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Abstract: Exposure to acute stress induces multiple emotional responses, each with their own unique
temporal dynamics. Dynamic functional connectivity (dFC) measures the temporal variability of net-
work synchrony and captures individual differences in network neurodynamics. This study investi-
gated the relationship between dFC and individual differences in emotions induced by an acute
psychosocial stressor. Sixteen healthy adult women underwent fMRI scanning during a social evaluative
threat (SET) task, and retrospectively completed questionnaires that assessed individual differences in
subjectively experienced positive and negative emotions about stress and stress relief during the task.
Group dFC was decomposed with parallel factor analysis (PARAFAC) into 10 components, each with a
temporal signature, spatial network of functionally connected regions, and vector of participant loadings
that captures individual differences in dFC. Participant loadings of two networks were positively corre-
lated with stress-related emotions, indicating the existence of networks for positive and negative emo-
tions. The emotion-related networks involved the ventromedial prefrontal cortex, cingulate cortex,
anterior insula, and amygdala, among other distributed brain regions, and time signatures for these
emotion-related networks were uncorrelated. These findings demonstrate that individual differences in
stress-induced positive and negative emotions are each uniquely associated with large-scale brain net-
works, and suggest that dFC is a mechanism that generates individual differences in the emotional com-
ponents of the stress response. Hum Brain Mapp 38:6185–6205, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Emotions are an important and inseparable component
of stress [Dickerson, 2008; Feldman et al, 1999; Folkman
and Moskowitz, 2000; Lazarus, 1993; Tugade and Fredrick-
son, 2004], and successful cognitive performance depends
on the ability to regulate emotional experience and neural
activity during stress [Liston et al., 2009; Scheibe and
Blanchard-Fields, 2009; Qin et al., 2009]. Several studies
have examined functional connectivity of emotion net-
works during restful recovery from exposure to an acute
psychosocial stressor [Soares et al, 2013; van Marle et al,
2010; Veer et al, 2012], but these studies neglect the impor-
tance of the temporal dynamics of emotions [Waugh et al.,
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2015] during exposure to the stressor. In contrast to tradi-
tional functional connectivity, which refers to brain net-
works that are presumed to be stably synchronized,
dynamic functional connectivity (dFC) refers to transiently
synchronized (and desynchronized) networks, and can
provide a time-resolved [Hutchison et al, 2013; Zalesky
et al, 2014] perspective on the organization of brain net-
works during distinct phases of an acute psychosocial
stressor, and during poststressor recovery. This study
investigated dFC and individual differences in stress-
induced subjective emotions in archival data [Waugh et al,
2012] of healthy human participants performing a social
evaluative threat (SET) task while being scanned with
functional magnetic resonance imaging (fMRI).

Temporal Dynamics of Emotions and Stress

Stressors disrupt homeostasis and well-being [Ulrich-Lai
and Herman, 2009] through the coordinated activity of
multiple brain systems for autonomic, endocrine and emo-
tional regulation, and cognitive appraisal, action selection,
and rumination [Hermans et al, 2014; Schultz and Vogele,
2015; Wager et al, 2009a; Wager et al, 2009b]. The compo-
nent processes involved in emotions and stress make
unique contributions and are not interchangeable [Mauss
and Robinson, 2009], and each may unfold over their own
unique behavioral and neural time scales [Moon and Lord,
2006; Verduyn et al., 2009, 2012; Lindquist et al., 2012;
Esslen et al, 2004; Hot and Sequeira, 2013]. For example,
appraisals are rapidly occurring processes, physiological
arousal is much slower, and rumination occurs as a resur-
gence of emotional memories into consciousness after ter-
mination of the emotion eliciting stimulus. The neural
responses associated with these emotional components
also demonstrate different temporal dynamics, such as
onset time, time to peak, duration, and resurgence after
disengagement from the stressor [Waugh et al., 2012; Costa
et al, 2014; Waugh et al., 2015]. Because different emotions
and components of the stress response produce different
neural dynamics, individual differences in subjective emo-
tions during stress may be related to the dynamics of
brain signals and large-scale brain networks.

Dynamic functional connectivity (dFC) allows for time-
resolved analyses of network synchronization by comput-
ing functional connectivity over brief segments of time
[Hutchison et al, 2013; Zalesky et al, 2014]. Studies
employing dFC have shown that synchrony of large-scale
brain networks is temporally unstable [Chang and Glover,
2010], although, whether this instability is due to true neu-
ral dynamics or some type of physiological or measure-
ment noise, or randomness in signals, is currently debated
[Handwerker et al, 2012; Hindriks et al, 2016; Laumann
et al, 2016; Nikolau et al, 2016; Liegeois et al, 2017]. None-
theless, numerous studies have identified a seemingly
functional role for dFC in ongoing brain dynamics, either
at rest [for a review, see Preti et al., 2017] or during task

engagement [Gonzalez-Castillo and Bandettini, 2017].
From these studies, there is evidence that the brain recon-
figures its topographical network organization on a
moment-by-moment basis [Liegeois et al, 2016], and task-
induced cognitive states, or other internal regulating fac-
tors such as mind-wandering, drive dynamic network
reconfigurations [Braun et al, 2015; Mooneyham et al,
2017; Telesford et al, 2016]. Moreover, dFC captures indi-
vidual differences in network dynamics [Xie et al., 2017],
and several studies have demonstrated that dFC more
strongly predicts behavioral characteristics compared to
the presumed stable networks of functional connectivity
computed over an entire time series [Jia et al., 2014; Jin
et al, 2017]. Analysis of dFC group data, therefore, has the
potential to reveal networks related to individual differ-
ences in subjective emotions.

Brain Regions Involved in Emotions and Stress

The ventromedial prefrontal cortex (vmPFC) is a key
region associated with multiple components of emotional
and stress processing including resilience to anticipatory
threat and stress [van der Werff et al, 2013], and positive
emotions [Winecoff et al., 2013; Wager et al, 2009a; Wager
et al, 2009b; Roy et al., 2012]. Activation of the vmPFC is
associated with greater self-reported stress, and it is
involved in the relationship between cortisol regulation
and subjective stress responsiveness [Wheelock et al,
2016]. Other research has shown that increased cortisol
responsiveness is related to widespread limbic system
deactivation including the vmPFC, hippocampus, ACC
and hypothalamus [Pruessner et al, 2008]. Furthermore,
the vmPFC is critical for successful emotion regulation
through its effective connectivity with the amygdala
[Motzkin et al., 2015; Morawetz et al., 2017].

Another important region in emotional and stress proc-
essing is the amygdala, which is associated with fear
[Phelps and LeDoux, 2005] and uncertainty [Herry et al,
2007], but has also been shown to deactivate during a psy-
chosocial stressor [Wager et al, 2009a]. Rather than activa-
tion or deactivation of the amygdala per se, functional
connectivity between the amygdala and other brain
regions is key to elucidating its role in emotion and stress
processing. Functional connectivity between the amygdala
and brain stem, and between the amygdala and the peri-
genual ACC, are both positively correlated with increases
in stressor-evoked blood pressure [Gianaros et al, 2008].
Functional connectivity between the amygdala and vmPFC
is important for successful emotion regulation [Banks
et al., 2007; Motzkin et al, 2015; Morawetz et al, 2017],
especially regulation of negative emotions [Urry et al,
2006]. Resting state functional connectivity between the
amygdala and perigenual ACC, and between the amyg-
dala and hippocampus, are correlated with cortisol regula-
tion [Veer et al, 2012; Vaisvaser et al, 2013]. Exposure to
an acute psychosocial stressor enhances subsequent resting
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state functional connectivity of the amygdala with ACC,
anterior insula and brain stem [van Marle et al., 2010], and
the medial regions of the default mode network (DMN)
[Veer et al, 2012].

The ACC is involved during both positive and negative
emotion processing, as noted above, and the insula is asso-
ciated with resilience to stress [Waugh et al, 2008]. The
ACC is a central region of the intrinsically organized
salience network [Seeley et al, 2007], which also includes
the anterior insula. The salience network plays a role in
interoception, the awareness of one’s own bodily states,
including visceral functions and pain. It is hypothesized to
subserve the integration of internally and externally
derived states, and coordinate further processing from
other networks that determine which subsequent course of
action may best serve the needs of the organism. The
salience network is directly implicated in stress processing
through an increased vigilance for negative emotional
stimuli [Hermans et al, 2014], and salience network activ-
ity is correlated with self-report measures of anxiety (See-
ley et al, 2007]. Together with the vmPFC and amygdala,
the coordinated neurodynamics of the ACC and anterior
insula, which are the core of the salience network, may be
an important part of large-scale network synchronization
in response to acute psychosocial stress.

