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Abstract: Singing, music performance, and speech rely on the retrieval of complex sounds, which are
generated by the corresponding actions and are organized into sequences. It is crucial in these forms
of behavior that the serial organization (i.e., order) of both the actions and associated sounds be moni-
tored and learned. To investigate the neural processes involved in the monitoring of serial order dur-
ing the initial learning of sensorimotor sequences, we performed magnetoencephalographic recordings
while participants explicitly learned short piano sequences under the effect of occasional alterations of
auditory feedback (AAF). The main result was a prominent and selective modulation of beta
(13–30 Hz) oscillations in cingulate and cerebellar regions during the processing of AAF that simulated
serial order errors. Furthermore, the AAF-induced modulation of beta oscillations was associated with
higher error rates, reflecting compensatory changes in sequence planning. This suggests that cingulate
and cerebellar beta oscillations play a role in tracking serial order during initial sensorimotor learning
and in updating the mapping of the sensorimotor representations. The findings support the notion that
the modulation of beta oscillations is a candidate mechanism for the integration of sequential motor
and auditory information during an early stage of skill acquisition in music performance. This has
potential implications for singing and speech. Hum Brain Mapp 38:5161–5179, 2017. VC 2017 Wiley Periodi-

cals, Inc.
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INTRODUCTION

Music performance, as well as song and speech, is a
paradigmatic example of sensorimotor learning, that is,
the monitoring of auditory feedback and its modulation of
motor control [Brown and Palmer, 2012; Zatorre et al.,
2007]. Singing and music performance require a particu-
larly high temporal and spectral precision of the auditory
output, thereby making increased demands on sensorimo-
tor control compared to speech [Natke et al., 2003; Patel,
2011; Tierney et al., 2013; Zatorre and Baum, 2012].

An essential feature of these types of behavior is their
sequential nature: The events (chords, notes or vowels)
have to be accurately produced in a specific temporal
(serial) order in which the related actions follow each
other. How the brain encodes serial order has been a fun-
damental question since Lashley’s seminal work on the
organization of sequential behavior [Lashley, 1951]. A
positional account for serial order, in which the position of
the items within a sequence is coded as a separate repre-
sentation, has been demonstrated in short- and long-term
memory, as well as in motor learning (for a recent review,
see Dehaene et al. [2015]). Specifically, neurophysiological
evidence primarily from non-human primates supports
the involvement of the anterior cingulate cortex (ACC),
supplementary motor areas (SMA), and prefrontal cortices
in the separate coding of serial order [Amiez and Petrides,
2007; Averbeck et al., 2002; Clower and Alexander, 1998;
Ninokura et al., 2004; Nieder, 2012; Procyk and Joseph,
2001]. There is, however, sparse evidence with regard to
the neural mechanisms for serial-order coding during the
learning of auditory-motor associations in the context of
music performance and singing. Here we hypothesize that
in these types of behavior, dedicated neural mechanisms
should monitor both the auditory and motor sources of
information with regard to the serial order of the pro-
duced actions, particularly during the initial learning. To
date, this hypothesis has remained largely untested.

The primary goal of our study was to investigate the
neural mechanisms underlying the monitoring of serial
order during sensorimotor sequence learning as revealed
by alterations of auditory feedback (AAF). To that aim, we
recruited 21 participants whose task it was to explicitly
learn short movement sequences on a digital piano while
listening to the corresponding auditory feedback. At the
behavioral level, we hypothesized that AAF would have a
different impact on the ongoing performance depending
on whether AAF activated incorrect serial positions within
the sequence. Data from previous behavioral studies on
this matter are contentious. Some studies focusing on
piano performance show a disruption in the accuracy of

sequencing due to serial shifts of feedback (pitch error
rates increase, Pfordresher and Palmer [2006]). However,
other studies using random pitch alterations, including
manipulations with serial shifts of feedback, have not
found changes in the error rates or other types of behav-
ioral adaptation [Maidhof et al., 2010]. Therefore, the
extent to which auditory-feedback-based alterations of the
serial order of actions disrupts learning remains to be
understood. To further clarify this matter, the present
study used AAF of two kinds: AAF simulating serial order
errors (alterations of serial order or ASO) and AAF with
pitch values that were unrelated to the sequence contents
(unrelated auditory feedback or UAF).

Until now almost all neuroimaging studies investigating
the effects of AAF did not use pitch alterations that inter-
fered with the serial order of the actions in the sequence
[Chang el al, 2013; Maidhof et al., 2010; Tourville et al.,
2008; Zarate and Zatorre, 2008]. One notable exception is
the functional magnetic resonance imaging (fMRI) study
by Pfordresher and colleagues (2014), which used six dif-
ferent kinds of AAF after their pianist subjects undertook
initial training on piano melodies. This study revealed an
involvement of the premotor cortex in processing delayed
auditory feedback (temporal shift), and an engagement of
the cerebellum and ACC in processing serially shifted
feedback. In addition, the superior temporal gyrus was
involved in processing both kinds of AAF. What remain to
be investigated, however, are the neural mechanisms that
update the mapping of the sensorimotor representations
following serial shifts in auditory feedback during initial
learning.

Elucidating the neural mechanisms involved in monitor-
ing the acquisition of the serial order of actions during
sensorimotor learning requires a time-resolved technique
with a millisecond resolution. This high temporal accuracy
is relevant in the context of the fast movement rates that
characterize music or singing performance (e.g., eight
notes per second, Herrojo Ruiz et al. [2009]). Conse-
quently, we used magnetoencephalography (MEG) to track
the fast changes in neuronal oscillatory activity following
AAF and to assess the neural generators engaged in moni-
toring the different kinds of AAF.

Two strong candidates for a neurophysiological signa-
ture of processing auditory-feedback alterations during
sensorimotor learning are theta (4–7 Hz) and beta
(13–30 Hz) oscillations. Oscillatory activity in the theta fre-
quency range across medial frontal or cingulate regions
has been consistently associated with the processing of
correct or incorrect feedback signaling an error in the per-
formance [Cavanagh et al., 2011; Luft, 2014, Nieuwenhuis
et al., 2004]. The main factor influencing frontal midline
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theta might be outcome probability, which is primarily
associated with the non-phase-locked (induced) portion of
theta oscillations [Hajihosseini and Holroyd, 2013]. Beta
oscillations are crucial during sensorimotor learning and
performance, as reflected in their involvement in process-
ing self-produced pitch errors in piano performance [Her-
rojo Ruiz et al., 2011], or in sensorimotor adaptation [Tan
et al., 2014; Torrecillos et al., 2015]. In addition, there is
vast evidence linking changes in beta oscillations to the
processing of different aspects of movements, such as
movement-related cues, boundary elements of sensorimo-
tor sequences or temporal intervals [Bartolo et al., 2014;
Herrojo Ruiz et al., 2014a; Iversen et al., 2009; Leventhal
et al., 2012; Oswal et al., 2012].

Our specific hypotheses at the neural level were (see
aforementioned references for anatomical candidates): (1)
theta-band oscillations are engaged in monitoring altera-
tions of auditory feedback of any kind (ASO and UAF); (2)
beta-band oscillations specifically reflect the processing of
auditory feedback alterations of the serial order; and (3) a
potential dissociation between the spectral content of oscil-
latory activity induced by processing AAF of the ASO or
UAF kind is reflected in different patterns of neuronal
sources located in the temporal, cingulate, prefrontal,
SMA, and cerebellar regions

METHODS

Participants

Twenty-one participants (10 females, median age 27
[ranging from 22 to 34] years; data after exclusion of 1 par-
ticipant, see below) who had no intensive piano training
(accumulated lifetime practice experience below 500 h)
participated in the study. All participants were right
handed (Handedness score median 100, range 60–100; Old-
field 1971), had no history of neurological or psychiatric
disease and received remuneration for their participation.
One participant was discarded from further analysis due
to artifacts in MEG signals of the study. Written informed
consent was obtained from each participant before the
experiment that was approved by the local ethics
committee.

