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Abstract: Two powerful methods for statistical inference on MRI brain images have been proposed recently,
a non-stationary voxelation-corrected cluster-size test (CST) based on random field theory and threshold-free
cluster enhancement (TFCE) based on calculating the level of local support for a cluster, then using permuta-
tion testing for inference. Unlike other statistical approaches, these two methods do not rest on the assump-
tions of a uniform and high degree of spatial smoothness of the statistic image. Thus, they are strongly
recommended for group-level fMRI analysis compared to other statistical methods. In this work, the non-
stationary voxelation-corrected CST and TFCE methods for group-level analysis were evaluated for both sta-
tionary and non-stationary images under varying smoothness levels, degrees of freedom and signal to noise
ratios. Our results suggest that, both methods provide adequate control for the number of voxel-wise statisti-
cal tests being performed during inference on fMRI data and they are both superior to current CSTs imple-
mented in popular MRI data analysis software packages. However, TFCE is more sensitive and stable for
group-level analysis of VBM data. Thus, the voxelation-corrected CST approach may confer some advantages
by being computationally less demanding for fMRI data analysis than TFCE with permutation testing and by
also being applicable for single-subject fMRI analyses, while the TFCE approach is advantageous for VBM
data. Hum Brain Mapp 38:1269–1280, 2017. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Accurately determining the significance of changes (i.e.,
activations) in brain images is one of the most critical proce-
dures of functional neuroimaging. However, this entails con-
ducting statistical tests over tens of thousands of voxels,
which presents a problem for controlling the number of false
positives. Many approaches correcting for multiple tests have
been proposed for inference on brain maps. The most widely
used approaches are based on family-wise error (FWE) cor-
rection [Cao and Worsley, 2001; Friston et al., 1994; Forman
et al., 1995; Nichols and Holmes, 2002; Worsley et al., 1996].
An alternative to FWE correction is false discovery rate (FDR)
correction based on controlling the expected proportion of
rejected hypotheses that are false positives [Benjamini and
Heller, 2007; Chumbley and Friston, 2009; Chumbley et al.,
2009; Genovese et al., 2002]. Although FDR is potentially
more powerful, it is not yet as widely used as FWE
corrections.

Among the methods based on FWE correction, there are
two cluster-size based approaches which do not place con-
straints on the spatial smoothness of the images: the non-
stationary voxelation-corrected cluster-size test (vn-CST)
based on selecting a cluster-defining threshold (CDT) to
identify activation clusters, combined with random field the-
ory (RFT) for inference [Li et al., 2015], and threshold-free
cluster enhancement [TFCE; Smith and Nichols, 2009] based
on estimating a voxel-wise metric that captures the amount
of cluster-like local spatial support for an activation, com-
bined with non-parametric permutation testing for inference
[Hayasaka et al., 2004; Holmes et al., 1996; Nichols and
Holmes, 2002]. Since neither of these approaches require
high degrees of spatial smoothness and/or uniform spatial
smoothness, they are both ideal for high spatial resolution
MRI data, e.g., voxel-based morphometry (VBM) data or
tract-based spatial statistic (TBSS) images to localize brain
changes related to development, degeneration and disease.

The vn-CST is based on extending the formulation of a
recently proposed method, the voxelation-corrected CST
(v-CST) based on Gaussian Random Field (GRF) theory [Li
et al., 2014], to RFT [Li et al., 2015]. Unlike other CST meth-
ods based on GRF or RFT, which can only be used to control
FWE when the image is highly spatial smoothed [Hayasaka
and Nichols, 2003; Li et al., 2014, 2015], v-CST and vn-CST
are suitable for analyzing images without a high degree of
spatial smoothness. The improvement with v- and vn-CST is
achieved by adjusting the smoothness estimator of the statis-
tical parametric map to take into account the effects of voxe-
lation when the spatial smoothness is comparable to the
voxel size. vn-CST goes one step further than v-CST by
extending the framework from GRF to RFT, and, compared
to v-CST, vn-CST is a more reliable and effective for control-
ling FWE in images with non-uniform spatial smoothness.
Notably, vn-CST is applicable for both stationary and non-
stationary images and performs better under low spatial
smoothness and low degrees of freedom (dfs) when com-
pared to the widely used original non-stationary CST [Wors-
ley et al., 1999; Worsley, 2002], which requires images with
high degrees of spatial smoothness and large dfs [Silver
et al., 2011].