The research reviewed above emphasizes the importance
of temporal dynamics when investigating neural correlates
of emotion and stress, and documents that the vmPFC,
amygdala, ACC, and anterior insula (i.e., salience network),
cooperate to process various components of emotions and
stress. As such, individual differences in stress-induced sub-
jective emotions may be related to dFC of brain networks
involving these regions. Few studies in the literature on
emotions and stress have investigated the dynamics of
within network synchronization during acute psychosocial
stress [Cribben et al., 2013], and most studies instead have
focused on recovery from a stressor during a resting state
[van Marle et al., 2010; Veer et al, 2012; Vaisvaser et al, 2013;
Soares et al., 2013]. The main objective of this study was to
assess whether individual differences in subjective emo-
tional experience induced by an acute psychosocial stressor
are reflected in the dFC of large-scale brain networks across
healthy participants, whether these networks involve con-
nectivity with the vmPFC, amygdala, and salience network,
and if their functional connectivity fluctuates, or is fixed
(i.e., idle) over time, during different stages of the SET.

METHODS

Participants

Sixteen healthy adult females participated in the fMRI
experiment. Participants had no history of psychological
or psychiatric illness, and no history of substance abuse.
The participants were 25–45 years old (mean[sd]
age 5 33.64[9.36] years). Additional information about the

participants and other data have been previously reported
in Waugh et al. [2012] as the healthy control group, but
the analyses conducted and reported here are independent
of those previously reported.

Social Evaluative Threat (SET) Task

Participants performed an SET stressor task while being
scanned with fMRI. The SET task involves preparation of an
impromptu speech to be delivered to, and evaluated by, a
panel of expert judges. It is an effective stressor that elicits
anticipatory threat, and is associated with emotional, cardio-
vascular, respiratory, neuroendocrine, and neural responses
[Bosch et al, 2009; Dickerson, 2008; Waugh et al, 2012; Waugh
et al, 2010; Wager et al, 2009a; Wager et al, 2009b; Smith et al,
1997; Cavanaugh and Allen, 2008].

The SET is a continuous 7 min and 30 s scan composed of
5 phases: (1) resting baseline period (2 min); (2) task instruc-
tion period (1 min 20 s); (3) speech preparation period (2
min); (4) stress relief prompt (10 s); and (5) rest/recovery
period (2 min). During the task instruction period, partici-
pants were informed they had 2 min to prepare a 7-min
speech communicating “why you are a good friend,” and
that they would have to deliver their speech to an audience
who would evaluate them after the scanning session. In the
speech preparation period, participants were instructed to
“prepare your speech now,” which remained on the screen
for the entire period until the relief prompt was presented.
The participants had no prior knowledge of the speech task
or topic. At the relief prompt, participants were informed
that a coin flip had determined they would not give their
speech (relief), which was followed by 2 min of restful
recovery. In the recovery period, participants were
instructed to wait for the next task to begin. Throughout this
period, participants viewed a fixation cross. All instructions
were visually presented, and participants completed the
task with their eyes open.

While the SET contains several distinct periods demar-
cated by the presentation of visual stimulus events, it is
best characterized by covert mental events, such as speech
preparation and rehearsal, or emotion-related thought
intrusions that may exacerbate or mitigate the effects of
the threat as a stressor. Due to the covert mental nature of
these types of events, their timing relative to the scan,
including onsets, durations, and periodicities, are hidden
from the experimenter and therefore unknown. This
presents a challenge for elucidating the neural mechanisms
of stress and coping that are involved in the SET, but the
method of analyzing dFC described below was designed
to address these challenges.

Retrospective Self-Report Ratings of Emotional

Intensity

After scanning, participants completed a short question-
naire [see Waugh et al., 2012 for a full description of the
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questionnaire] retrospectively assessing positive and nega-
tive emotions for two specific SET events: (1) when they
learned about the speech task (threat) and (2) when they
learned they would not have to give the speech (relief).
The questionnaire included self-report ratings for each of
12 feelings (proud, distressed, excited, upset, strong,
relieved, irritable, scared, inspired, nervous, determined,
and enthusiastic) that fall into two categories: positive and
negative emotions. Participants rated themselves on these
feelings using a scale from 1 to 5, where a rating of 1 cor-
responded to “not at all” and a rating of 5 corresponded
to “a great deal.” For each emotion category, the ratings
are averaged together to obtain a summary measure of
positive and negative emotional intensity. The emotion rat-
ings were completed twice in succession, always ordered
for feelings about the stressor, followed by feelings about
relief from the stressor.

MR Data Acquisition and Processing

MR data were acquired on a 3 T GE whole-body scan-
ner with an 8-channel head coil. Structural images were
acquired with a T1 MPRAGE pulse sequence. Functional
images included 225 T2*-weighted gradient echo echo pla-
nar imaging volumes (31 slices, TR 5 2000 ms, TE 5 40 ms,
3.5 3 3.5 3 4 mm voxels) with a spiral sampling of k-
space to reduce artifacts. Data were processed with a com-
bination of AFNI [Cox, 1996] and custom Matlab code.
The functional image time series were corrected for slice
timing offsets and interscan head movement, and then
smoothed with an 8 mm FWHM Gaussian kernel. The
anatomical T1-weighted image was aligned to the mean of
the functional images for each participant, and then trans-
formed to MNI standard space. The smoothed functional
image time series were then warped to MNI space using
the parameters obtained from the warped T1-weighted
image, with a spatial resolution of 4 mm isotropic voxels.
The effects of head movement (6 rigid body parameters)
and the average time course from an eroded white matter
mask were removed from the functional time series by lin-
ear regression. The mean time course from each of 200
regions-of-interest (ROI) defined by a functional parcella-
tion [Craddock et al, 2012] were obtained and used for
dFC analyses. This parcellation provides reasonable spatial
resolution to cover the whole-brain while reducing the
computational burden of voxel-wise dFC analyses. Ana-
tomical labels for the Craddock 200 parcellation are
derived from the Harvard-Oxford Atlas with 112 distinct
cortical and subcortical labels.

Dynamic Functional Connectivity

A common approach to dFC is sliding window func-
tional connectivity (SWFC), which is computed as the
Pearson correlation coefficient over a series of time seg-
ments between pairs of signals. SWFC has drawbacks
related to limited temporal resolution that obscure brief

events or cause spurious correlations [Leonardi and Van
De Ville, 2015; Shakil et al., 2016]. Alternatively, the rela-
tive phase of two narrow band signals, referred to as
instantaneous FC (iFC), yields a synchronization coefficient
for each time point, and has been applied as a measure of
dFC in resting state and passive sensory stimulation fMRI
research [Glerean et al., 2012; Ponce-Alvarez et al., 2015;
Senden et al., 2016]. However, the iFC requires a narrow
frequency bandwidth prior to performing a Hilbert trans-
formation to obtain phase vectors, which may limit its
applicability for task-based dFC studies, especially when
the temporal characteristics of events are unknown (i.e.,
onsets, durations, periodicities) as in the SET. Panel B of
Figure 1 illustrates the iFC for the pair of wideband fMRI
signals shown in panel A. Frequency modulations from
the wideband signals in the phase vectors obtained via the
Hilbert transformation corrupt the iFC (computed as the
cosine of the relative phase of two signals) and create
rapid fluctuations between synchronized and anti-
synchronized states, making it unsuitable for analyses
when events and event timing is unknown.