Material and Apparatus

Six different piano sequences of length between four
and five notes and with isochronous timing (1 keystroke
every 300 ms) were used for this study. The pitch content
for each sequence was limited to the pitch values available
in the MEG-compatible keyboard, which were B, C, C#,
and D; these pitch values corresponded to MIDI note
numbers 60, 61, 62, and 63 (Fig. 1). The sequences were
designed to enable different combinations of transitions
between successive finger movements.

Participants had to perform the piano sequences with
their dominant (right) hand on a custom-made keyboard,
which was formerly part of an actual acoustic Grand Piano
keyboard. Auditory feedback was delivered following
standard procedure in MEG recordings through air-
conducting plastic ear tubes. The keyboard had been
stripped off any ferromagnetic component and tested for
MEG and MRI compliance [Bangert et al., 2006]. It was
connected via optical fibers to an electronic processor out-
side the MEG room, where the signal was A/D-converted
and translated into a standard serial interface protocol
(Musical Instrument Digital Interface, MIDI). Performance
information as provided by the MIDI device included time
onsets of keystrokes relative to the previous event (inter-
onset-interval or IOI [ms]), MIDI note numbers that corre-
spond to the pitch, and MIDI velocities (in arbitrary units,
a.u.). Alterations of auditory feedback (AAF) and behav-
ioral data acquisition were conducted using the software
Visual Basic (MIDI libraries) on a Windows Computer.
The time delay between keystrokes when registered as
MIDI data and the corresponding trigger in the MEG
recording was in the range of 20–25 ms. This delay was
corrected in the subsequent MEG analysis.

Procedure

Participants were explicitly taught the sequence contents
and the (most comfortable) digit-to-tone mapping they
should use. Before recording of the performance or MEG
data, participants had to briefly practice each sequence
until an error-free performance was achieved at a self-
defined tempo for five consecutive renditions.

There was a familiarization (training) and subsequent
performance session. Both these sessions can be consid-
ered to relate to the early stage of motor skill learning as
described in previous studies. The hallmarks of the early
motor skill learning stage are the rapid improvements in
performance (i.e., improved timing and reduced error
rates; Dayan and Cohen [2011]).

During the familiarization session, participants completed
one training block consisting of three trials of 23 s dura-
tion for each sequence type. In each trial, participants con-
tinuously practiced a given sequence type while listening
to the corresponding auditory feedback. Performance
tempo was induced by using a synchronization-
continuation paradigm, that is, the tempo was paced prior
to each trial by a metronome at 200 beats per minute
(bpm, 1 keystroke every 300 ms; Fig. 1). The metronome
was turned off before the trial onset. The aim of this train-
ing condition was to ensure that participants knew the
correct serial order of the actions for each sequence type to
be able to play them from memory in the subsequent ses-
sion of MEG recording. In addition, we expected that this
session (lasting less than 1 minute of practice per sequence
type) would lead to rapid improvements in performance
[Dayan and Cohen, 2011].
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In the performance session, one block of 15 trials of 23 s
duration had to be completed for each sequence-type
(�5–6 min per sequence type). Prior to each trial, the
tempo was again induced by a metronome at 200 bpm.
During performance, participants listened to the auditory
feedback associated to the key presses. They were
instructed to play repeatedly the sequence several times
during the trial without pause. In this session, we
recorded MEG during performance. Participants were
instructed to focus their eyes at a central fixation point on
the screen during playing and, in between-trials, to focus
on the visual cues at the center of the screen.

The control condition was constituted by trials 1, 6, and
11, in which the auditory feedback corresponding to each
key press was not modified. Alterations of auditory

feedback (AAF) were introduced in the remaining trials,
and they were dissociated into two types of alterations
corresponding to two experimental conditions. Auditory-
feedback-based alterations of serial order (ASO) were
introduced in trials 2, 4, 8, 10, 12, and 14. AAF with pitch
values that did not correspond to the sequence contents
(unrelated auditory feedback or UAF; with pitch values A#

or D#, and MIDI note numbers 59 and 64; Note that these
pitch values were one semitone lower or higher than the
lowest or highest pitch values contained in the sequences,
respectively; see Fig. 1) were introduced in trials 3, 5, 7, 9,
13, and 15. In the experimental conditions, the AAF was
introduced randomly between every 4th and 14th produced
note (every 8.37 [0.05] keystrokes on average). We used
this design because lower AAF rates do not lead to

Figure 1.

Experimental paradigm. (A) Scheme of one trial of the experi-

mental paradigm. Time course of the presentation of the initial

visual cue with the image of the piano and the block-specific

sequence content, followed by the auditory cues. The auditory

cues reproduced the sequence elements for two renditions at a

rate of one tone every 300 ms (200 bpm) prior to the go signal.

Participants had to begin playing the sequence renditions after

the last metronome cue at the presentation of the go cue

(green ellipse). Within-trial performance was characterized by a

concatenation of approximately 10 sequence renditions without

large pauses. The end of the trial after 23 s of performance was

signaled by a visual cue with a red ellipse. (B) The pitch content

(and corresponding MIDI note numbers) of our custom-made

MEG-compatible keyboard is displayed at the bottom. During

the experiment we used three kinds of auditory feedback. (i)

Normal auditory feedback associated with the keystroke (NAF,

denoted here by the black quaver) was present in the control

trials (1, 6, and 11). (ii) Alterations of auditory feedback sound-

ing as a serial order error (alterations of serial order or ASO,

denoted by the blue quaver) were introduced in trials 2, 4, 8,

10, 12, and 14. (iii) Alterations of auditory feedback with a pitch

content unrelated to the sequence (unrelated auditory feedback

alterations or UAF, with pitch values A# or D# and correspond-

ing MIDI note numbers 59 and 64; denoted by the red quaver)

were introduced in trials 3, 5, 7, 9, 13, and 15. [Color figure can

be viewed at wileyonlinelibrary.com]
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behavioral effects [Maidhof et al., 2010; Pfordresher and
Kulpa, 2011]. The specifications of each trial within a
sequence-type-specific block for the familiarization and
performance sessions are given in Figure 1.

At the end of the experiment, participants were asked to
complete a questionnaire that aimed to assess their estima-
tion of rates of self-produced errors in the control condi-
tion and the experimental conditions with AAF as well as
their awareness of the different types of feedback (further
details are provided in the Supporting Information avail-
able online).

Performance Analysis

General performance was evaluated in terms of average
timing (IOI), temporal variability (coefficient of variation,
CV, of IOI), pitch error rate, and average keystroke veloc-
ity. Note that MIDI velocity is related to the loudness of
the keystroke. With the exception of the error rate, all
analyses were performed on events with “adequate” tem-
poral properties (an IOI lower than 1000 ms to exclude
extreme outliers related to pauses—if any—during perfor-
mance) and which were not surrounded by performance
errors (at least within three preceding and following key-
strokes). This set of events was the basis of the trials for
later MEG analyses. Behavioral adaptations to AAF were
evaluated in terms of postfeedback slowing (putative
larger IOI at keystrokes following AAF), pitch error rate,
and distance of pitch errors from AAF (number of key-
strokes away from current AAF).

MEG Recording and Preprocessing

Participants were comfortably seated in an electromag-
netically shielded room (Vacuumschmelze, Hanau, Ger-
many). Magnetic fields were recorded using a 306-sensor
Neuromag Vectorview MEG (Elekta, Helsinki, Finland)
with 204 orthogonal planar gradiometers and 102 magne-
tometers at 102 locations. The head movement was con-
trolled by means of a head-position indicator (HPI) with
coils attached to the scalp. Two electrode pairs recorded a
bipolar electrooculogram (EOG) to control for horizontal
and vertical eye movements—one pair was attached above
and below the left eye, and the other with two electrodes
on the outer canthi. Additionally, a bipolar ECG channel
was recorded with electrodes attached to the right clavicle
and left ribs.

