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Abstract: In this study, we examined whether age can be predicted on the basis of different anatomical
features obtained from a large sample of healthy subjects (n 5 3,144). From this sample we obtained
different anatomical feature sets: (1) 11 larger brain regions (including cortical volume, thickness, area,
subcortical volume, cerebellar volume, etc.), (2) 148 cortical compartmental thickness measures, (3) 148
cortical compartmental area measures, (4) 148 cortical compartmental volume measures, and (5) a com-
bination of the above-mentioned measures. With these anatomical feature sets, we predicted age using
6 statistical techniques (multiple linear regression, ridge regression, neural network, k-nearest neigh-
bourhood, support vector machine, and random forest). We obtained very good age prediction accura-
cies, with the highest accuracy being R2 5 0.84 (prediction on the basis of a neural network and
support vector machine approaches for the entire data set) and the lowest being R2 5 0.40 (prediction
on the basis of a k-nearest neighborhood for cortical surface measures). Interestingly, the easy-to-
calculate multiple linear regression approach with the 11 large brain compartments resulted in a very
good prediction accuracy (R2 5 0.73), whereas the application of the neural network approach for this
data set revealed very good age prediction accuracy (R2 5 0.83). Taken together, these results demon-
strate that age can be predicted well on the basis of anatomical measures. The neural network
approach turned out to be the approach with the best results. In addition, it was evident that good
prediction accuracies can be achieved using a small but nevertheless age-representative dataset of
brain features. Hum Brain Mapp 38:997–1008, 2017. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

It is a well-known fact that the brain changes during
aging. An often-reported finding is that particular brain
areas change more than others [Fjell and Walhovd, 2010;
Fjell et al., 2009b]. However, this issue is far from clear
since reported age-related brain changes and differences
differ across studies and methods used. Combining ana-
tomical data from six different samples, Fjell and col-
leagues [Fjell et al., 2009b] revealed that the frontal cortex
(especially the superior, middle, and inferior frontal gyri),
and some parts of the temporal (e.g., the middle temporal
gyri) and parietal cortex (e.g., the precuneus, the inferior
and superior parietal cortices, and the temporo-parietal
junction) are subject to age-related cortical thinning. The
strongest effects were seen in the superior and inferior
frontal gyri, as well as in the superior parts of the tempo-
ral lobe. In contrast, the inferior temporal lobe and anterior
cingulate cortices were relatively less affected by age [Fjell
et al., 2009b].

Most studies examining age-effects on brain tissue, how-
ever, have focused on cortical measures, with only a few
studies focusing on possible age-related differences with
respect to subcortical volumes (e.g., thalamus, caudate,
amygdala, hippocampus, putamen, pallidum, and accum-
bens) [Fjell and Walhovd, 2010; J€ancke et al., 2015; Li
et al., 2014; Tang et al., 2013]. Similar to studies investigat-
ing cortical regions, these studies have demonstrated sub-
stantial subcortical volume losses during the course of
healthy aging.

Although studies using between-group statistics may
indicate the typical age-related anatomical differences, it
has been argued that between-group analyses might be
less useful for automatic diagnosis of group differences
and age-related diseases [Seidman et al., 2004]. The wide
utilization of modern machine learning techniques in the
neuroimaging community has made it possible for
researchers to discover biomarkers of aging and to devel-
op automatic classification systems. In addition, it may
prove helpful to delineate a typical pattern of anatomical
measures for a particular age in order to more precisely
identify deviations from normal aging.

In this context, many efforts have been made to use
structural and functional magnetic resonance imaging
(sMRI and fMRI, respectively) to classify different patient
groups and to statistically separate them from healthy con-
trol subjects. For example, several studies have tried to
classify Alzheimer’s and schizophrenia patients using ana-
tomical measures [Fan et al., 2008; Hinrichs et al., 2009;
Hinrichs et al., 2011]. In addition, several attempts have
been made to predict age on the basis of anatomical data.
The underlying idea of these studies is to detect possible
discrepancies between predicted and chronological age,
which might help identifying pathological structural
changes. Only a handful of studies have been published
so far conducting age estimation based on MRI scans. Lao
et al. [2004] used support vector machine (SVM) techni-
ques to classify elderly subjects into one of four age
groups on the basis of anatomical measures and reached
an accuracy rate of 90%. Ashburner [2007] applied an algo-
rithm for “diffeomorphic” image registration to estimate
the age of healthy subjects and reported good age predic-
tion accuracy. Neeb and colleagues [Neeb et al., 2006]
used brain water maps (which is a new method for the
absolute and quantitative mapping of water content in
vivo) to predict age and gender in 44 healthy volunteers
aged 23–74 years. They applied a linear discriminant anal-
ysis (LDA) with jackknife cross-validation for age predic-
tion and obtained good classification performance. Age
predictions have also been conducted in the so-called
BrainAge project from the Jena group [Franke et al., 2015;
Franke et al., 2012; Franke et al., 2014; Franke et al., 2010;
Gaser et al., 2013]. These studies predicted age in the con-
text of voxel-based morphometry (VBM) methods using a
relevance vector machine (RVM) technique. Using this
technique, they obtained a correlation between predicted
and true age of r 5 0.92.