To investigate dFC in the SET in which the timing of
events is unknown, we developed a filter that is applied to
the iFC to eliminate rapid dynamics, which yields a smooth
dynamic connectivity signal (DCS). The DCS is an intrinsic
(parameter free) lowpass filter extracted from the iFC (com-
puted from wide band signals) as a trace of the point-wise
mean of the upper and lower envelopes of the iFC. It is
essentially the opposite of the signals obtained from the
empirical mode decomposition [Huang et al, 1998]. Whereas
the empirical mode decomposition returns oscillatory sig-
nals, the DCS returns the non-oscillating signal transients.
Figure 1 illustrates the procedure for calculating the DCS
and compares it with the iFC and two SWFC time courses.
Figure 1C shows the DCS within the iFC envelope, and
demonstrates that extreme fluctuations in the iFC are almost
completely nullified. The upper and lower envelopes are
obtained by interpolating between the positive and negative
peaks of the iFC, respectively. Figure 1D shows the DCS in
comparison to SWFC with windows of 16 or 32 time points
(i.e., 32 and 64 s, respectively). The DCS ranges from 1 to 21
for strong synchronization and anti-synchronization, respec-
tively, and 0 for unstable/no synchronization. Figure 2 illus-
trates that the DCS filter nullifies the effects of frequency
modulations, phase crossings, and phase resetting in wide-
band signals, and still provides maximal temporal resolu-
tion relative to the sampling rate.

Group Analysis and Tensor Decomposition

The DCS was computed for each pair of the 200 time
courses, resulting in a 225 3 200 3 200 (time 3 ROI 3

ROI) connectivity tensor for each participant. This tensor
contains a symmetric matrix of the DCS of each pair of the
200 ROIs at each of the 225 time points from the scan.
Group-level analysis was conducted by concatenating the
DCS tensor of each participant (N 5 16), yielding a 225 3
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200 3 200 3 16 group DCS tensor, and decomposing it
with parallel factor analysis (PARAFAC) [Carroll and
Chang, 1970; Harshman, 1970].

PARAFAC with alternating least squares fitting was
applied to the group DCS tensor to obtain a reduced-rank
set of components that explain some portion of the data
that is common across the group of participants. The PAR-
AFAC model for a three-mode tensor is illustrated in Fig-
ure 3. The notation for the PARAFAC model given below,
however, includes 4 modes because the symmetric DCS
tensors constitute two spatial modes. PARAFAC decom-
poses the data into a sum of rank-one tensors (compo-
nents) that approximates the data. Each rank-one tensor is
the outer product of four vectors (factors),

X �
XRank

l51

kl sl8rl8tl8ul; (1)

wherefore X is the input tensor, 8 denotes the vector outer
product, and k is the component weight. In Eq. 1, s corre-
sponds to the time mode, r and t correspond to spatial modes
(i.e., the pairwise connections of brain regions), and u corre-
sponds to the participant mode that captures their individual

variability. The optimization problem minimizes the differ-
ence between the data and its approximation at each iteration,

Objective Function 2> min X2
XRank

l51

kl sl8rl8tl8ul

�����

�����

�����

����� (2)

Each component (rank-one tensor) of the PARAFAC
model represents a potential brain network, and includes
four sets of factor loadings (s, r, t, and u from Eq. 1) corre-
sponding to the four modes of the tensor. The vector sl

contains unit normalized factor loadings along the tempo-
ral mode that indicate synchronization strength of the
component (network synchronization time course) at each
time point. The spatial map is computed from factors in
modes 2 and 3 as the outer product of two vectors, rl and
tl from Eq. 1, which yields a 200 3 200 approximately
symmetric matrix. The factor loadings in the spatial maps
indicate the strength and direction of connections among
regions. The factor loadings along the fourth mode, u, cap-
ture the individual variability of each participant (partici-
pant loadings) for each component. The factor loadings for
each participant are scalar values that weight the remain-
ing factors for that particular component. As such, the

Figure 1.

The dynamic connectivity signal (DCS). Panel A: two regional

fMRI brains signals (randomly chosen for illustration). Panel B:

the instantaneous functional connectivity (iFC) is plotted in

black. The upper and lower envelopes of the iFC are plotted as

dashed orange lines. Panel C: the dynamic connectivity signal

(DCS) is plotted in blue, along with the upper and lower enve-

lope of the iFC as dashed orange lines. Panel D: the DCS is

plotted in blue, along with sliding window functional connectivity

(SWFC) for windows equal to 16 and 32 time points in red and

yellow lines, respectively. Note that the SWFC time courses do

not have measurements for all time points in the scan and that

SWFC tends to smooth the time series over transient events

identified by the DCS, but the major trends are conserved

across all three metrics. [Color figure can be viewed at wileyon-

linelibrary.com]
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participant factor indicates how strongly the data from
that participant is represented in the other three modes of
the tensor, namely, the time and spatial modes. A partici-
pant with a strong factor loading also strongly represents
the temporal signature and spatial map, whereas a factor
loading near zero would indicate that the participant’s

data does not contain a good match to the factor spatial
map or time signature. This means that greater participant
loadings in ul indicate a stronger representation of the
latent component in the data of that participant (the partic-
ipant more strongly expressed the spatial map and time
signature of the network identified by the component).

Figure 2.

The DCS and wideband signals. Panel A shows two random wide-

band signals. Panel B shows the DCS for the two signals. Panel C

shows the phase vectors for the two signals. Panel D shows the

iFC for the two signals. Visual inspection of Panel C reveals the

characteristics of the DCS that make it suitable for wideband sig-

nals. The DCS indicates no synchronization from time points 1–

15, where the phases are clearly not locked into the same fre-

quency, but the iFC indicates rapidly fluctuating synchrony. Time

points 20–30 show strongly antisynchronized signals (i.e., phases

are 1808 apart), and both the iFC and DCS are in agreement; how-

ever, at time point 40, the iFC indicates strong synchrony when in

fact the phases are not locked onto the same frequency for the

two signals; the DCS, in contrast, indicates no synchrony between

the signals. Finally, time points 145–155 show that the phase vec-

tors have locked onto the same frequency, and the signals are

strongly synchronized; the iFC and DCS are in agreement. The

DCS and iFC, however, fall out of agreement shortly after when

the frequencies of the two signals again change at different rates;

the iFC indicates rapidly fluctuating synchrony, whereas the DCS

indicates no synchrony (see also time points 190–200). [Color fig-

ure can be viewed at wileyonlinelibrary.com]

Figure 3.

Graphical depiction of the CANDECOMP/PARAFAC decomposition. The CANDECOMP/PAR-

AFAC model decomposes a three-dimensional tensor, X, with dimensionality, i, j, k, into a sum

of rank-one tensors, l (the number of components, or Rank). Each rank-one tensor is composed

of a vector of latent factors along each mode, r, s, t, of the input tensor indicating the contribu-

tion of each variable to the component. [Color figure can be viewed at wileyonlinelibrary.com]
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The PARAFAC decomposition was performed using the
tensor toolbox version 2.6 [Bader and Kolda, 2015] and the
number of components was set to 10 based on the aggre-
gated estimated rank of each single subject dFC data set
obtained from the core consistency diagnostic [Bro and
Kiers, 2003; Papalexakis and Faloutsos, 2015]. The core
consistency diagnostic indicates at what rank the core ten-
sor of the PARAFAC solution satisfies the super-diagonal
assumption of the PARAFAC model. The core consistency
diagnostic has been demonstrated to work best among
available techniques for estimating the rank of a PAR-
AFAC tensor model [Morup and Hansen, 2009]. In addi-
tion, selection of 10 components is consistent with the
rank selected by a previous study that used an alternative
approach to estimate the optimal rank (i.e., DIFFIT) [Tim-
merman and Kiers, 2000] for a tensor factorization of rest-
ing state dFC [Ponce-Alvarez et al, 2015].

The PARAFAC decomposition is comparable to princi-
pal components analysis (PCA), but differs in that it oper-
ates on arrays with more than two modes (or dimensions)
and does not impose constraints on spatial or temporal
orthogonality. In the context of this application, the PAR-
AFAC should perform better than models that impose
orthogonality constraints if/when network configurations
overlap spatially or have correlated time courses [Helwig
and Hong, 2013]. The method of decomposing dFC is also
comparable to the eigen connectivity method introduced
by Leonardi et al. [2013], but does not require unfolding
the tensor and collapsing two or more of the tensor
modes. This allows for the investigation of individual vari-
ation in dFC through the analysis of the factor loadings in
the participant mode (mode 4, u) of the PARAFAC model.

To identify the strongest connections within a network,
brain networks derived from the matrix of spatial loadings
were z-scored and thresholded at abs(z)> 2.5. This retains a
maximum of 5% (995) of all possible connections (19,900)
between regions. Two summary measures of brain regional
connectivity were computed from the spatial maps. Network
node degree was computed as the sum of binarized supra-
threshold z-scored factor loadings for each region in the spa-
tial maps, and network node strength was computed as the
sum of the z-scored weights after thresholding. In addition,
to define a statistical threshold for significant temporal factor
loadings (i.e., time course of within network synchronization
strength) we computed a 95% confidence interval by permut-
ing the entire data set along the temporal and spatial modes
and repeating the PARAFAC decomposition 1000 times.