Recent work by Eklund et al. [2016] showed that standard
CSTs based on RFT implemented in FSL and SPM produced
invalid FWE at typical CDTs, and that non-stationarity in
functional magnetic resonance imaging (fMRI) data could
be a contributor to the invalid performance of these
approaches. Notably, they also found that the original
non-stationary CST based on RFT implemented in the
non-stationary toolbox for SPM also produced invalid FWE
at tested CDTs. Our vn-CST approach has great potential to
obviate some of these issues for inference on brain maps
and represents a more robust alternative to currently imple-
mented cluster-based RFT methods.

The TFCE approach takes a raw statistic image and pro-
duces an output image in which the voxel-wise values rep-
resent the amount of cluster-like local spatial support by
combining spatially distributed cluster size and height
information. The output value is therefore a weighted sum
of the entire local clustered signal. For inference, voxel-
level permutation testing is used to turn the TFCE image
into voxel-wise P-values. Notably, TFCE avoids an arbi-
trary choice of CDT, has no requirements for spatial
smoothing and is relatively unaffected by non-stationarity
[Salimi-Khorshidi et al., 2011 ; Smith and Nichols, 2009].
Thus, this method retains the sensitivity of cluster-based
approaches without the need for a hard cluster-forming
threshold. Unlike CST approaches based on GRF or RFT
(which are parametric), the distribution of the TFCE statis-
tic is not known, necessitating the use of non-parametric
permutation testing for inference on the TFCE statistic
maps at the group level. For individual subject-level fMRI
analysis, no clear-cut approach for inference on the TFCE
statistic maps is available because fMRI timepoints in a
timeseries are not exchangeable, which is a requirement
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CST Cluster-size test
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FWE Family-wise error
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FROC Free-response receiver-operator characteristic
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for non-parametric permutation testing [although there
has been some limited work to develop approaches that
obviate this issue (Zhou and Wang, 2009)]. Thus, for
single-subject fMRI data analysis, v-CST and vn-CST may
be more attractive approaches.

For group-level fMRI data analysis, the TFCE approach
outperforms the original stationary and non-stationary CST
inference approaches based on RFT [Salimi-Khorshidi et al.,
2011; Smith and Nichols, 2009]. In addition, our recent work
showed a clear advantage of vn-CST over the original CST
and over our proposed v-CST [Li et al., 2015]. However,
there are no studies comparing the performance of vn-CST
and TFCE for group-level analysis. In this work, we are con-
cerned with group-level inference; namely, we investigate
the effectiveness of vn-CST and TFCE under different dfs,
smoothness levels and signal to noise ratios (SNRs) for both
stationary and non-stationary images for group-level analy-
sis. Simulated null data and simulated activation data were
used to generate stationary and non-stationary data to test
the techniques under know conditions.

MATERIALS AND METHODS

Description of Inference Methods

Non-stationary voxelation-corrected cluster-size test

The vn-CST retains high sensitivity without requiring
high and uniform image smoothing mainly through: the
modification of the mathematical model for estimating
image local roughness and the correction for voxel size.

For vn-CST, the estimate of local roughness of voxel
location i, that takes into account the effect of voxel size,
e.g., the voxelation-corrected local roughness, can be
expressed as, Kic [Li et al., 2014]:

jKicj5
2jKij1=3

21jKij1=3

 !
(1)

Ki is the uncorrected local roughness of voxel location i,
which can be derived from the spatial derivatives of multi-
ple residual images at every voxel [Kiebel et al., 1999].

The voxel size for vn-CST is given in the units of resolu-
tion element (RESEL), e.g., RESELs per voxel (RPV), which
is an extension of the RPV from Worsley et al. [1999] that
uses Kic instead of Ki:

RPVic5ð4log 2Þ23=2jKicj1=2 (2)

The cluster size k is calculated by summing up the RPVic

within each cluster [Li et al., 2015]:
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The uncorrected cluster-size distribution - the distribution
of a single cluster size above a given CDT t-value, for
vn-CST can be expressed as:
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where g is a known parameter that has a relationship with
the CDT that makes vn-CST applicable for low CDT.