Signals were sampled at a rate of 1000 Hz with a band-
width ranging from direct current (DC) to 330 Hz. During
the experiment, participants had their right arm resting on
a pillow located at a small table. This procedure allowed
as comfortable as possible finger movements without
inducing arm or shoulder movements that might have
influenced the MEG recording.

External interferences in the data were suppressed off-
line by the signal space separation method (SSS Maxfilter

Neuromag [Taulu et al. 2004]). This algorithm was further
used to transform individual data to a default head posi-
tion in order to perform statistical analyses across partici-
pants in sensor space. The head displacement of
participants was <5 mm. Only in one subject with an aver-
age head displacement above 5 mm (but below 1 cm: par-
ticipant #15) an additional tempospatial filtering algorithm
was applied to correct for head movements (MC Neuro-
mag [Taulu and Kajola, 2005; Taulu and Simola, 2006]).
On average the head displacement in all participants was
1.8 (2) mm (range 0.5–4 mm; participant #15 excluded in
this average).

Subsequent data analyses were performed with Matlab
(The MathWorks, Inc., MA, USA) and the FieldTrip tool-
box [Oostenveld et al. 2011]. The main analysis was con-
ducted using a set of 102 magnetometer sensors, as they
are most sensitive to deeper cortical sources [Hansen
et al., 2010; Parkkonen et al., 2009]. For a complementary
analysis conducted with the planar gradiometers, see Sup-
porting Information, Figures S1–S3.

The continuous data were filtered offline with a high-
pass filter at 1Hz (Linear-phase FIR filter as implemented
by Fieldtrip with “firls” option, two-pass, filter order-
5 3000). In addition, an independent component analysis-
based procedure was used to remove the ocular and elec-
trocardiographic artifacts (FastICA, symmetric approach,
hyperbolic tangent – tanh – as nonlinear function; Hyv€ari-
nen and Oja, 2000). To detect which IC was related to the
heartbeat signal, we followed the procedure suggested
in the Fieldtrip tutorial (http://www.fieldtriptoolbox.
org/example/use_independent_component_analysis_ica_to_
remove_ecg_artifacts). In brief, we used both, the time and
the frequency data of the ECG to detect the QRS-complex
and to compare its profile with similar patterns found in
the IC space. We did not use the EOG signal in our IC
removal algorithm itself but we visually double-checked
that the components we had marked as responsible for eye
movements had a similar temporal profile as the ECG sig-
nal. For each subject, there were between 2 and 4 indepen-
dent components (IC) removed. Note that although there
are 102 magnetometers, the default SSS Maxfilter settings
reduce the dimensionality (rank) of the data to an approxi-
mate number of 72. Therefore, around 68–70 ICs remained
after excluding the artefactual components.

Time–Frequency Representation

The time–frequency representation (TFR) of the signals
in the sensor space was performed in trial epochs ranging
from 21 to 1 s time-locked to the events of interest: correct
keystrokes (i) with normal auditory feedback (NAF), (ii)
with alterations of serial order (ASO) feedback, and (iii)
with unrelated auditory feedback (UAF) alterations. There
were approximately 200 artifact-free data epochs for each
AAF condition (ASO, UAF) per participant. Among the
larger number of artifact-free data epochs with normal
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feedback (around 800), we selected a reduced set of 400
data epochs matched as much as possible in timing (IOI)
and keystroke velocity to the ASO and UAF trials. Note
that large number of trials (200, 400) leads to better signal-
to-noise ratio [Gonzalez-Moreno et al., 2014] and therefore
is likely to facilitate sensitivity of the magnetometers to
deep sources [Parkkonen et al., 2009].

The MEG data epochs in the interval [21,1] s were con-
volved with complex Morlet wavelet functions to obtain at
each sensor and epoch a TFR of the phases and ampli-
tudes of the wavelet-transformed MEG signal x(t). We
selected as number of cycles g 5 7. The frequency domain
was sampled from 4 to 100 Hz in bins of 1 Hz. This range
can be subdivided into the theta (4–7 Hz), alpha (8–13
Hz), beta (14–30 Hz), and gamma (30–100 Hz) frequency
bands. Changes in the event-locked spectral power were
evaluated by means of the wavelet energy, which is com-
puted as the average across epochs of the squared norm of
the response-locked complex wavelet transform. Our main
interest was to assess the dynamics of ongoing oscillatory
activity, which is modulated but not evoked or phase-
locked by the onset of the stimulus [Lopes da Silva and
Pfurtscheller, 1999]. Accordingly, we estimated the
induced activity by subtracting the evoked oscillatory
activity from the total wavelet energy [Herrmann et al.,
2004]. Next, we normalized the induced spectral power
with respect to a baseline interval by subtracting and
dividing, for each condition, sensor, frequency and time
point separately, the average baseline power in the pre-
keystroke interval [20.2, 20.1] s. The resulting normalized
induced spectral power was expressed as percentage of
relative power change. This normalization procedure
reduced the effects of intersubject and intersensor
variability.

Statistical Analysis

Behavioral data were analyzed by means of a nonpara-
metric pairwise permutation test across subjects [Good,
2005] to assess differences between different feedback con-
ditions (ASO–NAF, UAF–NAF, ASO–UAF). The test statis-
tic was the difference in sample means. We performed
n 5 5000 rearrangements, drawn at random from the com-
plete permutation distribution (Monte Carlo permutation
test). The P values were computed as the ratio of the num-
ber of replications of the test statistic having larger abso-
lute values than the experimental difference divided by n.
In addition, we report a nonparametric effect size estima-
tor, PSdep, following Grissom and Kim [2012]. PSdep is the
probability that in a randomly sampled pair of values (one
matched pair) the value from Condition B (which for
instance has larger values) will be greater than the value
from Condition A. The maximum value is PSdep 5 1. More
details are provided in the Supporting Information avail-
able online. In the case of multiple test statistics being
evaluated, we applied an adaptive two-stage linear step-

up procedure [Benjamini et al., 2006] to control the false
discovery rate (FDR) at level q 5 0.05. In those cases, the
corrected threshold P value obtained from the FDR control
procedure, termed Pth, is provided.

Statistical analysis of the time–frequency data in the sen-
sor space was conducted at the group level using permu-
tation tests with a cluster-based threshold correction to
control the family-wise error (FWE) at level 0.05 (depen-
dent samples t-test, 1000 iterations; Maris and Oostenveld
[2007]). Contrasts of all single conditions (ASO–NAF,
UAF–NAF, ASO–UAF) were performed with this
approach—always testing the null hypothesis of no
between-condition difference in the time–frequency repre-
sentation of the induced oscillatory activity. Experimental
cluster-based test statistics being in the 2.5th and 97.5th
percentiles of the permutation distribution were consid-
ered significant (two-tailed test, P< 0.025).

Here the cluster-based nonparametric permutation tests
were applied in each contrast to the theta and beta fre-
quency bands and within the time interval from 0.15 to
0.4 s relative to the keystroke events.

Source Reconstruction

To localize the sources of the effects obtained in the sen-
sor space, we used a dual procedure combining common
spatial pattern (CSP) analysis and dipole fitting (see, e.g.,
Nierula et al. [2013]).

The CSP algorithm [Blankertz et al. 2008] is a method
used to analyze multi-channel data based on recordings
from two conditions. CSP leads to the generalized eigen-
value decomposition of the original signal x(t) � RC into
xCSP(t) � RC (see details in the Supporting Information
available online). The decomposition generates C spatial
filters (wj, j 5 1, 2,. . ., C; C being the number of channels)
and C spatial patterns (aj, j 5 1, 2,. . ., C), after applying an
optimization criterion, such that CSP filters maximize the
variance of the spatially filtered signal for one condition
while minimizing it for the other condition. Note that the
variance of bandpass-filtered data is equal to the spectral
power of the signal in a specific frequency range [Blan-
kertz et al., 2008]. Accordingly, CSP is usually applied to
bandpass-filtered signals to discriminate between condi-
tions characterized by oscillatory activity.