Hypotheses and Planned Analyses

The main objective of this study was to identify whether
individual differences in stressor-induced emotions are
related to the transient synchronization dynamics of large-
scale brain networks. We hypothesized that individual dif-
ferences in subjective threat-related and stress relief-related
positive and negative emotions would be reflected in the

loadings of the participant mode for some factors, and, that
some factor loadings from the temporal mode of the tensor
would be correlated with the rest-task-recovery time struc-
ture of the SET, indicating their relevance for processing the
task. In addition, we expected any emotion-related net-
works to be more strongly synchronized on average during
the speech preparation and recovery periods than during
the initial resting baseline period.

To test the first hypothesis, robust linear regression coeffi-
cients were computed between subjective emotion ratings
and participant loadings of each factor. Outliers were identi-
fied as emotion ratings or factor loadings that were greater
than 3 standard deviations from the group mean, and were
removed prior to computing linear regression (n 5 1). To
investigate the second hypothesis, Pearson correlation coef-
ficients were computed between each factor time course and
a boxcar function (zeros and ones) corresponding to the rest-
task-rest (recovery) design of the SET. The third hypothesis
was tested with a series of two-sample t-tests on the average
supra-threshold synchronization strength of relevant net-
works (identified from the outcome of analyses testing
hypothesis 1) between the three main periods of the SET.
For all regression, correlation and t-test analyses, we report
P values that were corrected for multiple comparisons using
the false discovery rate with q 5 0.05 (FDR) [Benjamini and
Hochberg, 1995], unless otherwise noted. Brain networks
are visualized with the Brain Net Viewer (Xia, Wang & He,
2013).

In addition, because head motion during fMRI scanning
can be a confounding source of variance in the recorded
brain signals, which may subsequently confound correla-
tions of functional connectivity with state and trait behav-
ioral variables [Siegel et al, 2017], we conducted several ad
hoc analyses of head motion to investigate its potential con-
founding effects for our hypothesis tests. The framewise dis-
placement (FD), a measure of total head motion, was
calculated for each participant. The average FD values from
each participant were then used in zero-order correlation
analyses to investigate whether the self-report emotion rat-
ings were significantly related to head motion, essentially
replicating the method employed by Siegel et al. [2017]. The
average FD values were also examined in zero-order corre-
lations with the participant loading vectors output by the
PARAFAC. Also, the average FD was used as a covariate in
the regression analyses to investigate whether head motion
accounted for any findings relating emotion to brain net-
works identified by the PARAFAC decomposition (see next
section for results). Additionally, we examined whether
temporal fluctuations in FD was correlated with temporal
fluctuations in network synchronization.

RESULTS

PARAFAC Four-Mode Components and Model Fit

Figure 4 shows each component of the PARAFAC tensor
decomposition results. The PARAFAC model used in this
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Figure 4.

The PARAFAC factors and brain network components. Each of

the 10 components from the PARAFAC model are shown. Fac-

tor spatial loadings (i.e., networks) are shown in matrix form

unthresholded. Brain maps are thresholded at abs(z)> 2.5. Par-

ticipant loading vectors are shown as bar graphs. The time

course from each component has network synchronization

strength (the time course of factor loadings) plotted on the y-

axis and time on the x-axis. [Color figure can be viewed at

wileyonlinelibrary.com]
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study did not impose constraints for non-negativity, yet all
participant loadings and temporal loadings were unani-
mously non-negative. Also, the model did not include
symmetry constraints for the two spatial modes, but it pro-
duced spatial factors that were approximately symmetric.
Each of the components from the PARAFAC model repre-
sents a network of brain regions whose pairwise syn-
chrony fluctuated in a coordinated manner, either driven
by the task or other internal regulating factors. The syn-
chronization threshold based on the empirically derived
distribution of permuted replicates was 0.063 (threshold
based on 95% confidence interval that ranged from 0.0605
to 0.0651). Values that exceed this interval indicate statisti-
cally significant synchronization of a brain network at a
given time point.

Correlations of Participant Factor Loadings and

Individual Differences in Subjective Emotions

To test the main hypothesis that individual differences
in emotions is related to individual differences in dFC, we
calculated the correlation between the self-report emotion
ratings and the participant loadings for each PRAFAC
component. The regression model included emotion rat-
ings and FD as the two predictor variables (FD was a
covariate of no interest; see also analyses of head motion
confounds in the section below), and factor loadings as the
dependent variable. There were no significant correlations
among the participant factor loadings and the retrospec-
tive ratings of relief-related positive or negative emotion.
The participant factor loadings for two networks were sig-
nificantly correlated with the threat-related positive and
negative emotions, as shown in Figure 5. The participant
loadings for network 8 were positively correlated with
negative emotion, beta 5 0.041, t(15) 5 3.58, P 5 0.0037
(FDR-adjusted P 5 0.038), and the participant loadings
from network 9 were positively correlated with positive
emotion, beta 5 0.0384, t(15) 5 3.73, P 5 0.0029 (FDR-
adjusted P 5 0.029).

Figure 5 panels A and B show the network connectivity
(correlated and anticorrelated), and the MNI coordinates
of the top 10 most interconnected brain regions are listed
in Tables I and II, along with values for node degree and
node strength. For the network related to negative emo-
tions (comp8), brain regions with the highest node degree
included the right midcingulate, parietal cortex, cerebel-
lum and right middle frontal gyrus (correlated synchroni-
zation), and the right insula and superior temporal gyrus
(anticorrelated synchronization). It did not include func-
tional connectivity with the vmPFC. For the network
related to positive emotions (comp9), brain regions with
the highest node degree included the vmPFC (listed as
frontal medial orbital in the Table II), middle temporal
gyrus and ACC (correlated synchronization), and right
superior frontal gyrus, inferior frontal gyrus and ACC
(anticorrelated synchronization). The regions with

significant connections to the vmPFC for the positive emo-
tion network are listed in Table III.

The amygdala was significantly involved in both the posi-
tive and negative emotion networks, its role being primarily
anticorrelated with small clusters of scattered brain regions
(Fig. 6A). Tables IV and V report the regions that showed
significant connectivity with the amygdala for these two
emotion-related networks. In the positive emotion network,
the left and right amygdala showed mostly significant anti-
correlations with regions of the vmPFC, and a few positively
weighted connections with the right anterior temporal lobe
(Table IV). In the negative emotion network, the left amyg-
dala (but not the right) showed negatively weighted connec-
tivity with the cerebellum, ACC, and posterior regions in
the parietal cortex (Table V).

Figure 6B and C depicts the significant connectivity for the
anterior insula and cingulate cortex for both the negative and
positive emotion networks. A full list of significant connec-
tions for these regions appears in Supporting Information,
Tables S1–S4. The right and left insula together had the most
significant anticorrelated connections within the negative
emotion network, with 57 significant anticorrelated connec-
tions in total. Among the strongest anticorrelated insula con-
nections were the left and right inferior parietal cortex, left
cerebellum, right middle frontal gyrus, right precueneus,
and the left and right midcingulate gyrus. There was only
one significant positive connection, which occurred between
the left and right insula (interhemispheric synchrony for the
anterior insula). For the positive emotion network, there
were five positive connections from the insula bilaterally to
the right anterior temporal cortex (temporal pole and middle
temporal gyrus). There were strong anticorrelations with the
anterior ventral PFC (Fig. 6B), and the ACC.

The cingulate gyrus was also involved in both emotion-
related networks (Fig. 6C). Whereas the positive emotion
network involved significant connectivity of the ACC and
midcingulate, the negative emotion network involved con-
nectivity of the mid- and posterior cingulate cortex. For the
positive network, the cingulate cortex was often anticorre-
lated between the hemispheres (Supporting Information,
Table S3), and also included anticorrelations with the insula
and amygdala. For the negative emotion network, the right
midcingulate had 21 of the 22 strongest connection weights
among the cingulate regions (extending from anterior to
posterior). Some of the connected regions include bilateral
connectivity between the left and right midcingulate
regions, left cerebellum, right inferior parietal cortex, right
middle frontal gyrus, and right precuneus. It also included
anticorrelated connections with the left and right insula, lin-
gual gyrus, calcarine gyrus, and amygdala (see Supporting
Information, Table S4 for a complete list).