Several classification techniques have been used so far,
ranging from “classical” LDA [Kasparek et al., 2011; Leon-
ard et al., 1999; Nakamura et al., 2004; Takayanagi et al.,
2011], and linear and non-linear regression analysis to var-
ious variants of SVM approaches [Ashburner, 2007; Castro
et al., 2014; Dai et al., 2012; Fan et al., 2008; Hinrichs et al.,
2011; Kl€oppel et al., 2012; Sato et al., 2012; Schnack et al.,
2014; Wachinger et al., 2015; Wachinger et al., 2014].
Which of these techniques are best suited for age predic-
tion is an open question that needs further investigation.

All studies that have predicted age on the basis of ana-
tomical data have worked with cross-sectional datasets.
Thus, cohort effects could possibly have influenced the
morphological features. For example, nutritional status,
education, health, and social interactions have substantial-
ly changed within the last 40–60 years. Since there is
ample evidence available demonstrating that these factors
influence brain anatomy and body size [de Bruin et al.,
2005; Pannacciulli et al., 2006; Taki et al., 2004; Taki et al.,
2006], it is necessary to control for brain/head size. Here
we used intracranial volume (ICV). ICV more closely
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CC Corpus callosum
ICV Intracranial volume
KNN K-nearest neighbor
LDA Linear discriminant analysis
MLR Multiple linear regression
NN Neural network
ROI Region of interest
RR Ridge regression
RVM Relevance vector machine
SVM Support vector machine
VBM Voxel-based morphometry
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indicates head size rather than brain size, since it com-
prises brain tissue, meninges, cerebrospinal fluid, and
interstitial volumes. ICV does not correlate perfectly with
forebrain volume (R2 5 0.58) [J€ancke et al., 2015], demon-
strating that more than 40 percent of ICV variance is unre-
lated to brain tissue. In addition, it has been shown that
small brains in terms of ICV exploit the space within the
skull more efficiently than larger brains [J€ancke et al.,
2015]. Conversely, there is disproportionately more space
available for brain tissue in larger brains. To account for
these non-brain-tissue influences, it would be necessary to
control for ICV influences when predicting age on the
basis of anatomical measures.

A major problem with attempts to predict age from ana-
tomical measures is the problem of over-fitting, which is
present even when using relatively small sample sizes. In
this study, we will use brain anatomical measures from a
large sample in freely available databases, in addition to
samples from our own laboratory. This amounts to a sam-
ple of 3,144 subjects spanning an age range from 8 to 96
years. Secondly, in contrast with the aforementioned stud-
ies, we will use cortical thickness, volume and area mea-
sures from 148 regions of interest obtained using the
FreeSurfer analysis tool. In addition, we will use subcorti-
cal volume measures and anatomical measures of larger

brain regions (mean cortical thickness, volume, and area,
as well as mean subcortical volume) in order to examine
whether these larger ROIs will provide similar or even bet-
ter classification results than the collection of small ROIs.
Using this collection of anatomical measures, we will
explicitly answer the following questions: (1) Is it possible
to predict age on the basis of a combination of anatomical
measures? (2) Which combination of anatomical measures
is most important in predicting age? (3) Do different clas-
sification techniques (linear discriminant analysis, SVMs,
ridge regression, random forest, or neural network classifi-
cation) substantially differ in terms of their classification
accuracy?

METHODS

Subjects/Database

The sample used for this study comprises three samples
(Table I): 1) the Zurich sample from our research group
[partly taken from J€ancke et al., 2015], 2) the publicly
available samples from the 1000 Functional Connectomes
Project (http://fcon_1000.projects.nitrc.org), and 3) some
other freely available samples (see Table I). Only subjects
who reported no history of neurological diseases (e.g.,

TABLE I. Description of the samples and studies from which the anatomical data were obtained

Database/study
number # Male # Female

Mean
(age-man)

Mean
(age-woman)

SD
(age man)

