0.68, language: r 5 0.61, motor: r 5 0.7,
relational: r 5 0.62, social: r 5 0.59, working-memory: r 5

0.61; Fig. 2). The hubness analysis at a top 20% distribution
threshold produced similar results; the correlation of hub-
ness scores between both thresholds was r 5 0.983.

To examine whether the differences in hub organization
from the resting-state were task-general, rather than
unique to each task, we also examined whether hub orga-
nization was more similar between tasks than between
each task and the resting-state. For each task, a modified
z-test for assessing the significance of the difference
between two dependent correlation coefficients [Steiger,
1980] was used to test whether the average correlation in
hubness values between that task and all other tasks was
stronger than the correlation between that task and the
resting-state (the correlation coefficients are dependent, as
they share a common variable in both correlations—the task
scan). The results reveal that for each task, the average task
correlation is significantly greater than the correlation
between that task and the resting-state (�remotion 5 0.82,

p 5 0.022; �rgambling 5 0.87, pgambling< 0.0001; �rlanguage 5 0.75,
planguage< 0.0001; �rmotor 5 0.83, pmotor< 0.0001; �rrelational 5

0.83, prelational< 0.0001; �rsocial 5 0.71, psocial 5 0.0017; and
�rworking-memory 5 0.84, pworking-memory< 0.0001; uncorrected for
multiple comparisons as the analyses were not statistically
independent).

Networks were visualized for the resting-state and each
task scan, and node size was made proportional to the
number of times that node is classified as a hub across all
subjects for that scan (Fig. 2; the top 10 nodes for each
scan are displayed in Table III in Supplementary Materials
and Methods). Despite a moderate to strong overall corre-
spondence in hub organization, examination of hub nodes
between rest and task scans reveals a shift in the concen-
tration of hub nodes from primary sensory and motor
areas (somatosensory and auditory) for resting-state to
nodes in the executive control, salience, and ventral and
dorsal attention modules for task scans. The most consis-
tently identified hub nodes across subjects in the resting-
state were in the auditory and somatosensory modules (as
classified by Power et al. [2012]). The most consistently
identified hub node was located in the left superior tempo-
ral gyrus and a part of the auditory module (H 5 8.32).
Other prominent hub nodes in the resting-state included a
somatosensory node located in the middle cingulate cortex
(H 5 8.28), two auditory nodes in the right superior tempo-
ral gyrus (H 5 6.98), and a cingulo-opercular task control
node in the middle cingulate/dorsal anterior cingulate cor-
tex (H 5 6.26).

In contrast, the most consistently identified hub nodes
for each task scan were found in the fronto-parietal task
control, cingulo-opercular task control, salience, and ven-
tral attention modules. For the majority of task scans (emo-
tion, gambling, motor, relational and working-memory), a
salience module node in the dorsal anterior cingulate cor-
tex (dACC) was the most consistently identified hub node
(H’s> 8). In the resting-state, this salience module node is
less prominent (H 5 4.99) compared with the auditory and
somatosensory nodes described above. In addition to the
salience module node, there was a strong concentration of
hub nodes in and around the anterior mid-cingulate/dor-
sal anterior cingulate cortex (aMCC/dACC) for each task
scan, areas associated with salience and cingulo-opercular
modules. Other prominent task scan nodes include two
ventral attention module nodes in the right supramarginal
gyrus (in the motor, language, gambling and social tasks;
�H55:8) and a fronto-parietal module node (in the emotion,
social and working-memory tasks �H56:7) in the left dorso-
lateral prefrontal cortex. In addition, a node in the left
fusiform gyrus was found to be a prominent hub in the
social, gambling, language, motor and relational task scans
( �H56:44Þ, and a visual module node in the left occipital
cortex was found to be a prominent hub node in the emo-
tion, relational and gambling task scans �H55:22

� �
.