Here, CSP analysis was conducted in the time–frequency
ranges of statistical effects obtained in sensor space (see
Statistics). Similarly, for the CSP analysis, we subtracted
the average of evoked responses from the total oscillatory
activity [Kalcher and Pfurtscheller, 1995; Nierula et al.,
2013].

Note that in the sensor space the statistical analysis
revealed significant between-condition effects, namely
increases in induced activity (in all contrasts between con-
ditions: ASO–UAF, ASO–NAF, UAF–NAF, see Results).
Accordingly, the patterns associated with the three largest
eigenvalues (i.e., being associated with the strongest
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between-condition increase in induced activity in the time-
frequency windows of statistical effects) were subjected to
source modeling. The selected set of three CSP patterns
was assumed to account for the main between-condition
differences (as in brain–computer–interface studies, Blan-
kertz et al. [2008]). Significantly, however, the spatial pat-
terns aj do not represent themselves a difference between
signals from two conditions but are associated with CSP
components, zj, representing the time course of a corre-
sponding source activity. The CSP components relate to
sources maximally different in power between the condi-
tions. As in Nierula et al. [2013], equivalent dipole model-
ing was performed on the selected aj patterns.

For source reconstruction, we performed the following
steps:

i. Individual T1-weighted MRI images (3 T Magnetom
Trio, Siemens AG, Germany) were used to construct
topographical representations of the cortical surface
of each hemisphere with Freesurfer (http://surfer.
nmr.mgh.harvard.edu/).

ii. Coregistration of the MR and MEG coordinate sys-
tems was performed with an automated algorithm
available in the MNE software (mne_analyze:
http://www.martinos.org/mne/stable/index.html)
using the HPIs and the digitized points on the head
surface (Fastrak Polhemus). In addition, we verified
that the three anatomical (fiducial) locations (the
nasion and the left and right preauricular points)
were correctly coregistered between both coordinate
systems and made some minor manual modifica-
tions to improve their alignment in 7 out of 20
subjects.

iii. Forward calculations: With the MNE toolbox, we
computed boundary element conductivity models
(BEM) for each participant and selected the inner
skull surface as volume conductor geometry. Then,
we created as source space a grid in the MNI space
template brain (as used in SPM8) with 4 mm resolu-
tion and warped this grid into the subject-specific
space using individuals’ inverse homogenous trans-
formation matrices (obtained during normalization
of individual MR images). This step allowed us to
have a common grid in MNI coordinates across
subjects.

iv. Inverse calculations: Source reconstruction of the
CSP patterns was performed with equivalent current
dipole (ECD) modeling as implemented by Field-
Trip, and using one or two dipoles as solution. The
102 sensors montage of the magnetometers and cor-
responding CSP spatial patterns was selected for this
analysis. In the first estimation the optimal location
was found by fitting the dipole at each point of the
grid with 4 mm resolution. Subsequently, the opti-
mal grid coordinate was used as starting point for a
more precise fit using a nonlinear search algorithm.

A model with at least 75% of goodness-of-fit (GOF)
was accepted for further statistical analysis. The ana-
tomical locations corresponding to each dipole were
extracted from the automated anatomical labeling
(AAL) digital atlas of the human brain (Tzourio-
Mazoyer et al. [2002]; here we used 116 labels
including bilateral areas and excluding the medulla,
midbrain, pons, and cerebellar white matter).

v. Statistics of inverse calculations: Because we applied
CSP and dipole fitting to time-frequency windows of
the data showing significant effects in sensor space,
the dipole fitting results were not tested against the
null hypothesis of no between-condition difference.
Rather, we tested the null hypothesis that across
subjects the fitted dipoles could be located across all
grid positions (in MNI space) with the same proba-
bility. Details are provided in the Supporting Infor-
mation available online. In brief, we assessed the
probability of grid points falling within each ana-
tomical location from the AAL atlas, ploc. Our loca-
tions of interest were the cingulate gyrus, the
temporal gyrus, the cerebellum, the SMA and the
functional area of the dorsolateral prefrontal cortex
(DLPFC: contributing to the anatomical area of the
middle frontal gyrus: labels Frontal_Sup and Fron-
tal_Mid the AAL atlas; Brodmann areas 9 and 46).
For each of those locations, we treated the results as
a binomial experiment consisting of a fixed number n
of statistically independent Bernoulli trials (n 5 20
subjects), each with a probability of success ploc, and
we counted the number of successes k (meaning k
subjects exhibited that location after dipole fitting;
details on the binomial experiment are provided in
the Supporting Information available online). We
derived the probability that at least k subjects out of
n have a source in the same specific location, P(k,n).
The final P value was corrected for multiple compar-
isons arising from the five locations of interest by
using the Bonferroni correction: a/5 5 0.01, with
a 5 0.05. Accordingly, the null hypothesis was
rejected for any of the locations being tested when-
ever there was at least the minimum number of sub-
jects k showing that same specific location, with a
probability P(k,n) below the corrected significance
threshold 0.01.

RESULTS

Behavioral Data

A scheme listing the abbreviations corresponding to
each control and experimental conditions is displayed in
Figure 1. Data are provided as mean and, in parentheses,
standard error of the mean (SEM). In this section, we
report results for the main performance block. Behavioral
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results for the previous familiarization (training) block can
be found in the Supporting Information available online.
In brief, across the three training trials participants demon-
strated rapid improvements in performance as reflected in
faster average tempo and reduced temporal variability.

Performance block: Across all trials and for each sequence
type, participants played on average 671(6) keystrokes. In
trials with modified feedback, the rate of AAF was one in
every 8.37(0.05) keystrokes or every 3140(130) ms. On
average the keystroke velocity in normal trials was 56(1),
which was significantly smaller than the value in each of
the conditions with modified feedback (P<Pth 5 0.01; 57
[1] both in ASO and UAF trials, PSdep 5 0.80 and 0.70,
respectively; these trials did not differ in keystroke veloc-
ity). Accordingly, modified auditory feedback induced a
larger keystroke velocity, as previously reported [Furuya
and Soechting, 2010].

Error Rates

The main outcome was that in trials with ASO feedback,
but not in trials with UAF feedback, there was a larger
rate of self-produced pitch errors as compared with the
rate in normal trials (mean 0.025 [0.003] in ASO and 0.019
[0.003] in NAF trials, P<Pth 5 0.01, PSdep 5 0.80; mean
0.023 [0.003] in UAF trials, P> 0.05; Fig. 2A). The error
rates in trials with ASO and UAF were not significantly
different. The pitch error rate increased across trials with
ASO (from an initial average rate of 0.021 [0.004] to 0.034
[0.004], P<Pth 5 0.007, PSdep 5 0.75), whereas it remained
stable across trials with UAF and trials with normal feed-
back (P> 0.05 in both cases). In addition, the percentage of
ASO events inducing pitch errors was 0.25 (0.02), signifi-
cantly larger than the percentage of UAF events triggering
errors, which was 0.19 (0.02; P 5 0.024, PSdep 5 0.75). The
pitch value and ordinal position of the errors induced by
AAF events were consistent with compensatory changes in
the next rendition of the sequence, most prominently in
ASO trials (See further details in Supporting Information,
Fig. S4, available online). The ASO-induced compensatory
changes reflected alterations in the sequential organization
of the events planned for production.

Finally, assessment of the questionnaires filled out by
the participants revealed that they overestimated the num-
ber of pitch errors due to the presence of AAF, an out-
come that has been reported in a previous behavioral
study [Pfordresher and Beasley, 2014]. The subjective
number estimate of self-produced errors per sequence
type was 19 (1), whereas the number of self-produced
errors was 15 (2), and the difference was significant
(P 5 0.016, PSdep 5 0.80). Of note, more participants
reported recognizing the occasional presence of AAF unre-
lated to the sequence content than noticing AAF of the
ASO kind (16 and 13 participants, respectively, see Sup-
porting Information available online).