The FWE corrected probability of clusters with a specific
size k or larger, searched over a brain region, and exceed-
ing a given CDT t-value, prðm � kÞ, can then be computed
based on the Poisson clumping heuristic:

prðm � kÞ512exp ð2EðLÞpðm � kÞÞ (5)

where L is the number of clusters above t, EðLÞ is the
expected number of clusters [Worsley et al., 1996].

TFCE analysis and inference

Inference at the group level using the TFCE approach
proceeds in two steps. First, the TFCE statistic is calculated
for each voxel, i, in the input raw statistic image as the
sum of the scores of all Supporting Information section
underneath it, as follows:

TFCEðiÞ5
ðhi

h2h0

eðhÞEhHdh (6)

where E and H are tuning parameters set to recommended
values of 0.5 and 2, respectively, for fMRI data and different
values for, e.g., TBSS data [Smith and Nichols, 2009]. e(h) is
the extent of the cluster that voxel i belongs to with cluster-
forming threshold h. Thus, in the output TFCE image, each
voxel-wise value represents the amount of cluster-like local
spatial support of the original signal at each voxel. While
this method obviates setting a cluster-forming threshold, the
parameters E and H must still be set, although the default
values have been shown to work well for a wide range of
image characteristics [Smith and Nichols, 2009]. Once the
TFCE image is computed for each subject, inference at the
group-level is achieved using non-parametric permutation
testing to calculate the FWE-corrected P-value at each voxel.

Evaluation Data Used

To estimate the effectiveness of vn-CST and TFCE meth-
ods in controlling false positives for group-level analysis,
Monte-Carlo simulations were used to generate both station-
ary and non-stationary t random noise data (null data). The
sensitivity of vn-CST and TFCE methods was compared
using simulated MRI data that were generated by adding
realistic ground truth task activation signals and between
group variations to null data, resting-state fMRI (rfMRI)
data, and structural MRI data.

Computer simulation study

Simulated null data. The Monte-Carlo simulations used
to generate both stationary and non-stationary null data
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used a strategy similar to that implemented by Hayasaka
et al. [2004]. For the null data simulations, 2,000 realizations
were generated for two-group data with three different sam-
ple sizes. For each realization, three sets of two-group data
were generated, with the number of subjects per group in a
set fixed at 10, 20 and 30 subjects per group, with 64 x 64 x 32
Gaussian images, and a two-sample t-test was used to calcu-
late the statistic images with df 5 18, 38 and 58, respectively.

For the stationary null data simulation, we tested different
levels of spatial smoothness by varying the applied (full
width at half maximum) FWHM of the Gaussian kernel,
with FWHM 5 1.5, 3, 6 and 9 voxels. For the non-stationary
null data simulation, each white noise image was smoothed
with three different 3D Gaussian kernels, producing three
images with low, medium and high smoothness. These
images were combined such that a central core smoothed
with FWHMc was encircled by a middle layer smoothed

with FWHMm, which was in turn encircled by an outer layer
smoothed with FWHMo. Six settings (FWHMc/FWHMm/
FWHMo: 0/1.5/3, 3/1.5/0, 3/4.5/6, 6/4.5/3, 5/4.5/4 and
7.5/4.5/1.5 voxels) were used to simulate different levels of
non-stationary data. The resulting non-stationary image
were also scaled to ensure that the variance of the noise was
unity.

The significance level of the tests was set to 0.05, for which
the normal approximation of the 95% confidence interval is
4.04%-5.96%. Each test’s rejection rate was calculated by tak-
ing the number of realizations that contained detected clus-
ters divided by the total number of realizations. Unlike
TFCE inference (which does not require an a priori threshold
but does involve default TFCE height and extent parame-
ters), the results of vn-CST methods depend on the CDT. For
vn-CST, performance was tested with CDT t-values 5 2.5,
3.0, 3.5, 4.0 and 4.5 (these CDTs were used for all simulations

TABLE I. Cluster size (in voxels) of the ground truth activation regions for Monte Carlo simulation, rfMRI-based

and VBM-based simulation

Monte Carlo simulation 508 318 315 306 193 167 132 109 86 85
81 55 54 49 45 27 25 14 7 2

rfMRI-based simulation 18545 178 102 86 85 57 55 45 27 15
VBM-based simulation 2442 748 520 239 238 109 69 50 49 38

34 30

Figure 1.