The dACC did not emerge as the most consistently clas-
sified hub node in the social and language task; it was the
5th most consistent node in the language task. The most
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consistent node in the language task was a sensorimotor
module node located in the mid-cingulate cortex; this was
also a prominent hub node in the resting-state. The social
task had the most unique hub organization of the task
scans (�rsocial 5 0.71), and was the most dissimilar to the
resting-state compared with other task states (MJC 5 1.23)
in the binary consistency approach. The most consistent

node in the social task was in the left fusiform gyrus
(H 5 7.99) that was not classified into a known module in
the original Power et al. [2011] parcellation. In addition,
the only prominent non-cortical hub was a node in the left
cerebellum associated with the social task (H 5 6.12).

To ensure the results were not limited to the binary-
consistency approach used here, a PCA was applied to the

Figure 2.

Hub node visualization for rest and task scans (SMS—Sensori-

motor, CTC—Cingulo-Opercular Task Control, DMN—Default

Mode Network, Memory—Memory Retrieval, FPC—Fronto-

Parietal Task Control, Ventral Attn.—Ventral Attention, Dorsal

Attn.—Dorsal Attention). ROIs were placed on a smoothed

brain surface using BrainNet Viewer [Xia et al., 2013]. Nodes

from different modules were differentiated by color (the Power

et al. [2011] network parcellation consists of 14 modules).

Node size was scaled by the “hubness” of that node for that

scan, as defined above; i.e. the component score of that node

on the first principal component derived from the four centrality

metrics. Brain images were thresholded at z > 0. Above each

brain figure is the correlation between the hubness values of

each node between the resting-state and that task scan. [Color

figure can be viewed at wileyonlinelibrary.com]
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same four centrality metrics calculated on weighted net-
works thresholded at top 50% and 20% proportional
thresholds. Instead of examining consistency of the top
10% hub nodes across subjects, node values were averaged
across subjects for that task. The weighted network and
binary-consistency approaches produced similar results:
node component scores from both approaches are strongly
correlated at both the top 50% (r 5 0.78) and top 20%
(r 5 0.75) thresholds, with the same top nodes for each
scan being implicated in both methods (see Figs. 3 and 4,
and Tables IV and V in Supplementary Materials and Meth-
ods). However, in the weighted network approach, the
shift in hub organization from primary sensorimotor nodes
to fronto-parietal, cingulo-opercular task-control and
salience nodes between rest and task states was more
prominent, with increased hubness values in auditory and
sensorimotor module nodes in the resting-state and
increased hubness values in salience, fronto-parietal and
cingulo-opercular task-control nodes in task scans. For
example, for both weighted approaches, only one node
outside of the primary sensory/motor or subcortical areas
in the resting-state was observed in the top ten strongest
hub nodes, the previously mentioned cingulo-opercular
task control node in the middle cingulate/dorsal anterior
cingulate cortex (Tables IV and V in Supplementary Materi-
als and Methods). In addition, the overall correspondence of
hubness values across ROIs between the resting-state and
task scans was smaller in the weighted network approach
for both top 50% and top 20% thresholds (Figs. 3 and 4 in
Supplementary Materials and Methods).

Whole-Brain Network Metrics

The following results are reported using a top 20%
threshold, but analyses were run across a range of thresh-
olds to determine the influence of threshold choice on the
results (Fig. 3). A linear-mixed model with average motion
(relative root mean square displacement) and average res-
piration (average respiration volume per unit time) as
covariates and resting-state and task scans (e.g., rest,
working memory) as a categorical factor was used to
determine if there were any differences in network organi-
zation between resting-state and task scans.