Timing

On average, participants played at a rate of 1 keystroke
every 384 [10] ms in trials without AAF. No significant
changes between auditory feedback conditions were found
in the average IOI. However, the temporal variability (CV)
was significantly larger in trials with each kind of AAF
compared to normal trials (P<Pth 5 0.022 in both compar-
isons, PSdep 5 0.70 for ASO relative to NAF and
PSdep 5 0.80 for UAF relative to NAF). Accordingly, both
kinds of AAF induced a poorer performance within the
trial with regard to variability in timing.

AAF induced alterations in the timing of the subsequent
keystrokes. UAF induced a significant postfeedback slow-
ing in the next (11) and subsequent (12) keystroke, as
reflected in the significantly larger mean IOI at those posi-
tions relative to UAF alterations (393 [10] ms at the post-
UAF keystroke; 391 [10] at the post2UAF keystroke; in
both cases the mean IOI was significantly larger than the
mean IOI at UAF events 383 [9] ms; P<Pth 5 0.018,
PSdep 5 0.75 and 0.8, respectively; Fig. 2B). ASO feedback
did not lead to changes in timing in the immediately sub-
sequent keystroke (388 [10] ms at 11 and 385 [10] ms;
P> 0.05), but it did induce significant postfeedback slow-
ing at 12 keystrokes from the feedback alteration (391 [10]
ms, P<Pth 5 0.018, PSdep 5 0.75). Furthermore, a control
analysis comparing the mean IOI in trials with normal

Figure 2.

Behavioral data. (A) Rate of self-produced pitch errors (and SEM

bars) in trials with normal feedback or NAF (#1, 6, and 11), altera-

tions of serial order or ASO (#2, 4, 8, 10, 12, and 14), and unrelated

auditory feedback or UAF (#3, 5, 7, 9, 13, and 15). The star indicates

that the pitch error rate in ASO trials, but not in UAF trials, was sig-

nificantly larger than the rate in trials with NAF (P< Pth 5 0.01).

(B) The average inter-onset-interval (mIOI in ms; and SEM bars) at

keystrokes with NAF, ASO or UAF, and at keystrokes following

alterations of auditory feedback of each kind at 11 (post-ASO,

post-UAF) or 12 (post2ASO, post2UAF) positions is displayed. The

star denotes the significantly larger mean IOI obtained in keystrokes

following UAF or ASO feedback (P< Pth 5 0.018).
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auditory feedback and in keystrokes subject to either UAF
or ASO feedback did not reveal any significant result
(P> 0.05), supporting that changes in timing were evident
only in the keystrokes following AAF.

We then assessed the general changes in performance
due to training: Across trials with normal auditory feed-
back (trial 1 vs 11), there was no change in average tempo,
but there was a significant increase in the extent of tempo-
ral variability (CV 0.24 [0.02] trial 1 and 0.31 [0.03] trial 11,
P<Pth 50.0028, PSdep 5 0.80). This outcome indicated that
temporal accuracy in normal trials decreased throughout
training, possibly due to the interspersed trials with AAF.

Time–Frequency Analysis in the Sensor Space

The effects of the alterations of auditory feedback on
oscillatory power in the sensor-space are displayed in Fig-
ure 3. The cluster-based permutation test, which was

performed in the latency range from 150 to 400 ms post-
keystroke, revealed a significant positive difference
between the theta-band oscillatory activity induced by the
feedback-based ASO and the normal auditory feedback
(P< 0.025, two-sided test). In this latency range, the differ-
ence reflected an enhanced theta-band spectral power
most pronounced over midline frontoparietal sensors (Fig. 3,
left panel). No significant differences between these condi-
tions were found in the beta band.

The effect of UAF, when compared to the effect of nor-
mal auditory feedback, was also a significant increase in
the theta-band oscillatory activity and from 150 to 400 ms
postkeystroke (P< 0.025). In this time window, the differ-
ence was observed as an enhanced theta-band spectral
power induced by the UAF and most pronounced over
right frontoparietal sensors (Fig. 3, middle panel). The
between-condition differences in the beta band were
nonsignificant.

Figure 3.

Effects of alterations of auditory feedback (AAF) on oscillatory

power in the sensor-space. Magnetometers. Top row shows

scalp topographies for relative power changes in the theta (4–

7 Hz, left & center) and beta band (13–30Hz, right), corre-

sponding to the significant clusters obtained within 150–400 ms

(0 ms is keystroke and auditory feedback onset; cluster permu-

tation test, P< 0.025, two-sided test) for the different between-

condition comparisons. The black stars denote the sensors

belonging to the significant clusters. Power values are provided

as relative power change (subtraction and division by the refer-

ence baseline average: dimensionless units). The left map

presents the comparison between trials with serial order altera-

tions (ASO) and normal feedback (NAF), revealing a significant

positive cluster in the theta frequency region. The center map

reveals a significant positive cluster in the theta band with a right

frontoparietal scalp distribution, corresponding to the comparison

between trials with unrelated auditory feedback alterations

(UAF) and normal feedback (NAF). The right map displays a

comparison between ASO and UAF trials, demonstrating a sig-

nificant positive cluster in the beta band, which had a left frontal

scalp distribution. Lower row shows some time courses of the

cluster-based power averaged within the corresponding signifi-

cant frequency band and the sensors pertaining to the significant

positive clusters shown above. [Color figure can be viewed at

wileyonlinelibrary.com]
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A final planned comparison between both types of AAF
(ASO–UAF) in the same latency range 150–400 ms
revealed a significant difference in the beta (P< 0.025), but
not in the theta band (P> 0.05), due to increased beta-
band oscillatory activity over frontal sensors (positive clus-
ter; Fig. 3, right panel).

Common Spatial Patterns and Source

Localization

The statistical within-group effects reported at the sen-
sor level in previous section showed enhanced oscillatory
activity in one feedback condition relative to the other
(ASO–NAF, UAF–NAF, ASO–UAF). Accordingly, we
selected the CSP patterns corresponding to the three largest

eigenvalues, which were associated across subjects with a
monopolar or dipolar pattern. Figure 4 shows the three
theta-band CSP patterns from two representative subjects
for the ASO–NAF comparison. Similarly, Figure 5 shows

two theta-band CSP patterns from the same representative
subjects for the UAF–NAF comparison. The specific com-
parison between modified feedback conditions, ASO–UAF,
is represented by the beta-band CSP patterns in Figure 6.

Source reconstruction of the beta and theta-band CSP
patterns was subsequently performed at the single-subject
level with equivalent dipole modeling. Depending on the
CSP pattern topography, we fitted one or two dipoles. The
resulting GOF of the models was in the range 77–86%
(median 5 83%).

The equivalent current dipole algorithm revealed differ-
ent anatomical locations as main generators of the effects
found at the sensor level. Under the null hypothesis of a
uniformly distributed localization of each source across
the whole brain, we here exclusively report significant
results of source localization based on the finding of the
same anatomical source in at least k out of 20 subjects and
with a P value P(k,n) below the corrected significance
threshold 0.01. The probability P(k,n) and the minimum
number of k successes (min_k) are provided below.

Figure 4.

CSP and source localization of theta oscillatory activity in mag-

netometers for the ASO-NAF difference. (A–C) Theta-band

CSP patterns (in a.u.) obtained for the three largest eigenvalues

from two representative subjects (upper row: subject #5, lower

row: subject #11). These CSP patterns corresponded to an

enhanced theta-band oscillatory activity in the ASO as compared

to the normal feedback condition and were generated by a

monopolar source in the cingulum (A), a dipolar source in the

cerebellum (B) or in the temporal gyrus (C). (D–F) Location of

the standard MNI coordinates (median and median absolute dis-

persion across subjects) of the anatomical locations of the

dipoles generating the CSP patterns obtained for each between-

condition difference in the sensor space (represented in the

upper panels). Sagittal and coronal projections. [Color figure can

be viewed at wileyonlinelibrary.com]
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Coordinates of the sources are given as median and
median absolute dispersion (MAD) across subjects. For the
ASO–NAF feedback comparison (Fig. 4D–F), the sources of
enhanced theta-band activity were located to the cingulate
gyrus (14/20 subjects, coordinates of the locus of activity in
the MNI space are X 5 0 236 28 [3 4 12] mm in the posterior
cingulate gyrus (left, L); min_k 5 7, P(14,20) 5 7 3 10210),
bilaterally to the cerebellum (13/20 subjects, coordinates of

the locus of activity X 5 26 256 234 [8 5 10] mm and
X 5 222 252 224 [7 3 7] mm in lobule VI [right, R; L]; min_-
k 5 12; P(13,20) 5 0.0026) and also bilaterally to the middle
temporal gyrus (14/20 subjects, coordinates of the locus of
activity X 5 52 238 26 [7 18 8] mm and 252 228 24 [3 13 5]
mm; min_k 5 13; P(14,20) 5 0.0010).