Results for the simulated stationary null fMRI data. Both methods were compared for three sample

sizes (df 5 18, 38 and 58) and three smoothness levels (FWHM 51.5, 3, 6 and 9 voxels). For

vn-CST, the applied CDTwere 2.5 to 4.5. The desired FWE-corrected P-value of the test was 0.05.
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in this work). Suprathreshold voxels were searched first and
then clusters of suprathreshold voxels were identified with
18 connectivity algorithms. For the TFCE analysis, FSL Ran-
domise (http://fsl.fMRIb.ox.ac.uk/fsl/fslwiki/Randomise)
was used with default cluster parameters of H 5 2 (power of
cluster height) and E 5 0.5 (power of cluster extent). The
number of permutations was set to 1,000 with the default
connectivity.

Simulated activation data

Simulated activation data were generated by construct-
ing an activation signal for a two-group analysis under
conditions in which the ground truth spatial activation
pattern is known. A mask with 20 clusters, with cluster

sizes ranging from 2 to 502 voxels, was used as the ground
truth spatial pattern (Table I). This spatial pattern was uti-
lized to construct ground truth fMRI activation blobs
embedded in the simulated null data. The ground truth
fMRI signal had a background value of 0 and a peak value
of 1.

For the simulated stationary task data, the signal data was
first scaled by 1, 3 or 5, and then added to the simulated
unsmoothed null data to give images with a range of peak
SNR values 5 1, 3 and 5, respectively. These unsmoothed
stationary task data with different SNR levels were then spa-
tially smoothed using FWHM 5 1.5, 3, 6 and 9 voxels to gen-
erate data with different levels of SNR/smoothness over all
SNR and FWHM values. For simulated non-stationary acti-
vation data, the same concentric smoothing strategy (which

Figure 2.

Results for the simulated non-stationary null fMRI data. Six different non-stationarity settings were

used. All methods were compared for different sample sizes (df 5 18, 38 and 58). For vn-CST, the

applied CDTs were 2.5 and 4.5. The desired FWE-corrected P-value of the test was 0.05.
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was used to generate the simulated non-stationary null
data) was applied to the unsmoothed stationary task data
(for all three SNRs).

For the activation data simulation, 20 realizations were gen-
erated for each sample size (df 5 18, 38 and 58). For TFCE,
FSL Randomise was used to estimate the between-group dif-
ference and find the activation regions. The number of per-
mutations was set to 5,000 with the default connectivity.
Receiver-operator characteristic (ROC) curves were used to
compare performance of vn-CST and TFCE. As discussed by
Smith and Nichols. [2009], various TPR and FPR measures
can be defined when multiple tests are considered. In this
case, both free-response receiver-operator characteristic
(FROC) and alternative FROC (AFROC) can be used. FROC
plots the proportion of true positive tests versus the expected

number of false positives per image. AFROC plots the pro-
portion of true positive tests versus the probability of any
false positive detection anywhere in the image. As neuroim-
aging analyses typically seek to control the FWE rate, we
chose to use AFROC in our study [similar to Smith and Nich-
ols, 2009]. With FWE-false positive rate (FWE-FPR) chosen as
the x-axis and the measured cluster-wise true positive rate
(TPR) (the number of detected true activation clusters divided
by the total number of activation clusters) chosen as the y-
axis. Since only performance with low FPR is of interest, we
compared ROC curves for FWE-FPR< 0.05, and the corre-
sponding AUC was scaled by 1/0.05 to renormalize the AUC
to the range [0, 1]. The significance level of all tests was set to
0.05.

rfMRI-based simulation

In this study, simulated ground truth task-activation
responses were added into high-spatial and temporal reso-
lution resting state data in prescribed regions of the brain
(primarily visual cortex). High resolution rfMRI data (2 3

2 3 2 mm3 resolution acquired at 3T) were obtained from
the HCP (http://www.humanconnectome.org/data/). Data
from 20 unrelated subjects with minimal pre-processing were
downloaded. The acquisition protocol and pre-processing
pipelines have been described in Glasser et al. [2013] and
Smith et al. [2013]. In brief, the rfMRI data were obtained
using gradient-echo EPI with TR/TE 5 720 ms/33 ms, matrix
size 5 104 3 90 with 72 2-mm slices, and 1,200 total volumes
per subject. Minimal preprocessing was done to correct for
various distortions and head motion, to align the rfMRI
timeseries data to the structural data, and to register to MNI
standard space.

