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Abstract: The structural organization of the brain can be characterized as a hierarchical ensemble of
segregated modules linked by densely interconnected hub regions that facilitate distributed functional
interactions. Disturbances to this network may be an important marker of abnormal development.
Recently, several neurodevelopmental disorders, including autism spectrum disorder (ASD), have been
framed as disorders of connectivity but the full nature and timing of these disturbances remain
unclear. In this study, we use non-negative matrix factorization, a data-driven, multivariate approach,
to model the structural network architecture of the brain as a set of superposed subnetworks, or net-
work components. In an openly available dataset of 196 subjects scanned between 5 and 85 years we
identify a set of robust and reliable subnetworks that develop in tandem with age and reflect both ana-
tomically local and long-range, network hub connections. In a second experiment, we compare net-
work components in a cohort of 51 high-functioning ASD adolescents to a group of age-matched
controls. We identify a specific subnetwork representing an increase in local connection strength in the
cingulate cortex in ASD (t 5 3.44, P< 0.001). This work highlights possible long-term implications of
alterations to the developmental trajectories of specific cortical subnetworks. Hum Brain Mapp 38:4169–
4184, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Diffusion MRI allows the non-invasive inference of
white matter pathways in the human brain. At a
millimetre-scale, the structural connections between brain
regions can be conceptualized as a complex network and
interrogated with graph theoretical approaches [Bullmore
and Sporns, 2009]. Graph theory provides a mathematical
framework for the analysis of brain networks, with brain
regions defined as a set of nodes, connected by a set of
edges. From this perspective, a number of metrics exist to
define both global and local properties of the brain net-
work: from simple measures of connectivity (or degree), to
more complex measures of regional integration, segrega-
tion, and influence.
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This has led to the broad characterization of the macro-
scale organization of the mammalian brain as a near-
decomposable system built on multiple, parallel and par-
tially segregated modules [Meunier et al., 2010; Simon,
1962]. Brain networks are organized hierarchically [Bassett
et al., 2011] and linked by a set of overarching, densely
interconnected hub regions that facilitate distributed inter-
actions across the network [Bullmore and Sporns, 2012;
Sporns et al., 2005; van den Heuvel and Sporns, 2011].

This view is supported by evidence that cerebral regions
can be clustered together based on the extent of their
shared connections into communities [Bullmore and
Sporns, 2012; Hilgetag et al., 2000]. Anatomical connectiv-
ity between regions reflects a shared functional specializa-
tion [Hilgetag et al., 2000; Honey et al., 2009], and
connected regions tend to have similar metabolic
demands, and gene expression profiles [Collin et al., 2013;
French and Pavlidis, 2011; Fulcher and Fornito, 2016;
Vaishnavi et al., 2010]. Furthermore, anatomically con-
nected regions tend to mature in tandem across develop-
ment [Raznahan et al., 2011], resulting in common patterns
of cortical growth and functional coordination over the
lifespan [Alexander-Bloch et al., 2013; Hagmann et al.,
2010; Zielinski et al., 2010]. Taken together, this evidence
suggests that connections within complex brain networks
can be decomposed, or clustered, into subnetworks that
link modules with distinct roles and developmental
trajectories.

Long-distance cortico-cortical connections are estab-
lished during gestation, and complex network architecture
is evident at birth [Ball et al., 2014]. The effects of cerebral
maturation on increasingly distributed connectivity is
marked in the first years of life [Yap et al., 2011], after
which the large-scale topological organization of the struc-
tural connectome remains relatively stable [Baker et al.,
2015; Dennis et al., 2013]. Over the full lifespan, measures
of network efficiency and modularity follow a distinct
inverted U trajectory, peaking in the third decade and mir-
rored by microstructural markers of the underlying white
matter [Imperati et al., 2011; Kochunov et al., 2012; Zhao
et al., 2015]. In elderly individuals, although network
topology remains relatively consistent with younger
adults, simulations suggest a preference for local commu-
nication compared to long-range hub-to-hub connectivity,
correspondent to evidence from functional analyses [Cao
et al., 2014; Perry et al., 2015].