A linear mixed model revealed that there were signifi-
cant differences among the scans in local clustering (i.e.,
clustering coefficient), F(7,265.34) 5 30.844, p< 0.001. To
determine whether there were any significant differences
in clustering coefficient between rest and task architec-
tures, individual post-hoc t-tests (Bonferroni corrected for
multiple comparisons) were performed between the esti-
mated marginal means (i.e., mean of each task scan adjust-
ed for covariates) of the resting-state and each task scan.
The results revealed greater (p< 0.05) local clustering for
each task scan, excluding the motor task, compared with
the resting-state (Fig. 3). These results were independent
of threshold effects at most thresholds (0.2–0.5), but at the
most stringent thresholds (top 10% and 15% connections)

Figure 3.

All three of the metrics for rest and each task scan plotted

(with standard error bars) across 9 density (proportional)

thresholds (0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5). For

each graph, metric values are plotted along the vertical axis and

thresholds are plotted along the horizontal axis. The rest and

task scans are represented by different colored lines (resting-

state values are represented by the thick dark blue line). The

results reveal a task-general change from rest to task (excluding

the relational task for clustering and global efficiency) in cluster-

ing, global efficiency and between- versus within-module connec-

tions. [Color figure can be viewed at wileyonlinelibrary.com]
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the differences between rest and some task scans were no
longer significant (15%: social p 5 1; 10%: social: p 5 0.335,
gambling: p 5 1). However, at the high degree of sparsity
enforced by these stringent thresholds (top 10% and 15%)
some networks can become fragmented. For example, at
the top 10% threshold close to half of the networks,
N 5 657, have more than ten nodes removed from the
main component of the network. Thus, differences
between resting-state and task scans are expected to be
smaller at the most stringent thresholds.

A linear mixed model revealed that there were signifi-
cant differences among the scans in global efficiency,
F(7,207.877) 5 63.094, p < 0.001, and average respiration
(RVT) was found to be a significant predictor of global
efficiency, F(1,832.589) 5 5.705, p 5 0.017. Post-hoc t-tests
between rest and task scans revealed greater distributed,
global organization in task scans (excluding the relational
task) compared with rest (Fig. 3). These results were inde-
pendent of threshold effects, as they were observed at all
thresholds including the most stringent threshold of 10%.

A linear mixed model revealed that there were signifi-
cant differences among the scans in the ratio of between-
to-within module connections F(7,269.47) 5 36.07, p< 0.001,
and average motion was found to be a significant predic-
tor of the ratio of between-to-within module connections
F(1,468.583) 5 5.273, p 5 0.022. Post-hoc t-tests between rest
and task scans revealed a greater number of between-
module connections compared with within-module con-
nections in task scans compared with rest (Fig. 3). These
results were observed at all thresholds.

To ensure these results were not contingent upon a
binarized approach, we applied the same analyses to
weighted metrics computed on weighted networks thresh-
olded at a low (top 50%) and high (top 20%) proportional
threshold (see Fig. 5 in Supplementary Materials and Meth-
ods). Consistent with the binarized results, weighted clus-
tering and the ratio of between- to within-module
connections was significantly greater in task scans com-
pared with rest at both thresholds. Inconsistent with the
binarized results, only one task scan (motor task) was sig-
nificantly greater in global efficiency than rest at the 20%
threshold, and resting-state was greater in global efficiency
than all tasks, excluding the motor task at the 50% thresh-
old. One potential reason for the reversal of the pattern of
binary global efficiency is that the weighted global efficien-
cy metric is computed using the sum of the weights of tra-
versed connections, and the resting-state has higher
average weight compared with task scans at the top 50%
threshold (MRest 5 0.4601; MTask 5 0.4305). In fact, at the
top 50% threshold, average weight is strongly positively
correlated with global efficiency (r 5 0.76).