Temporal Correlations Among Networks

and the SET

To test the second hypothesis that the time signature of
some networks is associated with the task design, we
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Figure 5.

Networks for positive and negative emotions. Panel A shows

the positive and negative spatial factor loadings for the positive

emotion network, and the scatterplot and best fit regression

line between subjective positive emotion ratings and factor load-

ings. Panel B shows the positive and negative spatial factor load-

ings for the negative emotion network, and the scatterplot and

best fit regression line between subjective positive emotion

ratings and factor loadings. Panel C shows the time signatures

for the 5 SET relevant network components. The dashed hori-

zontal line indicates the empirically derived statistical threshold

of temporal factor loadings and serves to illustrate that the time

signatures of the 5 relevant networks fluctuate throughout the

task. [Color figure can be viewed at wileyonlinelibrary.com]
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calculated the correlations between the time loadings of
each PARAFAC component and a boxcar function repre-
senting the SET task. The time courses of factor loadings
for network 5 and 6 were significantly anticorrelated to
the rest-task-recovery task design, rs 5 20.66 and 20.23,
with Ps< 0.05 (FDR corrected), respectively. Networks 7
and 8 (the negative emotion network) were significantly

positively correlated to the task design, rs 5 0.46 and 0.32,
with Ps< 0.05 (FDR corrected). The time course for net-
work 7 was most strongly positively correlated with the
task design, and included prominent peaks at the onset of
visual stimulation signaling the start and end of the task
and mostly involved the occipital cortex suggesting it
reflects a vision network. No other network time courses

TABLE I. Negative emotion network

MNI x, y, z coordinates

Anat. label Node degree (8) Node strengthx y z

9.1 235.9 47.1 Cingulum_Mid_R 39 138.03
55.2 247.5 41.9 Parietal_Inf_R 38 132.48
240.1 252.6 233.2 Cerebelum_Crus1_L 38 129.80
31.7 54.8 14.9 Frontal_Mid_R 38 126.62
236.7 271 231.6 Cerebelum_Crus1_L 38 137.43
40.6 243.2 48.2 Parietal_Inf_R 38 125.61
233.9 253.8 49.5 Parietal_Inf_L 38 136.42
32.9 44.6 28.1 Frontal_Mid_R 38 126.89
1.6 216.5 34.8 Cingulum_Mid_R 37 121.90
10.3 263.5 56.2 Precuneus_R 37 122.57
47.8 7.9 29.3 Insula_R 30 292.23
228.9 12.1 216.6 Insula_L 27 278.11
58.4 27.8 27.8 Temporal_Sup_R 27 277.89
211.3 270.4 5.9 Calcarine_L 24 266.57
18.2 255.5 3.2 Lingual_R 24 267.45
246.4 13.8 211.2 Temporal_Pole_Sup_L 23 264.90
245 20.7 214.6 Temporal_Sup_L 18 249.63
29.6 24.6 215.1 Frontal_Inf_Orb_R 15 241.08
236.7 271 231.6 Cerebelum_Crus1_L 15 244.69
213.3 252.9 20.7 Lingual_L 15 240.44

TABLE II. Positive emotion network

MNI x, y, z coordinates

Anat. label Node degree (8) Node strengthx y z

55.1 23.6 225.4 Temporal_Mid_R 38 114.88
45.7 13.3 222.7 Temporal_Pole_Sup_R 24 71.32
240.6 12.9 228.2 Temporal_Pole_Mid_L 12 36.58
27.7 58.2 21.6 Frontal_Sup_R 11 50.77
6.7 42.6 6.1 Cingulum_Ant_R 11 45.30
1.4 55.9 27.2 Frontal_Med_Orb_R 11 49.05
28.3 43.8 213.5 Frontal_Mid_Orb_R 11 44.65
26.8 45.7 7.8 Cingulum_Ant_L 10 36.94
228.3 50.7 211.6 Frontal_Mid_Orb_L 10 38.22
20.1 38.9 212.2 Frontal_Med_Orb_L 10 31.08
27.7 58.2 21.6 Frontal_Sup_R 81 2271.68
1.4 55.9 27.2 Frontal_Med_Orb_R 75 2249.97
6.7 42.6 6.1 Cingulum_Ant_R 63 2201.13
28.3 43.8 213.5 Frontal_Mid_Orb_R 58 2187.72
42.9 49.6 24.4 Frontal_Mid_Orb_R 56 2181.49
240.9 48.7 23.4 Frontal_Mid_Orb_L 50 2152.85
228.3 50.7 211.6 Frontal_Mid_Orb_L 49 2148.28
10.7 63 10 Frontal_Sup_Medial_R 47 2141.49
26.8 45.7 7.8 Cingulum_Ant_L 46 2136.12
227.8 56.9 4.7 Frontal_Mid_L 28 284.01
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showed a significant correlation or anticorrelation with the
task design that survived the FDR correction. The most
strongly connected regions (positive and negative) of the
network identified by component 6, which had a task-
relevant network time signature, are listed in Table VI.

The time courses from the 10 networks are not con-
strained to be temporally orthogonal by the PARAFAC
model and showed a variety of inter-correlations (Table
VII). Most notably, the time courses for the networks asso-
ciated with positive and negative emotions were not sig-
nificantly correlated, P> 0.05, indicating that they fluctuate
in synchronization strength independently of each other.
As one might expect, the time course of component 5,
which was anticorrelated with the task structure, was also
anti-correlated with the time course of components that
were positively correlated to the task structure (comp7
[visual network] and comp8 [negative emotion network]).
The time course of factor loadings for the positive
emotion-related network (comp9) was significantly corre-
lated only with the time course of comp6 (which also had
a task-relevant time signature), but was uncorrelated with
all other networks and the rest-task-rest SET task
structure.

Task-Related Dynamics of Emotion-Related

Networks

The average synchronization strength of the time course
for the networks correlated with positive and negative

emotions was compared among the 3 main SET task peri-
ods (resting baseline, task, recovery). For each time course,
time points below the empirically derived statistical
threshold for significant synchronization were set to 0, and
a two-sample t-test was performed on the synchronization
values from each period to test whether the average
supra-threshold synchronization strength of either network
varied as a function of SET task period. The synchroniza-
tion strength of the positive emotion network seemed to
grow from baseline to the task period, t(152) 5 21.89,
P 5 0.06 (uncorrected), and from the task period to recov-
ery, t(163) 5 22.48, P 5 0.014 (uncorrected). The synchroni-
zation strength was also significantly stronger during
recovery than the initial resting baseline, t(112) 5 24.75,
P 5 0.0000006 (uncorrected). On the other hand, the syn-
chronization strength of the negative emotion network
was most prominent during the task period, which was
significantly stronger than during both the baseline,
t(121) 5 5.21, P 5 0.0000007 (uncorrected), and recovery
periods, t(107) 5 2.56, P 5 0.012 (uncorrected). Notably, the
synchronization strength of the negative emotion network
was also stronger during recovery than during the resting
baseline, t(112) 5 22.10, P 5 0.037 (uncorrected). These
results show that the positive and negative emotion net-
works were more active during the speech preparation
period than during the resting baseline, and that synchro-
nization of the positive emotion network resurged during
the recovery period.

Correlations of Head Motion with Emotion

Ratings and Factor Loadings

Head motion was, inevitably, present in all participants’
data. One participant had substantially greater FD
(.99 mm) than the other participants (approximately 3
standard deviations greater); however, this participant was
not excluded because this amount of head movement is
considerably less than the size of a voxel (3.5 mm3) col-
lected in this study. This indicates that there was a rela-
tively small amount of head movement in the sample of
participants.

The average FD of each participant was not significantly
correlated with the four ratings of emotions (positive
stressor r 5 20.23, P 5 0.39; positive relief r 5 0.20,
P 5 0.45, negative stressor r 5 20.21, P 5 0.42, negative
relief r 5 20.23, P 5 0.38). The group average (s.d.) FD dur-
ing each of the scanning periods was 0.20 (.32), 0.27 (.39),
0.12 (.08), 0.33 (.53), and 0.20 (.15) mm. None of these were
significantly different using two-sample t-tests with all
Ps> 0.05. Furthermore, these epoched FD values from
each participant were not significantly correlated with any
of the emotion ratings with all Ps> 0.05.