The early establishment of structural connectivity and
long-term stability of structural networks suggests that dis-
turbances to network organization may be an important
marker of abnormal cerebral development. A number of
neurodevelopmental disorders, including autism spectrum
disorder (ASD) and attention deficit hyperactivity disor-
der, have been linked to alterations in the development of
structural and functional brain connectivity [Ecker et al.,
2015; Konrad and Eickhoff, 2010; Tomasi and Volkow,
2012]. ASD is a complex, multifactorial disorder

characterized by social, behavioral, and language impair-
ments evident from an early age. Although the aetiology
of ASD remains unknown, neuropathological studies have
identified cortical alterations including laminar and colum-
nar disorganization and increased neuronal density in
frontal, temporal and cingulate cortices [Bailey et al., 1998;
Casanova et al., 2002; Stoner et al., 2014; Uppal et al.,
2014]. Early evidence from MRI studies suggested that
head growth is accelerated in ASD during infancy but dif-
ferences appear to dissipate with age [Courchesne et al.,
2001; Ecker et al., 2015]. More recently, ASD has been
framed as a disorder of connectivity [Belmonte et al., 2004;
Vissers et al., 2012], based on accumulating evidence of
disruptions to both functional and structural networks in
autistic populations [Di Martino et al., 2014; Mueller et al.,
2013; Rudie et al., 2012; Supekar et al., 2013]. Although the
nature and extent of these alterations remain unclear with
a number of conflicting observations, previous studies
have described complex patterns of disrupted white mat-
ter organization in ASD that appear to be dependent on
age and mirrored by evidence of both hypo- and hyper-
connectivity between functional networks and differences
in electrophysiological recordings [for review, see Vissers
et al., 2012].

In this study, we apply an unsupervised and data-
driven approach to model complex networks derived from
whole-brain tractography as a set of components, or sub-
networks, that vary together across the population. We
first demonstrate that network components can be robustly
and reliably identified in a large cohort. We then model
component strength across the human lifespan, defining
specific developmental trajectories for subnetwork connec-
tivity. Finally, we explore how disruptions to typical
development may impact structural connectivity by testing
the hypothesis that ASD is associated with alterations in
subnetwork component strength. By identifying a set of
network components in a group of adolescents with high-
functioning ASD and age-matched, typically-developing
controls, we find a specific cortical subnetwork with signif-
icantly increased connection strength in the autistic
population.

METHODS

Data

Preprocessed connectivity data were downloaded from
the USC Multimodal Connectivity database (http://umcd.
humanconnectomeproject.org) [Brown et al., 2012]. Full
MRI acquisition and image processing details are given
elsewhere [Brown et al., 2012; Rudie et al., 2012] but are
reported in brief below.

NKI-Rockland lifespan sample

In total, connectivity matrices from 196 healthy partici-
pants (114 male; age range: 4–85 years) were available,
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collected as part of the NKI/Rockland lifespan study
[Nooner et al., 2012]. Diffusion MRI was acquired at 3 T
with 64 gradient directions and the following parameters:
TR, 10,000 ms; TE, 91 ms; voxel size, 2 mm3; b-value,
1,000 s/mm2. After correction for motion and eddy current
distortions using linear registration, diffusion tensors were
modeled and tractography performed using fiber assign-
ment by continuous tracking with an angular threshold of
458 [Mori et al., 1999].

To construct each connectivity matrix, 188 regions-of-
interest (ROI) were defined using a group-based functional
MRI (fMRI) parcelation [Craddock et al., 2012], and struc-
tural connectivity was calculated as the total number of
streamlines connecting any two ROI [Brown et al., 2012].
Prior to analysis, ROI in the brainstem were removed and
fiber counts were log-transformed resulting in a 182 3 182
connectivity matrix for each participant.

UCLA autism sample

Connectivity data from a total of 43 typically developing
children and adolescents (36 male; age range: 8.9–17.9
years) and 51 with high-functioning ASD (45 male; age
range: 8.4–18.2 years) were available for analysis [Rudie
et al., 2012]. DTI data of 3 T were acquired with: 32 gradi-
ent directions; TR, 9,500 ms; TE, 87 ms; voxel size, 2 mm3;
b-value, 1,000 s/mm2. Motion and eddy current correction,
diffusion tensor modeling, and tractography were per-
formed as above but with an angular threshold of 508.