SD
(age woman) Reference

ABIDE 99 18 13.21 11.23 2.58 2.33 FCN 1000
ADHD 200 138 132 11.33 10.84 2.00 2.20 FCN 1000
AnnArbor 34 20 31.99 40.24 21.34 25.82 FCN 1000
Atlanta 13 15 32 29.93 10.78 9.33 FCN 1000
Baltimore 8 15 30.38 28.67 4.98 5.78 FCN 1000
Beijing 76 122 21.44 21.17 1.83 1.83 FCN 1000
Cambridge 75 123 20.99 21.05 2.14 2.41 FCN 1000
Cleveland 11 20 43.18 43.75 10.31 11.79 FCN 1000
ICBM 40 45 44.38 43.76 15.44 20.13 FCN 1000
IXI 250 313 46.09 50.2 16.45 16.4 FCN 1000
Milwaukee 15 31 51.93 54.38 4.89 6.1 FCN 1000
New York 49 53 26.09 25.33 10.74 9.23 FCN 1000
OASIS 159 256 49.5 54.6 25.03 24.92 Marcus et al., 2007
Oulu 37 64 21.41 21.59 0.6 0.56 FCN 1000
Study 01 34 45 23.58 22.91 3.61 2.41 Mondadori et al., 2007
Study 02 3 12 24.67 28.75 2.08 2.93 unpublished
Study 03 18 32 51.27 50.15 7.78 7.68 Bezzola et al., 2011
Study 04 16 24 35.04 35 12.71 12.61 Dall’Acqua et al., 2016
Study 05 292 337 42.89 42.1 21.99 21.7 J€ancke et al., 2015a
Study 06 7 2 34.12 25.18 10.68 5.66 Langer et al., 2012
Study 07 27 7 35.33 33.85 8.74 7.24 unpublished
Study 08 13 16 29.23 24.75 5.48 4.15 Klein et al., 2015
Study 09 0 15 31.1 8.47 unpublished
Study 10 13 0 49.31 14.49 Hilti et al., 2013

Abbreviations: ABIDE: Autism Brain Imaging Data Exchange (http://fcon_1000.projects.nitrc.org/indi/abide/); ADHD: Attention Defi-
cit Hyperactivity Disorder; FCN 1000: 1000 Functional Connectomes Project (https://www.nitrc.org/projects/fcon_1000/); ICBM: Inter-
national Consortium for Brain Mapping; IXI: Information eXtraction from Images (http://brain-development.org/ixi-dataset/); OASIS:
Open Access Series of Imaging Studies (http://www.oasis-brains.org/); # number of subjects.
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Parkinson’s disease, Alzheimer’s disease), mental disor-
ders (e.g., depression), diseases of the haematopoietic sys-
tem (e.g., anemia, leukemia), or traumatic brain injuries
were included, and those suffering from migraines, diabe-
tes or tinnitus were excluded from participation. The
whole sample contained 4,167 subjects from which we
excluded 1023 subjects according to the following explicit
reasons: (1) 304 subjects were excluded because they suf-
fered from neurological or psychiatric disorders, (2) 422
subjects were excluded because there was no information
available about gender and age, and (3) 297 subjects were
excluded because the anatomical data were too noisy for
the FreeSurfer analysis. We performed our calculations on
the remaining 3,144 subjects. The ages of this sample
ranged from 7 to 96 years (male: 8–93 years, mean 5 32.69
years, s.d. 5 19.4 years; female: 7–96 years, mean 5 35.7
years, s.d. 5 20.7 years).

Preprocessing of Anatomical Data

For this paper we estimated compartmental cortical vol-
umes, thickness, and surface area measures for 148 brain
regions using the FreeSurfer anatomical region of interest
(ROI) tool [Destrieux et al., 2010; Fischl et al., 2004a; Fischl
et al., 2004b]. Here we used FreeSurfer version 5.3. The
ROIs comprise brain regions from the left and right corti-
ces. In addition, we calculated subcortical (thalamus, puta-
men, pallidum, caudatus, hippocampus, amygdala, and
accumbens) and total subcortical volume, the volumes of
the corpus callosum (CC), cerebrospinal fluid, total white
matter hypo-intensity, and the brainstem volume (mid-
brain, pons, medulla oblongata and superior cerebellar
peduncle), total brain volume, and mean global cortical
thickness and total surface area. The subcortical anatomi-
cal measures were obtained using the FreeSurfer’s subcor-
tical segmentation tool. A special note is warranted for the
CC, which is also included in our data set. In FreeSurfer,
the CC is not only segmented into a midsagittal slice but
continues laterally into both hemispheres producing a
multi-slice three-dimensional slab. Thus, FreeSurfer pro-
vides a three-dimensional segmentation of the CC, which
is different to many studies using CC measures to study
structure-function relationships.