There was a strong zero-order correlation of head
motion with participant loadings of component 4, r 5 0.91,
P 5 0.0000013, and it can be seen that the participant with
the greatest FD (participant 16) dominated this factor with

TABLE III. vmPFC connectivity for positive emotion

network

Anat. label x y z Edge loading

Left vmPFC (20.1 38.9 2 12.2)
Frontal_Med_Orb_R 1.4 55.9 27.2 7.2002934
Frontal_Sup_R 27.7 58.2 21.6 3.7554923
Cingulum_Ant_R 6.7 42.6 6.1 3.2980712
Frontal_Mid_Orb_R 28.3 43.8 213.5 3.2444432
Frontal_Mid_Orb_R 42.9 49.6 24.4 3.2170145
Frontal_Mid_Orb_L 240.9 48.7 23.4 2.9084984
Frontal_Mid_Orb_L 228.3 50.7 211.6 2.8995669
Frontal_Sup_Medial_R 10.7 63 10 2.8246006
Cingulum_Ant_L 26.8 45.7 7.8 2.7955437
Frontal_Mid_L 227.8 56.9 4.7 2.5379621

Right vmPFC (1.4 55.9 2 7.2)
Frontal_Med_Orb_L 20.1 38.9 212.2 7.2002934
Frontal_Sup_R 27.7 58.2 21.6 5.7853042
Cingulum_Ant_R 6.7 42.6 6.1 5.0981223
Frontal_Mid_Orb_R 28.3 43.8 213.5 5.0329169
Frontal_Mid_Orb_R 42.9 49.6 24.4 4.9915915
Frontal_Mid_Orb_L 240.9 48.7 23.4 4.5267667
Frontal_Mid_Orb_L 228.3 50.7 211.6 4.4994509
Frontal_Sup_Medial_R 10.7 63 10 4.4003623
Cingulum_Ant_L 26.8 45.7 7.8 4.3431774
Frontal_Mid_L 227.8 56.9 4.7 3.9684993
Olfactory_R 0.1 20.4 28 2.8065213
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Figure 6.

Amygdala, insula, and ACC connectivity for negative and positive

emotion networks. Panel A shows significant amygdala connec-

tivity for the negative emotion network (left) and positive emo-

tion network (right). Panel B shows significant connectivity for

the anterior insula for the negative emotion network (left) and

positive emotion network (right). Panel C shows significant con-

nectivity for the cingulate cortex for the negative emotion net-

work (left) and positive emotion network (right). [Color figure

can be viewed at wileyonlinelibrary.com]
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a loading that was much greater (�3 standard deviations)
than all other participants. As such, this component is con-
sidered a noise component of no interest. None of the
remaining components had a significant zero-order corre-
lation with participants’ head motion. The zero-order cor-
relations for the 5 components of interest (identified in the
results reported above) were non-significant (comp5
r 5 20.58, P 5 0.09, comp6 r 5 20.15, P 5 0.93, comp7
r 5 0.37, P 5 0.40, comp8 r 5 0.04, P 5 0.97, and comp9
r 5 20.13, P 5 0.93).

We also examined whether temporal fluctuations in
head movement was correlated with temporal fluctuations
in network synchronization identified by the PARAFAC
decomposition by using the temporal FD as predictor vari-
ables in a series of group linear regression models with
network synchrony as dependent variable. The time course
of FD for each participant was significantly correlated
with the time courses of components 3 and 4,
betas 5 20.13 and 0.09, ts(15) 5 2.45 and 3.40, Ps 5 .003
and .0004. Component 4 was already identified as a noise
component, and component 3 can also be considered a
noise component as well. No other component time
courses were correlated with head motion. Taken together,
these results indicate that emotion ratings were neither
related to movement in the scanner throughout the experi-
ment, nor during any specific time or task period, and that

only 2 of the 10 components were confounded by noise
from head motion, although they were unrelated to emo-
tion ratings and the SET task.

DISCUSSION

The aim of this study was to identify whether individual
differences in subjective emotions in response to acute
psychosocial stress are reflected in the synchronization
dynamics of large-scale brain networks. Results of this
study indicate that individual differences in positive and
negative emotions were significantly correlated with indi-
vidual differences in the synchronization strength for two
large-scale brain networks that involved the vmPFC,
amygdala, anterior insula, and ACC. The time-courses of
the emotion networks were not significantly correlated
with each other, and were more strongly synchronized
(within network) during the speech preparation and recov-
ery periods than during the initial resting baseline period.
Furthermore, several ad hoc analyses of head movement
using the method of Siegel et al. [2017] indicate that rela-
tions between the psychological variables and brain net-
works were not directly attributable to motion related
confounds. In sum, these findings indicate that individual
differences in stress-induced emotional intensity are
reflected in the synchronization dynamics of large-scale
brain networks involving the vmPFC, amygdala, ACC,
and insula, and that the synchronization strength of these
emotion-related networks resurges during poststressor
recovery.

Individual Differences in Emotion

The network correlated with individual differences in
subjective negative emotional intensity comprised long-
distance synchronization among lateral PFC, posterior
parietal cortex, and the cerebellum. It did not include con-
nectivity with the vmPFC, but did include negative func-
tional connectivity with both the anterior insula and

TABLE IV. Amygdala connectivity for positive emotion

network

Anat. label x y z Edge loading

Left amygdala (218.7 2 7.4 215.9)
Temporal_Mid_R 55.1 23.6 225.4 3.011853
Temporal_Pole_Sup_R 45.7 13.3 222.7 2.720626
Frontal_Med_Orb_L 20.1 38.9 212.2 22.54163
Frontal_Mid_L 227.8 56.9 4.7 22.80282
Cingulum_Ant_L 26.8 45.7 7.8 22.97303
Frontal_Sup_Medial_R 10.7 63 10 23.05837
Frontal_Mid_Orb_L 228.3 50.7 211.6 23.06376
Frontal_Mid_Orb_L 240.9 48.7 23.4 23.13317
Frontal_Mid_Orb_R 42.9 49.6 24.4 23.40822
Cingulum_Ant_R 6.7 42.6 6.1 23.41135
Frontal_Mid_Orb_R 28.3 43.8 213.5 23.43267
Frontal_Med_Orb_R 1.4 55.9 27.2 23.74979
Frontal_Sup_R 27.7 58.2 21.6 23.81033

Right amygdala (21.3 2 11.9 2 16.4)
Temporal_Mid_R 55.1 23.6 225.4 2.563685
Cingulum_Ant_L 26.8 45.7 7.8 22.61848
Frontal_Sup_Medial_R 10.7 63 10 22.64136
Frontal_Mid_Orb_L 228.3 50.7 211.6 22.69724
Frontal_Mid_Orb_L 240.9 48.7 23.4 22.76877
Frontal_Mid_Orb_R 42.9 49.6 24.4 22.93869
Frontal_Mid_Orb_R 28.3 43.8 213.5 22.94968
Cingulum_Ant_R 6.7 42.6 6.1 22.99898
Frontal_Med_Orb_R 1.4 55.9 27.2 23.23622
Frontal_Sup_R 27.7 58.2 21.6 23.34532

TABLE V. Amygdala connectivity for negative emotion

network

Left amygdala (218.7 2 7.4 215.9)

Anat. Label x y z Edge loading

Cingulum_Mid_R 1.6 216.5 34.8 22.54737
Precuneus_R 10.3 263.5 56.2 22.59356
Frontal_Mid_R 31.7 54.8 14.9 22.60356
Parietal_Inf_R 40.6 243.2 48.2 22.60719
Frontal_Mid_R 32.9 44.6 28.1 22.63509
Cerebelum_Crus1_L 240.1 252.6 233.2 22.65708
Parietal_Inf_R 55.2 247.5 41.9 22.71353
Cingulum_Mid_R 9.1 235.9 47.1 22.77584
Cerebelum_Crus1_L 236.7 271 231.6 22.80727
Parietal_Inf_L 233.9 253.8 49.5 22.83371
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amygdala. The topography of this negative emotion net-
work strongly resembles the previously reported ‘task pos-
itive’ network [Fox et al., 2005]. The task positive network
is composed of fronto-parietal regions that are co-activated
and synchronized when engaged with an exogenous
sensory-motor task. Previous research has shown that
autonomic components of stress-related arousal, such as
skin conductance levels (SCL) and heart rate (HR), are dif-
ferentially related to a similar network topography involv-
ing the fronto-parietal cerebellar network [Eisenbarth et al,
2016], suggesting that SET task engagement is associated
with autonomic components of stress and emotion, which
may in turn cause the relationship with negative emotions.
Furthermore, it is possible that those participants who
experienced greater negative emotion in anticipation of the
psychosocial stressor (i.e., evaluation of the speech) more
strongly engaged the task positive network for speech

preparation (i.e., exerted more effort for preparing the
speech), which may indicate that stronger negative emo-
tions motivated more vigorous preparation to reduce the
perceived threat. Indeed, motivational factors can alter the
autonomic and neural underpinnings of anticipatory social
evaluative threat [Smith et al., 1997].