Confound and Reliability Analyses

Several motion-correction preprocessing steps were
applied to the data, and no participants included in the anal-
ysis displayed gross motion (relative RMS-FD< 0.55 mm;

[Satterthwaite et al., 2013]). Additionally, subject-level dif-
ferences in motion and respiration were covaried out of the
group-level analysis. But to further ensure that the observed
task-general changes in network metrics were not due to
subject-level motion and/or respiration differences, a linear-
mixed model was used to estimate any differences among
rest and task scans in average motion (relative RMS-FD) and
average respiration (RVT). The tests of the overall model fits
were significant (relative RMS-FD: F(7,194.55) 5 4.395,
p< 0.001; RVT: F(7,165.95) 5 17.95, p< 0.001), indicating sig-
nificant differences in average motion and average respira-
tion between at least two pairs of conditions. However,
pairwise t-tests between rest and task scans for both models
indicate that for motion, there were no significant differences
between rest and task scans (p> 0.05, uncorrected for multi-
ple comparisons), and for respiration, there were no system-
atic differences in average RVT between rest and task scans:
working-memory (p 5 0.017), gambling (p 5 0.013), language
(p 5 0.013), and relational (p< 0.001) had significantly greater
average RVT compared with rest, and emotion (p< 0.001)
had significantly less average RVT (p< 0.001; there were no
significant differences for motor or social). In addition, the
significance of these differences did not survive multiple
comparison correction (Bonferroni). Thus, task-general differ-
ences in motion and respiration could not explain the
observed task-general changes in network organization.

Differences in duration between the task and rest scans
present another potential confound. The resting-state scan
was collected for 30 min, while all task scans run times
were collected in under 10 min. Thus, resting-state func-
tional connectivity matrices may differ from task scan
functional connectivity matrices because of more accurate
functional connectivity estimates in the resting-state scan.
To explore this possibility, we calculated functional con-
nectivity matrices for each participant from randomly-
chosen 7 min of continuous resting-state data (the mean
amount of time for the task scans). We find that the aver-
age resting-state matrix calculated from the 7 min of data
was nearly identical to the average resting-state matrix cal-
culated from the original 30 min of resting-state: r 5 0.997.
Thus, 7 min of the resting-state fMRI data produced reli-
able FC estimates that were almost indistinguishable from
30 min of resting-state fMRI data. This is consistent with
earlier observations that pair-wise functional connectivity
estimates stabilize around 4-5 min of acquisition time [Van
Dijk et al., 2010]. In addition, as shown above (Fig. 1), the
average emotion task functional connectivity was most
similar (r 5 0.82) to the average resting-state functional
connectivity matrix, despite the fact that emotion task
scans was derived from the shortest amount of scan time
(�4:30 min).

A split-half reliability analysis was conducted at the
20% proportional threshold in which the sample was ran-
domly split into two equal halves (n 5 101), and the same
linear-mixed model performed on both (Fig. 4). Correla-
tions among the estimated marginal means for each
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network metric revealed strong reliability across halves
(Between/Within Connections: r 5 0.93, Global Efficiency: r 5

0.91, Clustering: r 5 0.75).

Comparison of Original and Regressed

Task Networks

One possible objection to the network estimation
approach used in the current study and others [Buckner
et al., 2009; Finn et al., 2015; Najafi et al., 2016; Rzucidlo
et al., 2013; Shirer et al., 2015] is that task-activation con-
founds potential network connection estimates, such that
areas that are highly activated during a task are artificially
estimated to have higher centrality estimates (or “hubness”
estimates in our approach), or that activations throughout
the cortex confound whole-brain network estimates. Thus,
we sought to demonstrate that the above results were not
driven by task-related activations by regressing out task-
related events from each task and recalculating the graph-
theoretical metrics.