In order to normalize all anatomical measures to brain/
head size and to reduce variance we computed propor-
tional measures by dividing each anatomical measure by
brain/head size. These proportional anatomical measures
were used for the following statistical analyses. To esti-
mate brain size we used estimated ICV,1 which is an auto-
mated estimate of total ICV in native space derived from

the atlas-scaling factor. Atlas-scaling factor was used to
transform the native space brain and skull to the atlas. The
automated ICV measure corresponds excellently to manu-
ally traced ICV measures [Klauschen et al., 2009; Li et al.,
2014] and is widely used in morphometry studies. ICV
represents a global head size measure since it includes not
only the brain tissue but also the cerebrospional fluid,
meninges, and interstitial volumes between the skull and
the brain tissue.

These different anatomical measures were first divided
into five anatomical feature sets that were used for the fol-
lowing analysis:

1. Large brain regions (11 LBR) comprising 11 large
(global) brain measures (total cortical volume: CV;
mean cortical thickness: CT; total cortical surface
area: CA; total cortical gray matter volume: CoGM;
total cortical white matter volume: CoWM; total cere-
bellar gray matter volume: CeGM; total cerebellar
white matter volume: CeWM; total subcortical vol-
ume: SCV; brainstem volume: BV; corpus callosum
volume: CC; white matter hypointensities: WMH),

2. the 148 compartmental cortical thickness measures
(THICKNESS),

3. the 148 compartmental cortical area measures
(AREA),

4. the 148 compartmental cortical volume measures
(VOLUME), and

5. the combination of the cortical thickness, area, and
volume measures (3 * 148 5 444). This data set is
denoted as ALL.

In a second step, we added additional anatomical infor-
mation to the THICKNESS, AREA, VOLUME, and ALL
datasets, in order to examine whether the predictions
could be improved by this added information. The added
information was taken from the 11 large brain regions (11
LBR) that were not covered by the particular cortical data-
sets. Thus, to the 148 cortical volumes (VOLUME), we
added mean cortical thickness, total cortical surface area,
total cortical white matter volume, total cerebellar gray
matter volume, total cerebellar white matter volume, total
subcortical volume, total brain stem volume, CC, and vol-
ume of white matter hypo-intensities (VOLUME1). To the
148 cortical surface area measures (AREA), we added
mean cortical thickness, total cortical volume, total cortical
white matter volume, total cerebellar gray matter volume,
total cerebellar white matter volume, total subcortical vol-
ume, total brain stem volume, CC, and volume of white
matter hypo-intensities (AREA1). To the 148 cortical thick-
ness measures (THICKNESS), we added total cortical vol-
ume, total cortical area, total cortical white matter volume,
total cerebellar gray matter volume, total cerebellar white
matter volume, total subcortical volume, total brain stem
volume, CC, and volume of white matter hypo-intensities
(THICKNESS1). The ALL dataset was complemented by

1We also used total brain volume (total cortical grey and white mat-
ter, subcortical volume, and cerebellar volume) for normalizing. We
also did our prediction analyses for the raw non-normalized data.
The results for the age prediction are pretty much the same and are
reported in the Supporting Information.
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adding the following large ROIs: total cerebellar gray mat-
ter volume, total cerebellar white matter volume, total sub-
cortical volume, brainstem volume, CC volume, and
volume of white matter hypo-intensities (ALL1). Thus, we
constructed four additional datasets:

1. THICKNESS1

2. AREA1

3. VOLUME1

4. ALL1.

Statistical Methods Used to Predict Age

For each of the nine datasets (11 LBR, AREA, THICK-
NESS, VOLUME, ALL, AREA1, THICKNESS1, VOL-
UME1, ALL1), age predictions were calculated. As
prediction techniques we used six different techniques:
multiple linear regression (MLR), ridge regression (RR),
neural network, k-nearest neighborhood, SVM, and ran-
dom forest. With these techniques we calculated R2 values
for the entire sample of subjects in order to explain the
relationships. For the prediction analyses, we randomly
selected a subset (50% of the entire sample 5 training sam-
ple) for which we calculated the relationships between age
and the anatomical data. In a second step, we used the
parameters obtained from these computations to predict
age for the test sample (the remaining 50%). Thus, we
obtained R2 values for the training and test samples. In
order to examine the difference between the R2 values
obtained for the training and test samples, we calculated a
shrinking factor by computing the difference between the
R2 values obtained for the training and test samples.