ROI were defined as 10 mm radius spheres placed at
264 coordinates in MNI space and transformed to individ-
ual diffusion data [Power et al., 2011] and connectivity

was defined as streamline count between connected ROI.
As above, fiber counts were log-transformed before analy-
sis, resulting in a 264 3 264 connectivity matrix for each
participant.

Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) is an unsuper-
vised, multivariate decomposition technique that models
an n 3 m data matrix, V, as the product of two non-
negative matrices: W and H:

V �WH

subject to W � 0; H � 0

where n is the number of features and m is the number of
samples and W and H have the dimensions n 3 r and
r 3 m, respectively, where r is the number of network
components or basis images (Fig. 1). The optimal solution
is sought by iteratively updating W and H to minimize the
(Euclidean) distance between the original and recon-
structed matrices, subject to non-negativity constraints:

min
W�0;H�0

F 5
1

2

X
ij

Vij2 WHð Þij
h i2

Generally, r < min m; nð Þ, thus WH represents a low-
rank approximation of the original data in V [Lee and
Seung, 1999]. NMF offers a natural setting for exploration
of data that is inherently non-negative and, as such, is par-
ticularly well-suited to neuroimage analysis allowing an
intuitive understanding of image-derived, non-negative

Figure 1.

Projective NMF pipeline. Individual connectivity matrices are concatenated into a large data

matrix. Projective NMF is used to decompose the data into a set of network components. A

map of connections shows the topological organization of each component, or subnetwork, and

a subject-specific weighting estimates the component’s contribution each individual’s full network.

[Color figure can be viewed at wileyonlinelibrary.com]
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features including, for example: tissue volume, image
intensity, cortical thickness, fractional anisotropy, and
structural connectivity [Sotiras et al., 2015].

In a recently introduced variant, projective NMF
(PNMF), the subject loading matrix, H is replaced with WT

V such that:

V �WWTV

PNMF confers a number of benefits over standard NMF
including fewer learned parameters, and increased spar-
sity and orthogonality of the resulting component matrix
W [Yang and Oja, 2010].

In terms of a network analysis, PNMF results in a set of
highly orthogonal network components, each comprising a
sparse set of (topologically) localized connections (i.e., the
edge structure of different components does not overlap)
and a corresponding subject-specific weighting (Fig. 1).
Together, these elements can then be combined to approxi-
mately reconstruct the full connectivity network of any
given subject.

In addition, Yang et al. introduced a method to estimate
the rank of the factorizing matrix, W, using automatic rele-
vance determination (ARD-PNMF) [Yang et al., 2010].
Here, we use ARD-PNMF to perform an exploratory anal-
ysis of network structure and extract a set of effective net-
work components for further analysis.

Network Decomposition

The analysis pipeline is shown in Figure 1. For each study,
the lower triangles of each symmetric structural connectiv-
ity network were vectorized and collated into an n 3 m
matrix before normalizing to 0; 1½ �. To reduce computation
time and remove noisy connections, edges that were present
in less than 10% of the study population were removed.
ARD-PNMF was initialized with non-negative double sin-
gular value decomposition (NNDSVD), a procedure that
speeds up NMF convergence compared to a random initiali-
zation and ensures consistent results across runs [Boutsidis
and Gallopoulos, 2008]. We chose an initial rank estimate of
50 and performed a maximum of 20,000 PNMF iterations, or
until the algorithm converged.

Network decomposition was performed in Matlab
R2015b using PNMF code available at: sites.google.com/
site/zhirongyangcs/pnmf and NNDSVD code available at:
www.boutsidis.org/software.html).

Simulations

To demonstrate the application of PNMF to structural
connectivity data, we performed a set of simulation experi-
ments. We created a set of 150 “networks,” each compris-
ing a weighted combination of six network components
(Fig. 2). Each network component was constructed by add-
ing binary edges between 10 and 20 randomly selected
nodes in a 100 3 100 empty network. The weighted

contribution of each component to an individual network
was varied according to a set of predefined patterns that
varied across the population.