The results reveal that the regression of task events had
minimal effects on the results (Fig. 5). The average

similarity between the task FC matrices before and after
the regression step was r 5 0.96 (0.92 < r < 0.99). The aver-
age similarity between the task hubs before and after the
regression step was r 5 0.95 (0.84< r< 0.99). The only task
with noticeable change of hub organization was the social
task (r 5 0.84). In particular, the regression of task events
increased the average similarity between the social task
and other task scans (�rsocial 5 0.79) and shifted the salience
module node in the dACC to the most prominent hub
node in the social task, consistent with the other task
scans. As previously demonstrated by Cole et al. [2014],
the regression of task events had the effect of increasing
the average similarity between the resting-state and the
task scans in both FC matrices (�rchange 5 0.09) and hub
organization (�rchange 5 0.07). As with the hub estimates, the
regression of task events had only minimal effects on whole-
brain network connection estimates. In particular, at the top
20% proportional threshold the regression of task events had
the effect of slightly increasing global efficiency estimates
(average increase in 0.011) and slightly decreasing clustering
and between-versus-within module connection estimates
(average decrease in 0.05 and 0.06, respectively). In addition,

Figure 4.

The estimated marginal means (with error bars) for each whole-

brain network metric across the two split-half samples. Metric

values are plotted along the horizontal axis and task labels are

plotted along the horizontal axis. Means for sample 1 are

plotted in blue and means for sample 2 are plotted in orange.

The results reveal that clustering, global efficiency and ratio of

between- to within-module connections were sufficiently

reliable across split-half samples. [Color figure can be viewed at

wileyonlinelibrary.com]
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the task-general increase in all three whole-brain metrics is
present in the regressed data as well as the original (see
Table VI in Supplementary Materials and Methods).

DISCUSSION

The relationship between intrinsic and task-evoked
activity in the human brain is complex and incompletely
characterized. Recently, there has been a renewed interest
in the application of data-driven approaches to under-
standing the relationship between resting-state and task
activity in the brain [Cole et al., 2014; DeSalvo et al., 2014;
Di et al., 2013; Najafi et al., 2016; Telesford et al., 2016].
Here, we take an exploratory approach, using graph-

theoretical techniques to quantify various properties of
network organization across a large sample of individuals
performing a wide variety of cognitive tasks. The results
reveal that despite moderate to strong overall correspon-
dence in network organization, significant task-general dif-
ferences between resting-state and task architectures in
both hub structure and overall network organization were
observed. These results suggest that considering rest-to-
task FC changes from a graph-theoretical perspective may
yield additional insights into network organizational dif-
ferences between wakeful rest and task performance
beyond simply comparing the spatial correlation in FC val-
ues between these conditions. Thus, while comparing the
strength of similarity between pair-wise functional connec-
tivity estimates between rest and task scans is informative,

Figure 5.

Comparison of node hubness values, with associated correlation values, before and after the

regression of the convolved task block regressors. Node hubness was visualized in the same

manner as Figure 2. Arrows and the values above them represent the correlation in hubness val-

ues across ROIs between the original (left) and regressed (right). The results demonstrate that

the regression of task events had minimal effects on the hubness estimates. [Color figure can be

viewed at wileyonlinelibrary.com]
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the graph-theoretical analysis used here provides further
insight into differences into brain network topology across
varying conditions.

Hub Analysis

The results of the hub analysis revealed a task-general
change in the concentration of hub nodes between resting
and task scans, as measured by a linear combination of
four centrality metrics. Such findings are in agreement
with findings that the hub architecture of the brain is not
stable from rest to task scans [Di et al., 2013; Moussa et al.,
2011]. In particular, there was a shift in the concentration
of hub nodes in the primary sensory and motor modules
at rest to a shift in the concentration of hub nodes in the
salience, fronto-parietal, ventral attention, and cingulo-
opercular task control modules [Seeley et al., 2007; Uddin,
2015] for both binary and weighted hub approaches. The
most prominent node in the resting-state was an auditory
module node located in the left superior temporal gyrus,
which was identified as a possible hub region in van den
Heuvel and colleagues’ [2008] study of resting-state func-
tional connectivity. Other graph-theoretical studies of
resting-state functional connectivity, primarily using
degree centrality as a measure of hubness, have identified
default mode network regions, along with some evidence
for sensorimotor and fronto-parietal regions, as resting-
state hubs [Buckner et al., 2009; Tomasi and Volkow, 2011;
van den Heuvel and Sporns, 2013]. However, the sole use
of degree centrality [Power et al., 2013], or any single a
measure of hubness [Zuo et al., 2012] may bias the detec-
tion of hub regions. Thus, the discrepancy in findings
between the current results and previous studies may be
the use of a single measure of hubness in previous studies
that does not incorporate other centrality information.
Here we included a weighted combination of several com-
monly used centrality measures to create a composite
score to allow us to quantify functional connectivity hubs.