The ground truth spatial pattern used to construct
ground truth activation signals embedded in the rfMRI
data contained 10 clusters, with cluster sizes ranging from
15 to 18,545 voxels, as shown in Table I. The ground truth
timecourses of activation given to voxels in the activation
mask were constructed using a strategy similar to that
implemented by Li et al. [2014] based on simulating acti-
vation timecourses using a dummy paradigm. The dummy
paradigm used was for a block design with task activation
waveforms constructed by convolving a canonical HRF
with a boxcar waveform, consisting of 20.16 sec of rest
alternated with a 20.16 sec activation period, repeated four
times for a total block length of 161.28 sec, and with a 2%
signal change.

Once rfMRI-based simulation data were constructed, first-
level statistical analyses were done using FSL FEAT to gen-
erate the subject-level parameter estimate maps. The task
regressor that modeled the dummy block design was con-
volved with the canonical (hemodynamic response function)
HRF and temporally filtered with a high pass filter cutoff of
128 sec. Gaussian spatial smoothing kernels of FWHM of 1.5
and 3 voxels were applied to the rfMRI data. The P-values
for TFCE were calculated using FSL Randomise with the
default values for E and H. The number of permutations

Figure 3.

AUC results for the simulated stationary activation fMRI data.

Both methods were compared for three sample sizes (df 5 18, 38

and 58) and four smoothness levels (FWHM 5 1.5, 3, 6 and 9

voxels). The applied SNRs were 1, 3 and 5. For vn-CST, the results

of CDTs of 2.5 and 3.5 were shown. The FWE-corrected P-value

of the test was 0.05. All vn-CST significance levels are compared

with those using TFCE (*: P< 0.05, **: P< 0.001).
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was set to 5,000 with the default connectivity. The FWE-
corrected P-level was set to 0.05. The FPR was defined as the
number of false positive clusters divided by the total num-
ber of detected clusters.

VBM data

T1-weighted 3D structural data collected in 34 normal
control (NC) subjects and 31 patients with Alzheimer’s
Disease (AD) obtained from the ADNI database (https://

ida.loni.usc.edu/login.jsp) were used to generate simulat-
ed data. A ground truth spatial mask was generated from
the gray-matter differences between AD and NC groups
using an optimized VBM protocol implemented using
FSL-VBM [Douaud et al., 2007] with a two-group unpaired
t-test. This gave a mask containing 12 clusters, with the
cluster sizes ranging from 30 to 2,442 voxels, as shown in
Table I. To simulate two-group VBM data, subjects in the
NC group were randomly divided into two groups of 17,
and a ground truth signal with a background value of 0

Figure 4.

AUC results for the simulated non-stationary task fMRI data. Six

different non-stationarity settings were used. All methods were

compared for different sample sizes (df 5 18, 38 and 58) and

SNRs (SNR 5 1, 3 and 5). For vn-CST, the results for CDTs of

2.5 and 3.5 are shown. The FWE-corrected P-value of the test

was 0.05. All vn-CST significance levels are compared with those

using TFCE (*: P< 0.05, **: P< 0.001).
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and a peak value of 3 was added to the unsmoothed gray-
matter data of one group (i.e., 17 NC subjects) for voxels
in the regions overlapping the mask. A two-group analysis
was done to compare the gray-matter data between the
two NC groups with the known between-group difference.
The impact of different levels of smoothing was also test-
ed, with all modulated registered grey-matter-volume
images being smoothed with two different smoothing ker-
nels, isotropic Gaussian kernels with FWHM 5 3 and
6 mm. In order to assess inter-group differences, a two-
group unpaired t-test with FWE-corrected P-level of 0.05
was used to compare the performance of vn-CST and
TFCE methods at the two smoothness levels. For TFCE,
the number of permutations was set to 5,000 with the
default connectivity. A “null data” VBM analysis was
used to test the performance of each method for control-
ling false positives at FWE-corrected P-level of 0.05 by
simply dividing the NC data into two groups and compar-
ing them directly. In this case, there are no expected
differences.