For a given network, each of the six components were mul-
tiplied by the corresponding component weight and linearly
summed to create the final network. Additionally, noise was
added to each network by constructing a symmetric noise
matrix with edge density set at 0, 10, 20, or 50%, and edge
strength drawn from a normal distribution with mean and
variance defined by existing network edge strengths.

The simulated networks (with or without additional
noise) were concatenated into data matrix V, removing
any edges that were empty across all networks. ARD-
PNMF was then initialized using NNSVD with rank 6 and
2,500 iterations.

We found that PNMF was able to recover both the spa-
tial maps and pattern of population variation (network
loadings) of all components even under noisy conditions,
achieving an average correlation between the original and
recovered component maps of 0.996, 0.957, 0.884, and
0.669 (for 0, 10, 20, and 50% noise, respectively) and a cor-
relation between original and recovered component load-
ings of 0.997, 0.992, 0.971, and 0.794 (Fig. 2).

Split-Half Reliability

To investigate if the network components can be robustly
and reliability identified across population subsamples, we
performed a split-half reliability assessment [Groppe et al.,
2009; Groves et al., 2012]. The NKI-Rockland dataset was
split into two, randomly selected and equal size samples
and PNMF performed independently on each. The resulting
split-half components were then greedily paired with com-
ponents obtained from the full dataset. Components were
matched based on the correlation between the component
loadings of overlapping subject populations in the half and
full datasets to produce a triplet, with each original compo-
nent paired with a single component from each half sample.
Reliability of the original components was evaluated by
measuring the edgewise (cosine) similarity between corre-
spondent split-half component maps. Component reliability
was compared to a null distribution built by randomly per-
muting edges in corresponding split-half pairs before calcu-
lating spatial similarity, 1,000 permutations were performed
for each pair.

Rich Club Analysis

To further investigate the topological organization of
extracted network components, we performed a rich club
analysis [van den Heuvel and Sporns, 2011]. Using the
group mean structural network, nodes were sorted by
degree and low degree nodes incrementally removed in
steps. At each step, the density of the remaining network
connections was compared to a set of 100 randomized net-
works of the same size to give a normalized rich club coef-
ficient, /. The rich club was defined as nodes with
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degree> k, where /k5max /ð Þ. Following Collin et al.,
after identifying network nodes comprising the rich club,
edges in each network component were defined as either
“rich” if they connected two rich club nodes to each other,
“local” if they connected two non-rich club nodes, of
“feeder” connections if they connected rich club nodes to
non-rich club nodes [Collin et al., 2013]. The overall
“richness” or “locality” of each component was deter-
mined by comparing the number of rich or local edges to

a set of 1,000 equivalent random networks. Network anal-
ysis was performed with the Brain Connectivity Toolbox
[Rubinov and Sporns, 2010].

Statistical Analysis

For extracted components in the NKI-Rockland sample,
component strength over the lifespan was modeled using
polynomial regression (up to power 3) with age as a

Figure 2.

Simulating networks for PNMF decomposition. Component

weights (A) and spatial maps (B) for simulating connectivity net-

works. Each component was weighted according to the corre-

sponding component strength and summed to form a network.

Noise was added at four levels to the final network (C). The

mean correlation between recovered component loadings and

the original network weights is shown in D, alongside the spatial

correlation between recovered maps and the original compo-

nent maps at each noise level. [Color figure can be viewed at

wileyonlinelibrary.com]
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covariate and sex as an additional factor. The Akaike
Information Criterion (AIC) was used to select the best
model for each component (i.e., linear, quadratic, or cubic;
with or without sex). Statistical analysis was performed
with the lm package in R 3.31.

In the UCLA autism cohort, component strength was
compared between groups using an independent samples
t-test. Analysis was performed in JASP 0.7.5.6.

Data Visualization

The edge structure of network components were visual-
ized with Circos [Krzywinski et al., 2009], graph nodes
were ordered according to cerebral lobe and the x, y, z
coordinates of the central voxel of each cerebral ROI sup-
plied with the connectivity matrices.