A node in the dACC of the salience module emerged as
the most consistently identified hub node across subjects
for five task scans. Other nodes in the mid-cingulate/dor-
sal anterior cingulate, comprising cingulo-opercular and
salience nodes, were also found to be highly consistent
hub nodes across subjects for each task scan. This finding
suggests a particularly important role for the aMCC/
dACC in the maintenance of the sustained cognitive pro-
cesses associated with task performance. Previous research
has established the dACC as a particularly important net-
work hub in the human brain during cognitive control
tasks [Cole et al., 2010; Cole and Schneider, 2007; Duncan
and Owen, 2000; van den Heuvel and Sporns, 2013]. Dun-
can and Owen [2000] found that this area was activated
across a range of tasks requiring different cognitive
demands. In addition, it has been found to be one of the
most globally connected areas of the cortex [Cole et al.,
2010]. It is thought that this area has an important role in

coordinating information across many areas of the brain
[Cole and Schneider, 2007; Margulies et al., 2007]. Within
the context of the salience network, the dACC is thought
to facilitate response selection and motor response [Menon
and Uddin, 2010]. It should be noted that activations in
the dACC are among the most widely reported in the cog-
nitive neuroscience literature [Behrens et al., 2013], and
have been linked to processes ranging from pain percep-
tion [Wager et al., 2013] to empathy and social cognition
[Singer and Klimecki, 2014].

As demonstrated in the analysis conducted on data with
task-activations regressed out using the GLM, the hub
findings were not dependent on spurious connectivity
between regions as the result of common activation to trial
onsets and offsets. Overall, the regression of task-
activation had the effect of increasing the average hub sim-
ilarity between resting-state and task scans. Interestingly,
the regression of task-activation had a larger effect on the
social task (r 5 0.84 of hub organization before and after
the regression step), which had the effect of significantly
increasing its similarity in hub organization with the other
tasks. This may be because of differential fit of the task
reference function for the social task, compared with the
other tasks.

Of note is that the strength of similarity in hubness values
between resting-state and task scans was not entirely consis-
tent between the binary-consistency and weighted average
approaches. In particular, the overall correlation in hubness
values between resting-state and task scans was smaller in
the weighted-average approach compared with the binary-
consistency approach, and the ordering between tasks in
terms of similarity to the resting-state was different between
the two approaches. The primary difference between the
binary and weighted approach is explained by the impor-
tance given to the consistency of hub classification and the
average magnitude of hubness across participants, respec-
tively. Thus, while both approaches give similar estimates
of hubness overall for each scan, differences may still be pre-
sent given the importance assigned to each criteria in the
two approaches.

Whole-Brain Network Organization

The results from our analysis of overall network topolo-
gy are in agreement with previous findings demonstrating
the modulation of overall functional network topology in
response to task demands [Bassett et al., 2011; Di et al.,
2013; Heitger et al., 2012; Rzucidlo et al., 2013; Stanley
et al., 2014, 2015]. In particular, there was greater cluster-
ing, global efficiency and between-versus-within module
connections during task performance compared with dur-
ing the resting-state. This is consistent with the idea that
the increased cognitive demands associated with task per-
formance requires increased integration or communication
between nodes and modules of the network [Bassett et al.,
2011; Cole et al., 2013; Kitzbichler et al., 2011]. Given the
increased requirement for coordinating processes across
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various modalities during task performance, a shift from a
more modular, clustered organization to a more integrated
organization would be expected. Of note is the fact that
the global efficiency results did not replicate for weighted
networks. It is probable that this discrepancy is explained
by significantly greater average connection weights in the
resting-state compared with task scans, as the weighted
global efficiency metric has been previously shown to be
strongly dependent on and even equivalent to average
edge weight under certain mild conditions, specifically
when minimum edge weight is greater or equal to half the
maximum edge weight of the network [Ginestet et al.,
2014]. However, if one controls for this initial difference in
weights by using a binary threshold, global efficiency is
greater in task scans compared with the resting-state.