The spatial topography of brain regions comprising the
positive emotion network is consistent with previous
reports of the anterior vmPFC being involved in the proc-
essing of positive emotions and resilience to stress [van
der Werff et al., 2013; Urry et al, 2006; Motzkin et al., 2015;
Ong et al., 2006], and affective self-regulation [Motzkin
et al, 2014], and the subjective decision to downregulate
negative emotion [Dore et al., 2017]. This network was
composed of dense connectivity among ventral PFC
regions and the PFC connectivity was interhemispheric,
involving both lateral and medial ventral regions. It also
included connectivity with the right and left ACC, and
negative functional connectivity with the amygdala and
anterior insula, which is consistent with its function of
down-regulating conscious negative emotions, either via
appraisal/reappraisal, or some other mechanism.

Temporal Dynamics of Emotion-Related

Networks

The temporal dynamics of the two emotion-related brain
networks were temporally independent from each other.
That the two emotion-related networks are neurodynami-
cally independent, and not anticorrelated, is an important
finding because it demonstrates that networks for positive
and negative emotions are not strictly opponent processes.
This is consistent with the notion that positive and nega-
tive emotions may make simultaneously unique contribu-
tions to stress and coping [Folkman, 2008], and implies
that concurrent synchronization of these two networks,
and their transient interactions, may underpin complex
mixed emotions [Rafaeli et al., 2007].

Poststress resting-state functional connectivity among
the amygdala and numerous cortical regions is reportedly
altered after exposure to a psychosocial stressor [van

TABLE VI. Highly connected regions for component 6

MNI x, y, z coordinates

Anat. label
Node

degree
Node

strengthx y z

55.2 247.5 41.9 Parietal_Inf_R 35 120.35
61.9 221.1 215.6 Temporal_Mid_R 34 113.89
44.9 265.5 39.3 Angular_R 34 115.37
55.1 228.8 0.1 Temporal_Sup_R 32 103.89
42.4 23.8 37.6 Frontal_Mid_R 24 78.15
251.9 250.2 42.1 Parietal_Inf_L 24 78.36
55.1 23.6 225.4 Temporal_Mid_R 24 78.22
258.9 230.2 22.4 Temporal_Mid_L 22 67.67
53.8 255.4 23.5 Angular_R 22 67.81
256.4 215.1 215.3 Temporal_Mid_L 22 68.27
22.5 269.6 211.3 Lingual_R 27 287.92
55.2 247.5 41.9 Parietal_Inf_R 21 266.03
44.9 265.5 39.3 Angular_R 21 264.61
61.9 221.1 215.6 Temporal_Mid_R 20 261.15
8.1 274 6.5 Calcarine_R 20 261.45
55.1 228.8 0.1 Temporal_Sup_R 19 256.08
25.4 287.2 25 Cuneus_L 18 252.13
214.3 274.2 210.1 Lingual_L 18 253.05
211.3 270.4 5.9 Calcarine_L 17 248.85
18.2 255.5 3.2 Lingual_R 15 242.68

TABLE VII. Network time course intercorrelations

Comp2 Comp3 Comp4 Comp5 Comp6 Comp7 Comp8 Comp9 Comp10

Comp1 20.199* 0.239** 0.178* 0.087 20.187* 0.039 20.359*** 20.017 0.184*
Comp2 2 20.102 20.180* 20.145 0.001 0.048 0.204** 20.324*** 0.274***
Comp3 2 2 0.341*** 20.0384 20.332*** 0.284*** 20.075 20.016 0.132
Comp4 - - - 0.024 20.273*** 20.049 20.267*** 20.214** 0.111
Comp5 - - - - 0.189* 20.455*** 20.358*** 0.070 0.059
Comp6 - - - - - 20.395*** 0.180* 0.345*** 20.434***
Comp7 - - - - - - 0.326* 20.106 0.281*
Comp8 - - - - - - - 20.094 20.117
Comp9 - - - - - - - - 20.432***

*P < 0.05, **P < 0.005, *** P < 0.001 (P values FDR corrected).
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Marle et al., 2010; Veer et al., 2012; Vaisvaser et al, 2013],
and poststressor resting state FC between the amygdala
and the perigenual ACC is correlated with stressor-
induced blood pressure reactivity [Gianaros et al., 2008].
Together, these resting state FC studies show that brain
networks associated with stressor-induced negative emo-
tions and physiology may either persist or resurge during
post-stressor recovery.

Our findings suggest that within network synchrony of
both the positive and negative emotion networks is resur-
gent after relief from the stressor, rather than persisting
from their initial synchronization. The neurodynamics of
the positive emotion network demonstrated interesting
behavior in that it was not significantly correlated with the
SET task structure, but it showed strong synchrony late in
the stressor period before the onset of the relief and recov-
ery period. This suggests that this positive emotion net-
work is not necessarily tied to speech preparation but
rather to spontaneous processes that occurred toward the
end of speech preparation and after participants were told
that they would not have to give a speech. For example,
the healthy participants in this study may have experi-
enced a positively valenced reappraisal of the stressor after
engaging in speech preparation, or they may have experi-
enced internally generated relief after having covertly pre-
pared an adequate speech that may avert the looming
evaluative threat. Moreover, connectivity within this net-
work demonstrated resurgent synchrony during the recov-
ery period (especially later in the recovery period – the
green signal in Fig. 4C). This further suggests that some
emotion-related neural signals that appear during stress
may subsequently alter the course of the stress response,
exacerbating or mitigating it, by reactivating various emo-
tional memories after disengagement from the stressor.
These formulations are highly speculative, however, and
will need to be tested in future investigations.

The Amygdala and Emotion-Related SET

Networks

Functional connectivity with the amygdala for both the
emotion-related networks was primarily anticorrelated.
This is consistent with previous research that has reported
amygdala deactivation during engagement with the SET,
in combination with activation of the ventral PFC and task
performance networks [Wager et al, 2009a, 2009b]. While
participants indeed experience negative emotions because
of the SET, it is puzzling why the amygdala is not directly
involved. There are several possible reasons why the
amygdala may be deactivated during the speech prepara-
tion period of the SET. One reason is that it serves as an
automatic prophylactic response against the anticipated
forthcoming negative evaluations. Another reason is that
the amygdala is primarily involved in predictive cues for
threat, rather than conscious experience of the stressor per
se, as advocated by Wager et al. [2009a]. Either of these

hypotheses could be tested in future studies. For example,
investigating whether the magnitude of amygdala deacti-
vation is dependent on the intensity of the perceived
threat could test the first hypothesis, and an experiment
that compares amygdala deactivation during the presenta-
tion of a conditioned stimulus that signals social threat
versus engaging the social stressor as an unconditioned
stimulus could address the second hypothesis.

Importantly, the positive and negative emotion networks
overlapped in their negative functional connectivity with
the amygdala, but there were no regions of overlap
between the positive and negative emotion networks via
the amygdala (no regions in common that showed connec-
tivity with the amygdala), and their respective time
courses were not correlated. Moreover, it indicates that the
activity of the vmPFC of the positive emotion network,
and several key regions of the negative emotion network
(ACC, cerebellum, parietal cortex), respond to the stressor
differently from each other and yet both are anticorrelated
with the amygdala. Together, these suggest that the amyg-
dala plays two separate roles during the SET. It is possible
that the amygdala integrates information between these
two networks, or that it regulates switching between a
large-scale brain topography that is relatively dominated
by the synchrony of either one of the two networks.