In addition, to visualize the anatomical location of con-
nected ROI in each network component, we calculated node
degree (i.e., the total number of connections of each ROI) and
projected the values onto standard space masks of the corti-
cal gray matter, subcortical structures, and cerebellum. Mask
voxels were assigned an ROI membership based on Euclid-
ean distance to the nearest ROI center and assigned the cor-
responding nodal degree value. Node degree images were
then smoothed with a Gaussian kernel of FWHM 5mm and
projected onto a 3D representation of the smoothed cortical
surface using Surf Ice (www.nitrc.org/projects/surfice).

RESULTS

Network Components across the Lifespan

Reliability assessment

In total, 22 network components were identified in the
NKI-Rockland dataset (Supporting Information Figure S1).
Reliability scores were calculated for each component using
a split-half framework [Groppe et al., 2009]. Network com-
ponents identified in two independent group samples were
matched to the original set of components and the spatial
similarity between the respective edge structures compared
as a marker of reliability. Both groups were matched in age
and sex (group one: mean age 5 35.4 years; 55/98 male;
group two: 34.5 years; 59/98 male). In total, 19 components
were identified in group one and 21 in group two. Of the 19
original components matched with corresponding pairs in
the split-half sample, 15 demonstrated a significantly higher
spatial correlation than would be expected between two ran-
dom matrices with the same number of edges (all P< 0.001,
1,000 permutations; Supporting Information, Figure S2;
Table S1). The mean spatial similarity between matched
components was 0.49 (range: 0.14–0.96).

Developmental trajectories

The subject loading of each network component (i.e., the
contribution of a given component to the individual’s full

network) was modeled as a function of age using polynomial
regression. Of 22 components, 16 demonstrated significant
age-related variation (all P< 0.01; Table I). Of these, nine
components followed nonlinear trajectories over the lifespan
best described by quadratic models; six increased linearly
with age, and one decreased. The addition of sex as a factor
improved the model fit in 4 of the 16 significant components.
Table I shows the best model selected for each component
and Figure 3 highlights some of these trends; networks and
modeled trajectories for all components are shown in Sup-
porting Information Figure S1 in order of reliability.

In Figure 3, component A comprises a robust (split-half
similarity: 0.96) and relatively dense pattern of connectivity
including both local, within-lobe, and longer, between-lobe,
connections. Inter-hemispheric connections are apparent
between frontal and parietal lobes. Highly connected cere-
bral regions in this component include the cingulate and
paracingulate, insular, medial temporal, and superior parie-
tal cortices, with dense connectivity also evident within the
subcortical structures, and between these structures and
higher cerebral cortex. Over the lifespan, connectivity
between these regions increases rapidly over childhood and
adolescence, peaking between 40 and 50 and declining into
older age. Component loading is slightly higher in males
than in females across the lifespan although follows a
steeper decline with old age. Similar trends in connectivity
are seen in components E, F and J (Supporting Information
Figure S1). Components D and N (Fig. 3B,C) capture bilat-
eral patterns of connectivity between subcortical gray matter
structures and frontal and parietal cortices, respectively.
Edges in component D predominantly connect the caudate
nucleus and superior, medial frontal regions. The strength
of this component remains relatively stable until middle age
before declining. The strength of component N (Fig. 3C)
monotonically decreases with age with edges connecting the
thalamus to post-central cortex and superior parietal
regions. In contrast, component O follows a linearly increas-
ing trend with age (Fig. 3D) Connections in this component
are primarily local, connecting anatomically adjacent corti-
cal regions within the temporal lobe and temporo-occipital
junction in both hemispheres. A similar pattern can be seen
in component L (Supporting Information Figure S1).

Component topology

Qualitative assessment of the patterns of connectivity
within components reveals a generally bilateral and symmet-
ric organization across hemispheres. Unilateral components
appear to reflect the topology of corresponding components
in the opposite hemisphere (e.g., I and S; O and L).

To quantify whether inter-regional connections within
individual network components revealed a preferential
support for connectivity between network hubs over topo-
logically local nodes, we performed a rich club analysis.
Sixty-five nodes with degree greater than 100 were defined
as the rich club (maximum / 5 1.09) and included nodes
bilaterally in: frontal pole; cingulate and paracingulate
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cortex; insula; hippocampus; precuneus and superior pari-
etal lobule; lateral occipital cortex, and subcortical struc-
tures (caudate, pallidum, and thalamus).