All statistical techniques were programmed by one of
the authors (S.A.V.) in Matlab, using commercial Matlab
toolboxes when necessary. These scripts were tested using
standard datasets in order to ensure validity and reliabili-
ty. MLR is a standard statistical technique used to linearly
combine several independent variables in order to predict
the criterion or the dependent variable [Pedhazur, 1997].
The advantage of this technique is that the results can be
obtained very quickly, even with larger numbers of inde-
pendent variables and sample sizes. Our next statistical
technique was RR. RR is used particularly in ill-defined
mathematical conditions and when too many predictors
are used. Assume X is an n by p matrix and Y is an n-vec-
tor. In the case that X’X is singular, it is not possible to
calculate an inverse matrix for MLRs. Therefore, a term is
added to this matrix, which is called a Tikhonov matrix
[Hoerl and Kennard, 1970]. K-nearest neighbor (KNN) is the
next method that we applied in this study. KNN is a sim-
ple but nevertheless effective method for regression analy-
sis. With this method, the Euclidean distance of the new
sample and all known samples is found and then aver-
aged across K-nearest samples. In this study, we selected
K 5 6. Selecting a large K (e.g., K> 15) results in over-

fitting. Over-fitting depends on the distribution of the
training sample [Burba et al., 2009]. The number of nearest
samples (here K 5 6) was empirically determined. We
started with K 5 1 and increased the number of nearest
samples stepwise to K 5 10. After K 5 6 the results of the
regression did not change anymore. Thus, with K 5 6 we
obtained the best prediction accuracy. KNN is a non-
parametric technique taking different types of non-
linearity into account. As a fifth technique, we used a neu-
ral network (NN) approach. Here, we applied 11 different
learning methods for NN. However, the best result was
achieved for the second back propagation, as suggested by
Battiti [1992]. To avoid over-fitting, we only used four hid-
den layers for the NN. This algorithm requires less storage
and computation in comparison to other learning methods
of this type. NN is a parametric technique, which can
solve a mixture of linearity and non-linearity (e.g., the
XOR problem). The sixth method we applied was the
SVM for regression [Basak et al., 2007]. SVM uses high (or
infinite) hyper-planes (e.g., dimensions) for classification
or regression. The best hyper-plane is one that can result
in the largest distance in training data classes. SVM is a
parametric technique, which transfers the non-linearities
into linearities. Random forest (RF) was the final technique
used in the study [Breiman, 2001]. This technique was
developed on the basis of the Bagging (Bootstrap aggregat-
ing) and decision tree techniques. Breiman [2001] showed
that the accuracy of RF depends on the strength of the
individual tree classifiers and a measure of the depen-
dence between them. This algorithm is called RF because
it generates a relatively large number of random trees.
Tree features and the thresholds for each feature and train-
ing set within the tree are selected randomly. Although RF
uses randomness to bagging, Breiman [2001] shows that
the RF is stable and convergent. For more detailed infor-
mation about implementing the random forest, please refer
to Strobl and colleagues [Strobl et al., 2009]. RF divides the
data set into several smaller sub-datasets and by doing
that can account for non-linearity. All programming codes
were run on one computer (iMac, processor: 4GHz i7-L2
Cache: 256 KB – L3 Cache 8MB, memory: 32 GB 1600MHz
DDR3, OS X EL Capitan).

Since we are using a large sample, it is not useful to
apply statistical tests, as even the smallest effect would be
significant. Therefore, we rely entirely on the descriptive
R2 values and on the classification of R2 proposed for mul-
tiple regressions by Cohen [1992]. Thus, an R2> 0.02 is
considered small, an R2> 0.13 is considered moderate, and
an R2> 0.26 is considered large.

RESULTS

Table II presents the results of the prediction analyses
for the nine datasets and the six prediction techniques
(MLR, RR, NN, KNN, SVM, and RF). The table shows the
R2 values computed for the entire sample (R2 total), the
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training sample (R2 training), and the test sample (R2 test).
In addition, the shrinking factor (R2 shrinkage: difference
between R2’s obtained for the training and the test sample)
is shown. The R2 values are rank ordered according to R2

test.
Focusing on the R2 values obtained for the test sample

(R2 test in Table II), one can see that the R2 values range
between R2 5 0.40 (for the AREA dataset, using KNN) and
R2 5 0.84 (for NN and SVM applied to the ALL dataset).
The R2 values for R2 test being larger than 0.8 are grey
shaded (in dark grey) and printed in bold and italic letters.
The R2 values for R2 test larger than 0.7 are light grey
shaded. The best predictions were obtained for NN and
SVM for the ALL dataset. Interestingly, the NN method
applied to the small 11 LBR dataset revealed similar good
results with a R2 5 0.83. In addition, the frequently and
easy to apply MLR method revealed good results for the
ALL and ALL1 datasets with R2 values of 0.82 and 0.81,
respectively.