RESULTS

Computer Simulation Results

Simulated null data

Figure 1 shows the results of FWE-corrected rejection
rates on simulated stationary null data. The performance
of vn-CST method depends on the CDTs and the dfs. vn-

CST effectively controls the rejection rates when df is larg-
er than 18. The rejection rates of vn-CST are close to or
less than 0.05 when the range of CDT is less than 4.5
under all smoothness levels when dfs� 38. For lower df
(df 5 18), vn-CST is anti-conservative under most CDTs
except for CDT 5 3.0. Compared with CST method, the
performance of TFCE is more accurate and stable in con-
trolling the false positive rate. The range of rejection rates
for TFCE method is between 0.04 and 0.06 under all dfs
and smoothness levels.

Figure 2 shows the FWE-corrected rejection rates on
simulated non-stationary null data. The rejection rates for
TFCE for all six levels of non-stationarity are 0.043 to
0.063, 0.035 to 0.041, and 0.044 to 0.06 for df 5 18, 38 and
58, respectively. vn-CST controls the rejection rates well
when CDT< 4.0 under all levels of non-stationarity. The
performance of vn-CST is somewhat liberal when
CDT> 4.0, especially for low df (df 5 18). These data sug-
gest that TFCE shows more accurate and stable perfor-
mance than vn-CST under all chosen levels of non-
stationarity.

Simulated activation data

Figure 3 shows the AUC results for the simulated sta-
tionary task activation data. The best performance for both
methods were observed for FWHM 5 1.5 voxels. In this
case, vn-CST shows higher sensitivity whe CDT 5 3.5.
With a suitable CDT, the performance of vn-CST is compa-
rable with that of TFCE, especially for higher SNR
(SNR� 3) and lower smoothness level (FWHM 5 1.5
voxels).

Figure 4 shows the AUC results on simulated non-
stationary activation data. TFCE shows better performance
under all conditions. For the selected parameters, the sen-
sitivity of vn-CST is increased with increasing CDT. With
a suitable CDT (e.g., CDT 5 3.5), there is no significant dif-
ference between TFCE and vn-CST methods for higher
SNR (SNR� 3) and higher dfs (df� 38).

Based on Figs. 3 and 4, the performances of both meth-
ods are increased with increasing df, especially for low
SNR (SNR 5 1). Based on the simulated null data analysis
(e.g., that vn-CST is a little lenient when CDT> 4.0), and
limited space, we only show the results of CDT 5 2.5 and
3.5 for vn-CST method. For Figs. 3 and 4, the error bars rep-
resenting the variability of the AUC under each condition
(e.g., each df and SNR) are obtained from the 20 realizations
generated for each sample size.

rfMRI-Based Simulation Results

Figure 5 shows the TPR for the group-level analysis at
the significance level of 0.05. Figure 6 shows the
corresponding activation map with CDT 5 3.0 for vn-CST
method. Based on these results, both CST and TFCE meth-
ods show better performance when FWHM 5 1.5 voxels.
All the activation regions can be detected by TFCE and

Figure 5.

TPR for the group-level rfMRI data analysis. The significance lev-

el was set to FWE-corrected P 5 0.05 and CDTs 5 2.5, 3.0, 3.5,

4.0 and 4.5 are shown for vn-CST. FWHMs of the applied

Gaussian filters were 1.5 and 3 voxels. No false positive clusters

were detected by vn-CST or TFCE at either smoothness level.
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vn-CST for high CDTs when FWHM 5 1.5 voxels. With
increasing FWHM of the applied Gaussian filter, the specif-
icity and sensitivity decrease for both methods. Some
smaller clusters are not detected by both methods when
FWHM 5 3.0 voxels. In our results, the sensitivity of vn-CST
increases with increasing CDT (corresponding to decreasing
spatial extent). The performances of TFCE and vn-CST
methods were comparable when CDT� 4.0 for vn-CST.

VBM Data Results

For the null VBM data analysis comparing the two
groups of NC data (with no added signals), there were no
regions with significant differences detected by TFCE or

vn-CST (for all CDTs) methods at FWE-corrected P-val-
ue< 0.05 (the results were not shown here). Figure 7
shows the TPR for the simulated inter-group VBM analysis
using vn-CST and TFCE methods at the significance level
of 0.05, for both levels of smoothness. Figure 8 shows the
inter-group VBM activation map with CDT 5 3.0 for vn-
CST. No false positive clusters were detected by vn-CST
or TFCE at either smoothness level. TFCE detected all
regions with simulated group differences for both smooth-
ness levels, showing better sensitivity than vn-CST. The
sensitivity of vn-CST is increased with increasing CDT
and decreasing smoothness level, with all regions with
simulated group differences being detected by vn-CST
when CDT 5 4.5 and FWHM 5 1.5 voxels. However, this

Figure 6.