We hypothesize that the domain-general cognitive pro-
cesses associated with the shift from wakeful rest to task
performance may be a shift from mind-wandering and
internally-directed attention [Gusnard et al., 2001] in the
resting-state, to externally-directed attention and cognition
in response to task-associated stimuli. Thus, it may be that
the increased attentional demands associated with task per-
formance may require a shift to more locally specialized
information processing and more distributed, parallel infor-
mation processing compared with the resting-state. The
task-general increase in hubness values from rest to task
scans in executive control, cingulo-opercular and salience
module areas indicates that these domain-general processes
involve task-general executive control and attentive pro-
cesses. Because these changes are observed across a variety
of task states, these results point to a “task-general” network
and associated hub organization that facilitates the
information-processing demands of these cognitive process-
es, not observed in resting wakefulness. In particular, the
perception and subsequent processing of stimuli seems to
require increased network integration between nodes and
modules of the network. Nodes in the salience, executive
control and cingulo-opercular modules are central hubs in
this more integrated network. Future studies are needed to
explore the potential role of this task-general network
change for domain-general cognitive processing.

Limitations

It is important to note that while overall global network
measures, as opposed to individual node centrality esti-
mates, may have a consistent interpretation in social net-
works and some communication networks, their
interpretation is less clear in a brain network, particularly
in the case of functional connectivity networks. In func-
tional connectivity approaches, the nature of edges of the
network (statistical dependence between nodes) may not
lend itself to a straightforward information-processing
interpretation. Despite this difficulty, given the task-
general change in network organization, it is likely that
these changes from rest to task scans are associated with
domain-general cognitive processes related to these tasks,

and these changes are likely to have an effect on the
information-processing capacities of the brain during that
task. This is consistent with observed associations between
functional connectivity derived whole-brain network orga-
nization and task performance [Moussa et al., 2014; Stan-
ley et al., 2014; Stevens et al., 2012]. Another limitation of
the current study is the lack of counterbalancing in the
task fMRI collection of the HCP. Because of this, it is
impossible to separately estimate or remove possible order
effects in the data. This is an important design procedure
[Buračas and Boynton, 2002; Wager and Nichols, 2003]
and is often not considered in many repeated-measures
task-fMRI paradigms.

CONCLUSIONS

Understanding the complex relationship between intrin-
sic and evoked activity in the human brain requires data-
driven, whole-brain approaches to characterizing network
topology. Using a large sample of individuals and a
within-subject design, we examined differences in func-
tional network organization between intrinsic and a varie-
ty of task-evoked architectures. While we observed
relatively high correlations in average FC values between
intrinsic and task-evoked architectures, our results reveal a
task-general shift in network organization, as revealed by
changes in hub structure and whole-brain network met-
rics. Importantly, we observed a significant shift in the
anatomical distribution of hub nodes from rest, where
hubs were primarily concentrated in sensorimotor and
auditory modules, to task, where hubs were primarily con-
centrated in the salience and control modules. In particu-
lar, a node located in the mid-cingulate/dorsal anterior
cingulate cortex was found to be the most central hub
region across most task scans. These results add to a grow-
ing body of literature suggesting that specific hubs in the
brain play a more central role in the coordination of neural
resources in the service of goal-directed behaviors [Dosen-
bach et al., 2008; Uddin, 2015].
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