In the case of the UAF–NAF feedback comparison (Fig.
5C,D), the sources of increased theta-band activity were

Figure 5.

CSP and source localization of theta oscillatory activity in mag-

netometers for the UAF–NAF difference. Theta-band CSP pat-

terns (a.u.) obtained for two of the three largest eigenvalues

from the same representative subjects as in Figure 4. These

CSP patterns corresponded to an enhanced theta-band oscilla-

tory activity in the UAF as compared to the normal feedback

condition and were generated by a monopolar source in the

cerebellum (A), or a dipolar source in the temporal gyrus (B).

(C,D) Location of the standard MNI coordinates (median and

median absolute dispersion across subjects) of the anatomical

locations of the dipoles generating the CSP patterns obtained

for each between-condition difference in the sensor space (rep-

resented in the upper panels). Sagittal and coronal projections.

[Color figure can be viewed at wileyonlinelibrary.com]
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located to the cerebellum (13/20 subjects, coordinates of
the locus of activity X 5 4 248 242 [12 5 9] mm in the pos-
terior lobe, lobule IX (R); min_k 5 12, P(13,20) 5 0.0026),
and the bilateral inferior temporal gyrus (15/20 subjects,
coordinates of the locus of activity X 5 250 234 220 [5 11
6] mm and 52 23 216 [5 10 4] mm; min_k 5 13;
P(15,20) 5 2 3 1024).

Finally, the effect of enhanced beta-band oscillatory
activity obtained for the specific comparison between ASO
and UAF trials was localized (Fig. 6C,D) to the cingulate
gyrus (15/20 subjects, coordinates of the locus of activity
X 5 2 236 32 [8 8 4] mm in the posterior cingulate gyrus
(L); min_k 5 7, P(15,20) 5 3 3 10211) and the cerebellum
(14/20 subjects, coordinates of the locus of activity X 5 16

Figure 6.

CSP and source localization of beta oscillatory activity in magne-

tometers for the ASO-UAF difference. (A–C) CSP patterns (in

a.u.) from two representative subjects (upper row: subject #3;

lower row: subject #16) in association with two of the three

largest eigenvalues, and corresponding to the maximization of

variance of beta oscillatory activity in the modified feedback

condition ASO as compared to UAF. The representative beta-

band CSP patterns were generated by sources in the cingulate

gyrus (A) and the cerebellum (B). (C,D) The anatomical loca-

tions of the dipoles generating the beta-band CSP patterns are

provided as median and median absolute dispersion across sub-

jects in standard MNI coordinates. Sagittal and coronal projec-

tions. [Color figure can be viewed at wileyonlinelibrary.com]
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258 226 [14 8 12] mm in the posterior lobe, lobule VI (R);
min_k 5 13; P(14,20) 5 6 3 1024).

Additional sources found for each comparison in a
smaller number of participants (5–9) are reported in detail
in Supporting Information, yet these effects were nonsig-
nificant according to our statistical analysis at the group
level.

As a control analysis, we computed the power spectral
density (PSD, in fT2/Hz) of the magnetometers during
playing in performance blocks. Muscle artifacts have been
shown to induce oscillatory activity that overlaps with
neural activity in the higher (>20 Hz) frequency range
[Muthukumaraswamy, 2013]. This could affect the locali-
zation of high-frequency activity in structures such as the
cerebellum or temporal cortices. Our PSD analysis, how-
ever, revealed that during performance, compared to rest
periods in-between performance trials, there was no gen-
eral increase of PSD in the higher frequency range but
rather a general attenuation of PSD (Supporting Informa-
tion, Figs. S5 and S6). Accordingly, the changes in beta
oscillations reported in our study are restricted to changes
in the event-locked induced activity and do not reflect
general power changes influenced by muscle artifacts. This
strongly supports that the cerebellar sources reported in
this study are most likely related to the specific processing
of the type of event (i.e., UAF or ASO relative to NAF or
ASO relative to UAF). In addition, it should be noted that
the cerebellum, which was one of the main sources found
in 14/20 participants to be related to processing modified
feedback that interferes with serial order via modulation
of beta oscillations (ASO–UAF comparison), was also a
source in the majority of the remaining participants when
considering the CSP associated with the lower eigenvalues
(4–10 additional subjects). This, however, also means that
these additional CSP were less discriminative of the
between-conditions difference in beta power. We have
therefore aligned with the common practice and limited
our statistical analysis at the group level to the most dis-
criminative CSP corresponding to the three eigenvectors at
the beginning of the eigenvalue spectrum [Blankertz et al.,
2008].

Finally, source modeling performed separately in the
planar gradiometers confirmed the majority of these sour-
ces, albeit with a larger interindividual variability (i.e.,
with the sources of interest being located in fewer subjects:
Supporting Information, Figs. S2 and S3).

These results therefore highlight that the sources of
oscillatory activity underlying processing of each kind of
AAF during performance can be dissociated both in space
and spectral content.

Correlation Analysis

The relation between oscillatory source activity and
behavioral parameters was assessed with the nonparamet-
ric Spearman q. The pairs of variables used for the

correlation analyses were selected based on the source
localization and behavioral results. For instance, the mag-
nitude of the dipole moment (in nAm) associated with the
CSP pattern leading to differential source activity in
epochs with ASO feedback and UAF feedback (ASO–UAF
difference) was correlated with differences in pitch error
rates and differences in postfeedback slowing. Note that,
for this analysis, the time course of the signals was nor-
malized for each subject to a standard deviation of 1, to
have a similar scale in the CSP patterns (which otherwise
have arbitrary scales). Therefore, the magnitude of the
dipole moments (in nAm) was estimated in CSP patterns
of comparable magnitude across subjects.

The P values were corrected for multiple comparisons
using the control of the FDR at level q 5 0.05 previously
described (Statistics). We found that the magnitude of the
dipole moment the cingulate cortex corresponding with
the ASO–UAF difference pattern in beta-band oscillatory
activity significantly correlated with the difference in error
rates (q 5 0.731, P value 5 0.002<Pth 5 0.0235; N 5 15; Fig.
7). Thus, larger cingulate beta-band activity was induced
by ASO relative to UAF in participants who had larger
pitch error rates in those trials. No significant correlations
were found for any other source of activity in ASO or
UAF epochs relative to NAF epochs.

DISCUSSION

We have shown that the oscillatory sources underlying
the processing of different kinds of alterations of auditory
feedback during sensorimotor learning can be dissociated
in both their spatial and spectral content. Specifically,
processing UAF or ASO feedback relative to normal feed-
back induced theta-band oscillations in the cerebellum and

Figure 7.

Correlation of behavioral data with oscillatory activity at the

source level. Correlation across subjects (Spearman q) of the

magnitude of the dipole moment (nAm) in the cingulate cortex

leading to the ASO–UAF difference in beta-band oscillatory

activity (x axis) and the difference in pitch error rates (y axis).