The detected activation map for the group-level rfMRI analysis

at the significance level of 0.05. For vn-CST, the CDT was 3.0.

FWHMs of the applied Gaussian filters were 1.5 voxels (top

four rows) and 3 voxels (bottom four rows). Rows 1 and 4

show the variation in image smoothness using the voxelation-

corrected local smoothness based on Eq. (1) (obtained as

RPViĉ(1/3)). A region that was significant with TFCE but not vn-

CST was shown in black circles. [Color figure can be viewed at

wileyonlinelibrary.com]

r Non-Stationary Voxelation-Corrected Cluster-Size r

r 1277 r

http://wileyonlinelibrary.com


may be due to vn-CST being somewhat liberal at high
CDT. Some smaller clusters were not detected by vn-CST
at relatively higher spatial smoothness. Table II shows the
results of the false negative clusters by vn-CST at different
CDTs and smoothness levels. In general, vn-CST detected
almost all the activation regions under different spatial
smoothness regions, even include some smaller clusters
(cluster size 5 30, 34 and 38 voxels). However, the cluster
with cluster size is 50 voxels in the regions with quite
large local smoothness (almost twice larger than other
regions) was not detected when CDT< 4.5.

DISCUSSION

In this work we compared a new parametric statistical
method, non-stationary voxelation-corrected cluster size
tests (vn-CST), with a widely used non-parametric statisti-
cal method, TFCE, for group-level analysis of both station-
ary and non-stationary images under different dfs, SNRs,
smoothness levels and CDTs (for CST methods).

Based on the results of the simulations using real rfMRI
data, either vn-CST or TFCE can be used for fMRI data
analysis. Even though computer-simulated data show that
TFCE is clearly advantageous independent of CDTs and
dfs and that the performance of vn-CST in controlling false
positive rates depends on the CDTs and is not as stable as
TFCE, the simulations based on rfMRI data show compa-
rable sensitivity and specificity of vn-CST and TFCE for
the most commonly used CDT (t-value> 3) and degree of

smoothing (1.5 voxels). The discrepancy between the
rfMRI simulations and the computer-simulations is likely
due to computer-simulated data not accurately simulating
fMRI data. The simulation data based on rfMRI are much
better at capturing the real properties of fMRI data, which
was also asserted in the recent work by Eklund et al.
[2016] that tested CSTs implemented in FSL and SPM. For
VBM analyses, our findings show that while vn-CST and
TFCE do not identify any false positives, the true positive
rate for vn-CST varies with CDT and is only similar in per-
formance to TFCE for the highest CDT (t-value> 4). Thus,
even though both TFCE and vn-CST methods are applicable
for non-stationary data analysis, for VBM data, TFCE shows
superior performance to vn-CST, which does not completely
eliminate the effect of spatial heterogeneity.

In this study, we found that vn-CST can effectively control
the false positives under both CDTs of P 5 0.01 and 0.001.
This represents a great advantage of vn-CST over standard
CST methods. Eklund et al. [2016] found that a CDT of
P 5 0.01 for the standard CST method (currently imple-
mented in FSL and SPM) will yield a very high degree of
false positives. Our modifications of the standard CST based
on GRF to be applicable for non-stationary data and low
CDT makes this approach valid at typical CDT [Li et al.,
2015]. Based on our simulation, the suggested CDTs for
vn-CST are between 2.5 and 4.0.

Based on all the simulated activation studies, it was found
that both methods show better performance when the
FWHM of the applied Gaussian kernel 5 1.5 voxels. With
increasing spatial smoothness, TFCE shows better perfor-
mance than vn-CST at detecting low SNR and small activa-
tion regions. This may be due to the increase in SNR
produced by the TFCE output image in which the voxel-
wise values represent the amount of cluster-like local spatial
support. However, for real fMRI data in which the activation
regions may be larger than the smaller activation regions we
used in our simulations, the performance of vn-CST and
TFCE will be comparable (with a suitable CDT for vn-CST).