In Figure 1 all R2 values are shown as a radar plot in
order to demonstrate the relationship between the four R2

values in more detail and much clearer. In Table III the
mean, minimum, and maximum R2 values obtained for
the six methods are listed in rank order. As one can see
from this Table, NN reveals the largest R2 values while
KNN turns out to be the least precise method. MLR is the
second precise method with a mean R2 value of 0.77.

Figure 2 shows the absolute prediction errors (absolute
difference between predicted and chronological age) bro-
ken down for age, the different methods, and datasets. As
one can see from these figures the absolute prediction
error increases with increasing age.

Table IV shows mean prediction errors broken down for
three age groups (8–18, 18–65, and 65–96 years). This Table
reveals that depending on the used prediction method the
absolute prediction error varies considerably. There are
relatively small prediction errors for ALL and ALL1 fea-
ture set with an error of 1.23 years for the young subjects
(8–18 years) obtained for the NN technique. This error
increases to 4.23 and 5.23 years for the middle-aged (18–65
years) and older subjects (65–96 years), respectively. The
prediction errors obtained with the other techniques are a
bit higher.

DISCUSSION

With the current study we aimed at predicting chrono-
logical age on the basis of a combination of brain anatomi-
cal measures. Linked to this overall rationale, we were
interested to answer different sub-questions. First, we
wanted to clarify which combination of anatomical mea-
sures is most suitable to predict age. Secondly, we
explored whether a successful age prediction relies on a
fine-grained extraction of anatomical measures from many
small brain regions, or whether it is sufficient to use brain
measures from larger brain regions. Thirdly, we compared

TABLE II. Summary of prediction analyses for the entire

sample (R2 total), the training sample (R2 training), and

the test sample (R2 test)

Measure Method

R2

total

R2

training

R2

test

R2

shrinkage

All NN 0.88 0.92 0.84 0.07

All SVM 0.85 0.86 0.84 0.03

11 LBR NN 0.83 0.83 0.83 0.00

All1 NN 0.87 0.91 0.83 0.08

Thickness1 NN 0.86 0.89 0.83 0.06

Volume1 NN 0.85 0.88 0.82 0.06

All MLR 0.87 0.92 0.82 0.10

Area1 NN 0.82 0.83 0.82 0.01

All RF 0.89 0.98 0.81 0.17

All1 MLR 0.85 0.90 0.81 0.09

All RR 0.84 0.89 0.80 0.10

All1 RR 0.83 0.87 0.80 0.07

All1 SVM 0.81 0.83 0.79 0.04

Thickness1 MLR 0.80 0.83 0.78 0.05

Area1 RF 0.88 0.97 0.78 0.19

Area1 MLR 0.79 0.80 0.78 0.03

Volume1 RF 0.87 0.97 0.78 0.19

11 LBR KNN 0.79 0.80 0.77 0.03

11 LBR RF 0.86 0.95 0.77 0.18

All1 RF 0.87 0.97 0.77 0.20

All KNN 0.79 0.83 0.76 0.06

Thickness1 RR 0.78 0.80 0.75 0.05

Area1 RR 0.77 0.78 0.75 0.03

Volume1 RR 0.77 0.79 0.75 0.05

Thickness1 RF 0.86 0.97 0.74 0.22

Volume1 MLR 0.77 0.81 0.73 0.08

Thickness1 SVM 0.74 0.75 0.73 0.02

11 LBR MLR 0.72 0.71 0.73 20.01

Area1 SVM 0.73 0.73 0.73 0.01

All1 KNN 0.75 0.78 0.72 0.06

Volume1 SVM 0.72 0.73 0.71 0.03

11 LBR RR 0.70 0.69 0.70 20.01

Volume NN 0.75 0.80 0.70 0.10

Volume1 KNN 0.73 0.77 0.68 0.09

Thickness NN 0.68 0.69 0.66 0.03

Volume KNN 0.68 0.72 0.65 0.07

Volume MLR 0.66 0.68 0.65 0.04

Volume RF 0.79 0.96 0.64 0.31

Volume SVM 0.64 0.63 0.64 20.01

Volume RR 0.66 0.67 0.64 0.03

Thickness MLR 0.64 0.67 0.61 0.06

11 LBR SVM 0.61 0.61 0.61 20.01

Thickness RR 0.63 0.66 0.60 0.06

Thickness1 KNN 0.68 0.75 0.60 0.15

Thickness SVM 0.58 0.59 0.58 0.01

Area NN 0.59 0.61 0.57 0.04

Thickness RF 0.75 0.96 0.55 0.41

Area MLR 0.57 0.61 0.53 0.08

Area RR 0.55 0.58 0.52 0.06

Area1 KNN 0.57 0.61 0.52 0.09

Thickness KNN 0.53 0.56 0.50 0.07

Area SVM 0.51 0.53 0.49 0.04

Area RF 0.71 0.95 0.48 0.47

Area KNN 0.45 0.50 0.40 0.10

Indicated also is the shrinking factor (R2 shrinking: R2 training - R2 test).
The R2 test values >5 0.8 are printed in bold and italic letters. In
addition they are marked in deep grey.
The R2 test values >5 0.7 are marked in light grey shading.