Larger error rates in ASO relative to UAF epochs were associ-

ated across subjects with higher cingulate beta-band activity.
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superior temporal gyrus. Processing ASO feedback relative
to normal feedback additionally engaged the cingulate
gyrus. A planned post-hoc comparison between the ASO
and UAF experimental conditions revealed that beta-band
oscillatory activity in the cingulate cortex and cerebellum
is enhanced by processing ASO. Furthermore, we also
found a dissociation of the effect of each kind of AAF on
behavioral performance during training, with exclusively
ASO leading to larger pitch error rates when compared
with normal feedback. Taken together these results suggest
that dedicated neural mechanisms monitor the correspon-
dence between the sources of auditory and motor informa-
tion on the serial order of the produced actions during the
initial phase of sequence learning, thereby contributing to
updating the sensorimotor representations.

Theta Oscillations Reflect the General

Processing of Alterations of Auditory Feedback

Our participants demonstrated behavioral adjustments
in the keystrokes subsequent to the events with modified
auditory feedback. The adjustments were reflected in the
post-feedback slowing at the keystroke following UAF and
at two keystrokes following UAF or ASO. Significantly,
the slowing of responses following false external feedback,
as used in our task, resembles the slowing after self-
produced errors [Saunders and Jentzsch, 2012]. Our data
thus suggest that the oscillatory responses following each
kind of AAF might partly reflect cognitive control pro-
cesses that detect unexpected feedback (a potential error)
and implement an increase in response caution in the sub-
sequent keystrokes [Dutilh et al. 2012].

Previous studies investigating neuronal processing of
incorrect feedback, using different paradigms ranging from
motor behavior to gambling tasks, have consistently revealed
an involvement of the mid-frontal areas, including the ACC
(for a recent review see Luft [2014]; see also Ridderinkhof
et al. [2004]). Theta oscillations in the medial frontal cortex as
well as theta frequency coupling between mid-frontal areas,
sensorimotor and lateral prefrontal areas are modulated by
feedback processing and subsequent behavioral adjustments,
often in the form of post-feedback slowing [Cohen, 2011, Cav-
anagh et al., 2009, 2010]. Our finding of enhanced frontal
theta oscillations following the processing of ASO feedback is
in agreement with the interpretation that increased mid-
frontal theta oscillations index the detection of a mismatch
between the predicted and actual sensory consequences of
the action [HajiHosseini and Holroyd, 2013]. Interestingly,
the larger amplitude of theta oscillations induced by ASO
events partially originated in the posterior cingulate gyrus
(PCC, median across subjects), which apparently contrasts
with the evidence from studies primarily linking the ACC to
error monitoring [Holroyd and Coles, 2002; Ridderinkhof
et al. 2004]. Note, however, that the PCC is also a key region
in action- and error-monitoring [Agam et al, 2011; Heilbron-
ner and Platt, 2013] and might be particularly relevant when

error agency is modulated [de Bruijn et al. 2009]. Signifi-
cantly, UAF events did not induce enhanced theta oscillations
in cingulate regions as measured by the magnetometers (but
see the Supporting Information available online). This sug-
gests that AAF related to the sequence content (ASO) might
have been processed as more salient by the cingulate cortex,
despite the UAF events potentially being associated with a
larger sensory distance from the target pitch.

An interesting aspect to consider in future studies is the
investigation of the event-related fields and their modula-
tion by the different types of AAF. Random pitch altera-
tions during piano performance elicit a frontocentral
negative-going event-related potential (ERP) peaking at
250 ms, termed feedback-error-related negativity (fERN or
FRN). Because the main oscillatory content of the FRN lies
in the theta frequency range [Cohen et al., 2007], future
studies should look into its sensitivity to changes in the
type of AAF.

The contribution of the temporal lobe to the enhanced
theta oscillations during the processing of either kind of
AAF relative to normal feedback is in agreement with pre-
vious studies. Specifically, the involvement of the auditory
cortex in processing salient auditory feedback that mis-
matches with the predicted outcome has been identified in
tasks using regular sequences of sounds (mismatch nega-
tivity studies: e.g., Rinne et al. [2000]), during singing
(fixed shift in pitch: Zarate and Zatorre [2008]; see also
recent review by Zarate [2013]) or speech (fixed shift in
pitch: Chang et al. [2013] and Tourville et al. [2008]).
Importantly, despite the UAF events potentially being
processed as more salient auditory events, there were no
significant UAF–ASO differences being localized to the
auditory cortices. This supports that differences in the sen-
sory distance between the target and actual auditory feed-
back cannot account for the findings in our study.

With respect to the cerebellum, convergent evidence
indicates that this structure computes sensory-prediction
error signals which effectively distinguish between the
sensory consequences of self-generated and externally pro-
duced actions [Brooks and Cullen, 2013; Cullen, 2012]. The
cerebellum is thus crucial for error-based learning [Die-
drichsen et al., 2005; Wolpert et al., 2001], particularly dur-
ing the initial stages of motor skill acquisition [Doyon
et al., 2003; Leh�ericy et al., 2005]. The results thus support
that theta oscillations induced in the cerebellum after ASO
and UAF events indicate the detection of generic deviations
in the sensory consequences of the produced actions (see
next section for a more specific involvement of cerebellar
beta activity in processing ASO).

Changes in Beta Oscillations During Processing

Feedback-Based Alterations of the Serial Order

Pitch error rates increased across time in trials with
ASO feedback. In addition, ASO feedback induced larger
within-trial error rates than normal feedback, with errors
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typically occurring in the next rendition of the sequence.
This outcome supports that ASO feedback did interfere
with the sensorimotor representation of the sequence being
performed, thereby leading to the selection of the wrong
sequence elements (i.e., incorrect pitch errors) in the next
rendition of the sequence. Notably, the pattern of pitch
errors induced by ASO was consistent with compensatory
changes reflecting alterations in the sequential organiza-
tion of the events planned for production (similar to Pfor-
drescher and Palmer, 2006). This specific effect of ASO
feedback on (wrongly) updating sequential behavior might
be explained by the fact that ASO feedback—but not UAF
feedback—simulated a serial-order error that activated the
wrong ordinal position during the sensorimotor learning
process. The processing of incorrect auditory feedback in
this case did influence learning and production of the
sequence elements, possibly reflecting a rapid compensa-
tion to feedback errors—as reported for speech production
or singing [Kort et al. 2014; Zarate and Zatorre, 2008]. Sup-
port for our interpretation comes from animal studies of
vocal learning which show that exclusively when the
shifted pitch falls within the pitch content of the sensori-
motor sequence (song)—regardless of the absolute error
magnitude—AAF elicit compensatory changes and influ-
ence learning [Kelly and Sober, 2014; Sober and Brainard,
2012]. By contrast, AAF that falls outside of the history of
pitch production is discarded as unreliable [Sober and
Brainard, 2012].

The crucial finding in our study was that alterations of
auditory feedback of the ASO kind induced an increase in
the power of beta-band oscillations across cingulate
(median coordinates in the PCC) and cerebellar regions. In
addition, larger cingulate beta-band activity in ASO rela-
tive to UAF correlated with larger pitch error rates. The
cingulate cortex—mainly its anterior portion ACC, but
also its posterior portion (PCC)—has been consistently
associated with action- and error-monitoring [Agam et al,
2011; Heilbronner and Platt, 2013; Holroyd and Coles,
2002]. Specifically, cingulate regions are involved in the
selection of appropriate responses to new situations based
on the evaluation of reward expectation and reward pre-
diction errors [Amiez et al., 2012; Carter et al., 1998, Rush-
worth and Behrens, 2008]. In other words, the cingulate
cortex integrates feedback-related information to update
action selection [Rushworth and Behrens, 2008]. Accord-
ingly, our working hypothesis is that the increase in cingu-
late beta oscillations might partly reflect that the result of
performance monitoring processes by the cingulate cortex
contributes to the integration of the altered auditory feed-
back into the ongoing sequential learning process and
updating the motor plan.