We also found that the sensitivities of TFCE and vn-CST
methods are significantly increased with the increasing dfs,
especially for low SNR (SNR 5 1). In essence, a t-statistic is
a change divided by the square root of the estimated vari-
ance of that change. Analyses with fewer than about 20 dfs
tend to have poor variance estimates. Errors in estimation
of the variance appear as high (spatial) frequency noise in
images, which cause noisy t-statistics. This situation can be
addressed by smoothing the variance images, replacing the
variance estimate at each voxel with a weighted average of
its neighbors [Nichols and Holmes, 2002].

There are several advantages of vn-CST. It is suitable for
both group-level and single-subject analysis and can
preserve the high resolution of the single-subject data by
not requiring heavy spatial smoothing, and it addresses the
failure of current widely used CSTs to control FWE and the
limitations of TFCE with permutation testing for single-
subject analyses. In addition, vn-CST is less computationally

Figure 7.

TPR for the simulated inter-group differences VBM analysis using

vn-CST and TFCE methods at the significance level of 0.05. For vn-

CST, results are shown with CDTs 5 2.5, 3.0, 3.5, 4.0 and 4.5.

FWHMs of the applied Gaussian filters were 1.5 and 3 voxels.

There were no detected false-positives for either TFCE or vn-CST.

r Li et al. r

r 1278 r



Figure 8.

VBM results for the analysis with simulated inter-group differences

using vn-CST and TFCE methods. FWE-corrected P-value was set

to 0.05. For vn-CST, the CDT 5 3.0. FWHMs of the applied

Gaussian filters were 1.5 voxels (top three rows) and 3 voxels

(bottom three rows). Rows 1 and 4 show the variation in image

smoothness using the voxelation-corrected local smoothness

based on Eq. (1) (obtained as RPViĉ(1/3)). A region that was signifi-

cant with TFCE but not vn-CSTwas shown in black circles. [Color

figure can be viewed at wileyonlinelibrary.com]

TABLE II. VBM results of vn-CST method

Cluster

Size/voxels 2442 748 520 239 238 109 69 50 49 38 34 30

Applied
FWHM5

1.5 voxels

Clusters’

mean

FWHM

4.64 5.66 4.12 3.93 3.53 3.29 3.41 8.82 3.66 4.02 4.20 3.25

t-value
2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

4.5 3.0/3.5/

4.0/4.5

3.0/3.5/

4.0/4.5

2.5/3.0/

3.5/4.0/

4.5

3.0/3.5/

4.0/4.5

Applied
FWHM5

3.0 voxels

Clusters’

mean

FWHM

6.49 7.76 5.60 5.18 4.83 4.13 4.52 10.49 4.48 4.94 5.70 3.92

t-value
2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

2.5/3.0/

3.5/4.0/

4.5

3.5/4.0/

4.5

4.0/4.5 2.5/3.0/

3.5/4.0/

4.5

3.0/3.5/

4.0/4.5

Cluster size is the voxel size of twelve known ground truth clusters.
Clusters’ mean FWHM is the mean smoothness level (in voxels) of each cluster when FWHMs of the applied Gaussian kernel are 1.5 and 3.0
voxels, respectively. t-value means all the CDTs that can detected each cluster when the applied FWHM are 1.5 and 3.0 voxels, respectively.
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intensive than TFCE, which may be a negligible effect for
most fMRI data analyses, but could be a limitation for stud-
ies with a large number of subjects and in other situations.
For example, for the single group Monte Carlo simulations,
CSTs ran in almost 10 seconds, whereas TFCE took almost
20 minutes with 1,000 permutations (1,000 permutations
was chosen to achieve a reasonable time) (CPU 2.0 GHz,
RAM 2GB).

CONCLUSIONS

In contrast to standard CSTs currently implemented in
FSL, SPM, and the non-parametric SPM toolbox, vn-CST
provides control over FWE at low CDT corresponding
to P 5 0.01. Overall, both TFCE and vn-CST are nearly
equally effective for group-level analysis of fMRI data for
CDT> 2.5. However, TFCE is more reliable and effective
for group-level analysis of VBM data without the require-
ment of high spatial smoothness and uniform spatial
smoothness. The most suitable approach for inference may
ultimately depend on whether or not the interest is in
single-subject versus group-level analysis or on limitations
associated with the greater computational demands of the
TFCE approach.
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