The Insula and Cingulate Cortex

The anterior insula and ACC are core regions of the
salience network [Seeley et al, 2007]. The salience network
is related to trait anxiety and is involved in detecting
important environmental events and signaling switches
between task-engaged and default connectivity profiles.
The salience network, as described by Seeley and col-
leagues, appears not to be a coherent part of the emotion-
related networks detected in this study despite involving
connectivity with the anterior insula and ACC. The posi-
tive emotion network involved connectivity among the
ACC and the vmPFC, and anticorrelated connectivity with
the insula, indicating a fractionation of the salience net-
work. The negative emotion network seems to be a task
positive network, which is a separate network altogether
from the salience network, again despite including some
connectivity with the insula and cingulate cortex. Connec-
tivity of regions involved in the negative emotion network
with the insula was anticorrelated, and while the cingulate
cortex was involved in this network, it was more posterior
than regions typically involved in the salience network. As
such, it appears that the anterior insula, and multiple
regions of the cingulate gyrus, extending from anterior to
posterior, are performing functions that are distinct from
those related to the salience network reported by Seeley
and colleagues.

Previous research concerning psychosocial stress has
implicated the insula in several processes, including inter-
oceptive awareness of autonomic arousal in relation to
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conscious emotional experience [Terasawa et al., 2013],
and psychological resilience to negative events [Waugh
et al, 2008]. Given their parallel functional connectivity in
the positive and negative emotion-related brain networks
in this study, similar to the amygdala, it is possible that
these regions are performing integrative functions, leading
to a higher order brain control (i.e., network-based rather
than region-based) over autonomic arousal, and downre-
gulating interoceptive awareness of autonomic indicators
of the social threat to better prepare a response and sup-
press the threat altogether. While this explanation is spec-
ulative, it can be tested empirically by examining the
correlation among perceived threat, interoceptive aware-
ness of autonomic arousal related to the threat, and speech
performance and autonomic responding to negative social
feedback about the speech performance.

Physiological Arousal and Dynamic Functional

Connectivity

We did not measure autonomic physiological signals
throughout the stressor, but this is not simply a limitation
of the study. Physiological processes, such as respiration
and cardiac cycles, significantly modulate spontaneous
dFC [Nikolau et al., 2016], and recent research has demon-
strated that fluctuations in physiological variables are cor-
related with fluctuations in dFC during a stressor
[Eisenbarth et al, 2016]. The vmPFC in particular is associ-
ated with task-related changes in variables indexing physi-
ological arousal, such as heart rate [Eisenbarth et al., 2016;
Young et al, 2017; Chang et al, 2013; Thayer et al, 2012].
Physiological responses, however, are also associated with
emotional experience and behavior [Mauss et al., 2005],
and, importantly, the strength of this relationship depends
on the subjective intensity of emotions. Thus, it is not clear
whether physiological arousal would be a nuisance vari-
able that needs to be controlled in this type of experiment,
or if it would be a variable of interest that is relevant to
understanding the relationship between SET task engage-
ment, its stress-inducing effects, and concurrent brain sig-
nals. Future investigations that measure concurrent
physiological variables will be able to begin answering
this important question.

Dynamic Functional Connectivity, the DCS, and

the PARAFAC Decomposition

Synchronization between two or more signals may be
caused by co-activation, (concurrent supra-threshold
amplitude) [Tagliazucchi et al., 2016; Liu and Duyn, 2013;
Amico et al, 2014], and by coordinated oscillations (coordi-
nated rate of change), or by correlated noise in the signals.
The DCS, developed for this study, as a filter does not pro-
tect against contamination in the signal by sources of
noise. The DCS is particularly intended to identify syn-
chronization in a wideband signal—if two wideband

signals become dominated, even briefly, by the same com-
ponent frequency (regardless of that frequency), then the
DCS will detect it as synchronous. If the two wideband
signals do not lock onto the same frequency, then the DCS
will filter out rapid fluctuations stemming from the instan-
taneous frequency modulations of each signal. In addition,
co-activation does not imply synchrony per se [see Di
et al, 2015 for an example of co-activation versus synchro-
nization], and oscillation synchrony is independent of acti-
vation thresholds. The DCS does not differentiate among
these types of synchrony, and instead detects either type
as contributing to dFC. However, it is likely that each type
of synchronization uniquely contributes to information
processing subserved by dFC, and future research efforts
should disentangle them from each other to elucidate the
possible mechanisms by which individual variability in
dFC is related to cognition and behavior.

The PARAFAC decomposition used in this study suc-
cessfully identified dFC brain networks that were related
to individual differences in conscious emotional experi-
ence, but several characteristics of the model should be
explored in future studies. For example, the PARAFAC
model did not include constraints for non-negative factors
but the factor loadings for the time and participant modes
were unanimously non-negative. Also, preprocessing of
the group dFC data did not include mean centering of the
DCS tensor, nor did it include a dimensionality reduction
step, such as principal components analysis (PCA) as is
common in group analyses employing independent com-
ponents analysis (ICA). The unanimously non-negative
factors may be explained by the fact that the DCS was not
mean centered, or it may be due to the symmetry of the
two spatial modes. In addition, dimensionality reduction
prior to PARAFAC decomposition may lead to improved
model fit and should be explored in future applications.
Finally, setting the rank parameter for the PARAFAC
decomposition is not trivial. We employed the core consis-
tency diagnostic on each individual participant’s data to
estimate the optimal rank of the model, however, it is pos-
sible that the group data is of higher (or lower) rank than
the aggregate of individual participants’ data, or that some
of the networks are especially idiosyncratic and may con-
tribute only noise to the model solution, as in the case of
component 4 that was dominated by a participant with
large head motion. Future research that applies the PAR-
AFAC decomposition to group dFC tensor should explore
or develop alternative methods for determining the rank
of the full data set—those that can estimate the rank with-
out the need to compute model solutions across a range of
possible ranks would be most useful.

LIMITATIONS

This study has several limitations that impact its gener-
alizability and utility in elucidating individual differences
in stress and coping responses to psychological stressors.
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First, an N 5 16 is a small sample size on which to base
conclusions regarding the human population at large, and
this is further limited by the all-female sample. Future
studies should include males and females from a much
larger sample of the population to improve the generaliz-
ability of the results, and potentially identify gender differ-
ences in the neural correlates of stress and coping
mechanisms. Second, the ratings of emotions used in this
study were collected retrospectively, after the scan was
over, and the threat-related and relief-related ratings were
collected in succession without counterbalancing. This
aspect of the study can be improved by recording continu-
ous measures of affective valence and/or intensity
throughout the scan, which would eliminate the need to
collect two sets of ratings because changes in emotions
could be related to SET and brain network events as they
unfold in real time. A third limitation is the lack of physio-
logical data, such as respiratory, cardiac and skin conduc-
tance activity, and the lack of data concerning cortisol
responses. Inclusion of these data in future studies would
provide a more complete picture of how multiple compo-
nents of the stress response are coordinated with neural
activity and vary across individuals. Finally, the short
recovery period precludes analysis of rumination, which is
an important component of how stress affects individuals
after disengaging from the stressor. The post-stressor
recovery scan period can be extended in future studies
and data can be collected with experience sampling-type
protocols [Van Calster et al., 2017] to probe the occurrence
and contents of ruminative thoughts, and relate them to
the neural underpinnings of individual differences in
stress, and recovery and coping strategies.

SUMMARY

The dynamics of emotional processing in the brain are
rich with information concerning the timing and duration,
and resurgence of emotional experiences [Waugh et al,
2015]. In this study, participants were exposed to psycho-
social threat while neural signals were recorded with
fMRI, and subjective emotional intensity ratings were col-
lected retrospectively after the scanning session. A dFC
tensor was computed for each participant’s whole-brain
fMRI signals and the group dFC tensor was decomposed
with PARAFAC. The participant loadings output by the
PARAFAC model indicate individual differences in the
strength of expression of the spatial network and its tem-
poral dynamics reflected in the component. The main find-
ings of this study indicate that the synchronization
strength of stress-induced positive and negative emotion-
related brain networks varies in relation to the subjective
intensity of the experienced emotions, and that these net-
works fluctuate independently. In sum, these findings sug-
gest that dFC of emotion-related networks may serve as a
mechanism that generates individual differences in psy-
chosocial stress, coping with stress, and recovering from

stress. This study contributes to a growing literature that
documents the importance of dFC, and specifically illus-
trates the importance of considering individual differences
in dFC when investigating the network dynamics related
to subjective emotional experiences.
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