Evidence for a specific involvement of beta oscillations
during action evaluation based on feedback remains
sparse and inconclusive. Some studies focusing on
feedback-based response learning have maintained that
beta power increases exclusively following positive

feedback [Cohen et al., 2007; Cohen, 2011], whereas others
also found an increase in beta power after negative feed-
back [Koelewijn et al. 2008]. More recently, in a reward-
learning task, it has been demonstrated that beta oscilla-
tions in the dorsolateral prefrontal cortex (DLPFC) mediate
reward learning and working memory [HajiHosseini and
Holroyd, 2015]. Because the DLPFC is anatomically and
functionally associated with the ACC and the PCC [Parvizi
et al. 2006; Petrides and Pandya, 1999; Vogt and Pandya,
1987], and these regions are engaged in monitoring the
serial order of short sequences of stimuli in working mem-
ory [Amiez and Petrides, 2007; Petrides, 1991], it is plausi-
ble that beta oscillations across cingulate and dorsolateral
prefrontal regions facilitate updating the representation of
the order of actions in a sequence based on feedback proc-
essing. Our dipole fitting procedure did not, however,
point to the prefrontal cortex as one of the sources of beta
oscillatory activity (see methodological considerations).

An alternative interpretation is that the higher level of
beta power following keystrokes with ASO feedback
reflects the suppression of the prepared upcoming sequen-
tial actions or an estimation of the likelihood of the need
for a novel voluntary action, as reported for sensorimotor
beta oscillations [Jenkinson and Brown, 2011; Swann et al
2009, Zhang et al 2008]. However, because we found
enhanced beta oscillations outside of the sensorimotor
areas within the cortico-basal ganglia-thalamocortical cir-
cuits (such as the SMA, one of our regions of interest), our
data favor rather the prior interpretation that they play a
role in updating the ongoing sensorimotor representation
of the sequence elements based on feedback processing.

The cerebellum, in addition to contributing to the func-
tions mentioned above, contributes to extracting sequential
order information from incoming sensory information
[Molinari et al., 1997; Restuccia et al. 2007]. Additional evi-
dence stemming from an MEG study supports that
25–35 Hz oscillations in the cerebellum are enhanced after
violations of predicted somatosensory feedback [Tesche
and Karhu, 2000]. These findings therefore support the
idea that the cerebellum might be involved in processing
violations of auditory (sensory) feedback during sequence
learning. Accordingly, they are consistent with the effect
of larger cerebellar beta activity for ASO trials as com-
pared with UAF trials, which possibly reflects an incorrect
update of the mapped sensorimotor representations
thereby leading to larger error rates in ASO trials. Our
interpretation, however, necessitates future studies using
AAF of different kinds, including serial shifts in pitch, to
investigate further the relation between cerebellar activity,
beta oscillations, and the different kinds of AAF.

Methodological Considerations

Our approach aimed at detecting spatial specificity in the
locations of the source of neuronal oscillations associated
with each between-condition difference revealed at group
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level in the sensor space. To this aim, we used CSP patterns
with the largest eigenvalues—reflecting the largest ratio of
between-condition spectral power—to perform source local-
ization with equivalent current dipole modeling.

Of note, the locations of the sources revealed with ECD
modeling have limited accuracy as determined by the spa-
tial accuracy of MEG [Hansen et al., 2010; Hari et al., 1988].
The results, therefore, need to be interpreted with caution.
Importantly, however, the brain areas in which the dipoles
were localized are in line with previous fMRI evidence
[Pfordresher et al., 2014] and were in our study indepen-
dently confirmed by the separate analysis of the signals
from planar gradiometers (Supporting Information avail-
able online). One inconsistency with previous findings sup-
porting the involvement of the ACC in action-monitoring
[Carter et al., 1998; Holroyd and Coles, 2002] was the locali-
zation of sources in the posterior part of the cingulate gyrus
(median across subjects). The limitations that affect source
localization of MEG data [Hansen et al., 2010; Hari et al.,
1988] might account for this apparent discrepancy. There is,
however, growing evidence that cingulate regions posterior
to the ACC—the PCC—also have a crucial role during error-
monitoring [Agam et al, 2011; Heilbronner and Platt, 2013]
and are affected by error agency [de Bruijn et al. 2009].

Our findings complement a growing body of evidence
stemming from MEG studies in support for the sensitivity
of MEG sensors to deeper structures, such as the cerebel-
lum or the cingulum [Bourguignon et al., 2013; Martin
et al., 2006]. An advantage of recent studies might be the
focus on the analysis of oscillations, in particular, high-
frequency oscillations (above 30Hz), which facilitates the
localization of sources in the cerebellum (E/MEG) [Dalal
et al., 2008, 2013]. Indeed, recent MEG studies support an
involvement of cerebellar activity in functions as diverse
as movement generation [Bourguignon et al., 2013; Gross
et al., 2002; Jerbi et al., 2007; Pollok et al., 2005], timing
and rhythm [Fujioka et al., 2012; Martin et al., 2006], or
somatosensory processing [Tesche and Karhu, 1997, 2000].

Crucially, however, muscle artifacts have been shown to
induce oscillatory activity that overlaps with neural activ-
ity in the higher (>20 Hz) frequency range [Muthukumar-
aswamy, 2013]. This could affect the localization of high-
frequency activity in structures such as the cerebellum or
temporal cortices. Here we addressed this issue by (i)
assessing the power spectral density of the MEG record-
ings during performance relative to rest and finding no
enhanced level of PSD above 20 Hz, but rather a signifi-
cant attenuation during performance of alpha and beta
PSD; and (ii) by focusing the analysis of source localiza-
tion on event-related changes in induced oscillatory activ-
ity. Each event of interest (NAF, ASO, and UAF) in our
experiment was locked to a key press or movement that
was similar across conditions, with only the auditory feed-
back being modified in the different conditions. Potential
muscle artifacts associated with key presses should thus
be similar across conditions as well.

Accordingly, we consider that muscle artifacts are not
likely to account for the result of the cerebellum being the
source of larger beta oscillatory activity in the ASO relative
to the UAF condition.

Finally, it should be noted that in our study no activa-
tion was localized to the SMA, an area which has been
previously linked to the encoding of sequential actions
[Clower and Alexander, 1998; Gerloff et al., 1997; Tanji
and Shima, 1994; Wiestler and Diedrichsen, 2013]. A
potential explanation is that in the current study we inves-
tigated the sources of oscillatory activity induced by the
mismatch of auditory feedback. Processing AAF during
sequence learning was primarily reflected in the cingulate
cortex and the cerebellum (to a different degree depending
on the ASO and UAF trials). Moreover, in a few partici-
pants (between 5 and 9, nonsignificant effects at the group
level) we found activation associated with processing the
different types of AAF in other regions such as the pri-
mary motor and sensorimotor cortices, or the dorsolateral
and medial prefrontal cortices—regions also relevant dur-
ing sequence encoding [Wiestler and Diedrichsen, 2013],
yet not in the SMA. Consequently, although the SMA
might be crucial for the encoding of sequential move-
ments, our results overall indicate that this region may not
respond to violations of auditory information that do not
correspond to the sequential action.

CONCLUSION

These findings reveal a novel role for beta oscillations in
tracking serial order during initial sensorimotor learning
and in updating the sensorimotor mapping of sequential
elements. To our knowledge, the findings are novel in the
music performance, speech production, and singing litera-
ture, yet they can significantly contribute to the understand-
ing of sensorimotor learning in all these types of behavior.

Our results also have implications for research on move-
ment disorders, such as dystonia or Parkinson’s disease
(PD). Cerebellar activity and its connectivity to cortical
areas is crucially involved in generating the motor symp-
toms in these disorders [Rascol et al., 1997; Neumann
et al., 2015]. In addition, patients with PD or dystonia
exhibit anomalous sequence learning skills [Carbon et al.,
2008, 2010; Herrojo Ruiz et al., 2014b]. Accordingly, future
research comparing cerebellar beta oscillations during sen-
sorimotor sequence learning in healthy and disease popu-
lations could help further elucidate oscillatory mechanisms
influencing the integration of sequential motor and audi-
tory information during skill acquisition.
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