r Valizadeh et al. r

r 1002 r



different statistical techniques with respect to their predic-
tion accuracy. In the following paragraphs, we will discuss
our findings and relate them to the current literature.

The main finding of our study is that age can be pre-
dicted with a high accuracy on the basis of anatomical
measures. We identified 33 predictions with accuracies
being larger than R2 5 0.70 with the highest accuracy of R2

50.84. Thus, the prediction accuracy is in the same range

(or even better) as has been demonstrated by previous
studies using different anatomical measures and statistical
prediction methods (R2s ranging between 0.49 and 0.91)
[Ashburner, 2007; Franke et al., 2013; Franke et al., 2012;
Franke et al., 2014; Franke et al., 2010; Lao et al., 2004;
Neeb et al., 2006]. However, different from the afore-
mentioned studies, we used a much larger sample
(n> 3,400) spanning a large age range (7–96 years), and

Figure 1.

Radar plot showing all R2 values for all anatomical feature sets and methods (blue: R2 for the

entire sample, green: R2 for the training sample, red: R2 for the test sample, black: R2 shrinkage

between training and test). NN: neural network, RR: ridge regression, RF: random forest, MLR:

multiple linear regression, KNN: k-nearest neighbor.
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we used different sets of anatomical measures (thickness,
volume, surface area).

Most astonishing was the finding that very good predic-
tion accuracy was achieved even when using a small set
of anatomical measures comprising only 11 larger brain
regions with averaged anatomical characteristics across
larger brain regions (e.g., grey and white matter volume,
and cortical thickness, volume and area: 11 LBR). With
this set of anatomical measures, we achieved a good pre-
diction accuracy of R2 5 0.83 using the NN technique. The
lowest prediction accuracy for this set of anatomical mea-
sures was obtained using the SVM technique (R2 5 0.61).
Linear regression and RR revealed also reasonable results
(R2 5 0.73 and R2 5 0.70, respectively).

The best prediction accuracy obtained with this reduced
feature set only marginally differed from the best predic-
tion accuracy achieved with a more fine-grained feature
set (R2 5 0.84 for the ALL dataset using NN or SVM, and
R2 5 0.83 for the 11 LBR dataset using NN). Thus, it is
clearly not necessary to use a large and sophisticated set
of anatomical measures comprising very small brain areas
to achieve accurate age prediction. The brain regions used
for the 11 LBR dataset comprised relatively large brain
compartments taken from the cortex, brainstem, and the
cerebellum (cortical volume, cortical thickness, cortical
area, cortical gray matter volume, cortical white matter
volume, cerebellar gray matter volume, cerebellar white
matter volume, subcortical volume, brainstem volume, cor-
pus callosum, white matter hypo-intensities). Thus, a com-
bination of these different cortical, sub-cortical and
cerebellar brain measures are at least as effective for pre-
dicting age than larger datasets comprising relatively small
cortical measures.

That the anatomical dataset with the large cortical, sub-
cortical and cerebellar volume LBRs are so useful for pre-
dicting age might result from the fact that age effects on
brain anatomy are mostly distributed and not focal. Sever-
al recent studies have shown that older subjects demon-
strate smaller volumes in many distributed cortical,
subcortical and cerebellar regions [Fjell et al., 2009a; Fjell
et al., 2009b; J€ancke et al., 2015; Tang et al., 2013; Ziegler
et al., 2012]. As cortical volumes become smaller with

increasing age, cerebrospinal fluid and white matter T1-
weighted hypo-intensity (T2-weighted hyper-intensity)
volumes increase. Thus, combining volume measures from
these different brain regions seems to be a good and valid
strategy for capturing age-related anatomical differences
more accurately and efficiently.

In this study, we used six different statistical techniques
for age prediction. It turned out that the accuracy of these
methods is mostly depended on the dataset. However, the
KNN method had the weakest results overall, with an
average accuracy of R2 5 0.62. Each of the techniques used
provide different advantages and disadvantages, which
should be carefully taken into consideration when plan-
ning to predict age on the basis of anatomical measures.

The MLR approach is a standard statistical technique fre-
quently used in psychology and neuroscience. It is rela-
tively easy to program and can be run quickly even with a
large number of predictor variables. However, a problem-
atic aspect is the possibility of correlated predictors, which
can distort the prediction accuracy substantially (e.g., sup-
pression effects) [Pedhazur, 1997]. In addition, in order to
achieve reasonably good prediction accuracies, it is neces-
sary to use large samples for the training, a prerequisite
that was easily met by our sample with 3,144 participants.
In our study, the MLR technique revealed very good
results for nearly all datasets, with the exception of AREA
and THICKNESS.

Similar to the MLR technique, RR is simple to program,
runs quickly (even a bit faster than MLR) and can be used
in so-called ill-defined mathematical conditions and when
too many predictors are used. For example, when it is
impossible to calculate an inverse matrix (a mathematical
operation, which is necessary to calculate linear regres-
sions), RR is a suitable solution [Hoerl & Kennard, 1970].
Nevertheless, possible statistical dependencies between the
predictors can distort the prediction results, similar to the
MLR technique. For our dataset, RR revealed similar
results to the MLR technique.

The NN approach is a bit more complicated to imple-
ment in terms of programming effort. It is a time- and
resource-consuming technique, and requires large sample
sizes. It can, however, handle many correlated predictors
as well as linear and non-linear relationships without any
a priori knowledge about the relationships. In our study,
the NN approach provided the best results with small R2

shrinkages, although it must be kept in mind that the dif-
ferences to the other techniques are quite small. Neverthe-
less, out of our nine datasets, NN provided the best
results for eight datasets.

The KNN approach is a time-consuming technique with
some similarities to the NN technique. The precision of
this technique is highly dependent on the predictors used,
as has been shown by our study. KNN revealed mixed
results in our study, with only one good result for the 11
LBR dataset that was in the same range as the NN results.
For all other datasets, KNN had moderate or weak predic-
tive power.

TABLE III. Mean, minimum, and maximum R2 values

(from the test sample) obtained for the six prediction

methods

Method Mean Minimum Maximum

NN 0.77 0.57 0.84
MLR 0.72 0.53 0.82
RF 0.70 0.48 0.81
RR 0.70 0.52 0.80
SVM 0.68 0.49 0.84
KNN 0.62 0.40 0.77

The R2 values are rank ordered for the mean R2 values.
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The SVM technique is a bit more demanding to imple-
ment, but is relatively fast and provides stable results. Simi-
lar to the KNN, the results strongly depend on the selection

of predictors. The results in our study were roughly similar
to those from the NN technique. SVM provided good results
only when large datasets were used (ALL and ALL1).

Figure 2.

Absolute prediction errors broken down for the 6 different prediction techniques, the nine dif-

ferent anatomical feature sets, and age. The different anatomical feature sets are indicated as

symbols in the graphs.
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The RF technique is a very time-consuming technique
that can handle correlated predictors, requires only small
learning sets and is less affected by correlated predictors.
Similar to the KNN and NN approaches, the results
strongly depend on the selection of predictors used. For
our data, RF revealed similar results to the MLR
technique.

To summarize our findings with respect to the precision
of the techniques used, NN provided the best results
across all datasets, irrespective of whether they comprised
only a few or many anatomical measures. However, the
relatively simple and widely used MLR technique also
provided good results. Since RR is nearly as good as MLR,
it can be used in mathematically problematic situations.
RF, although providing reasonable results, is too time con-
suming and it offers no added gains.

The absolute prediction errors (difference between pre-
dicted and chronological age) we obtained in our analyses
are quite similar to those reported in previous studies
[Brown et al., 2012; Cherubini et al., 2016; Franke et al.,
2010]. However, it is worth mentioning that our study can-
not be compared entirely with these studies, either because
they only studied relatively young subjects [Brown et al.,
2012] or they employed a much smaller sample than we

used in our study [Cherubini et al., 2016]. However, the
results are astonishingly similar in showing that the pre-
diction error increases with increasing age [Brown et al.,
2012; Franke et al., 2010]. In addition, the prediction errors
in our study are about in same range as it was reported in
these studies, at least for the methods and datasets for
which we achieved good and very good prediction results.

CONCLUSION

Taken together, the results of the present study demon-
strate that chronological age can be predicted quite well
on the basis of anatomical measures. The NN approach
revealed to be the approach with the best prediction accu-
racy. In addition, it was evident that good prediction accu-
racies can be achieved using a reduced, but nevertheless
age-representative dataset (e.g., 11 LBR).
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