Component edges were defined as rich, feeder or local
connections, and the “richness” or “locality” of each com-
ponent defined as the number of rich or local connections
compared to a set of 1,000 random networks (Table II).
Four components were found to contain significantly more
rich-club connections than expected by chance (A, E, F,
and I; all P 5 0.001). These components are shown in Fig-
ure 4; richness and locality indices for all components are
shown in Table II. All rich components show a similar
inverted “U” trajectory with age (Table I, Supporting
Information Figure S1). Edge strength distributions in Fig-
ure 4 show that component richness is associated with
both an increased number and strength of rich compared
to local edges. In contrast, four components were to found
to have significantly more local connections than expected
by chance (Fig. 5; M, O, L, and J; P 5 0.001). These compo-
nents all had increased number and strength of local com-
pared to rich connections and increased in strength across
the lifespan (Table I, Supporting Information Figure S1).

Network Components in Autism Spectrum

Disorder

In our second experiment, we applied PNMF to a data-
set comprising high-functioning individuals with ASD and

a set of age- and sex-matched controls. In total, 24 compo-
nents were identified (Table III). One component was
found to have a significantly higher loading in the ASD
group compared to typically developing individuals
(t(1,92)53.161; P 5 0.002; P< 0.05 after Bonferroni correction
for multiple comparisons). Additionally controlling for age
did not alter this relationship (ANCOVA: F(1,91) 5 11.05,
P< 0.001). To control for possible gender effects, we
repeated the statistical analysis after excluding female par-
ticipants (n 5 7 TD; n 5 6 ASD). The difference in compo-
nent strength remained significant (t(1,79)53.44; P< 0.001).

This component is shown in detail in Figure 6 and com-
prised a bilateral and symmetric pattern of connectivity
with edges predominantly linking nodes in the anterior
and posterior cingulate cortex, paracingulate cortex, sup-
plemental motor areas, and parietal cortex. Both intra- and
inter-hemispheric connections are visible with additional
connections between the putamen and parietal cortex in
both hemispheres. The mean (6S.D.) component loadings
were 2.9 6 0.69 in the ASD group and 2.5 6 0.57 in the
typically-developing group (Fig. 6B). Rich club analysis
revealed that this component had significantly more local
connections than expected by chance (locality: 1.32,
P 5 0.001).

As noted above, a threshold was applied to the network
data before performing PNMF, limiting the analysis to
edges shared by at least 10% of participants. We addition-
ally performed PNMF after applying two alternate thresh-
olds: 5% and 20%. At both thresholds, a similar pattern

TABLE I. Modeling development trajectories of network components

Regression coefficients

Component Best model AIC Adjusted R2 P –log10(p) b1 b2 b3

A* age 1 age2 1 sex 544.28 0.09 <0.01 3.89 2.13 23.13 20.15
B* age 1 age2 1 sex 539.04 0.11 <0.01 4.96 22.28 22.63 0.29
C* age 1 age2 552.15 0.05 <0.01 2.37 2.71 21.83 —
D* age 1 age2 534.21 0.13 <0.01 6.21 24.81 21.93 —
E* age 1 age2 533.10 0.13 <0.01 6.45 4.18 23.21 —
F* age 1 age2 544.10 0.08 <0.01 4.09 0.47 24.23 —
G* age 520.00 0.19 <0.01 9.75 6.08 — —
H* age 508.38 0.23 <0.01 12.29 6.79 — —
I* age 1 age2 534.87 0.13 <0.01 6.07 4.61 22.24 —
J* age 1 age2 1 sex 526.97 0.16 <0.01 7.46 5.01 21.90 20.17
K sex 558.34 0.01 0.09 1.04 — — 20.12
L* age 545.73 0.07 <0.01 4.04 3.85 — —
M age 1 sex 556.79 0.02 0.04 1.37 1.41 — 20.15
N* age 545.37 0.07 <0.01 4.12 23.89 — —
O* age 1 sex 515.58 0.21 <0.01 10.19 6.10 — 20.17
P* age 551.21 0.04 <0.01 2.78 3.12 — —
Q* age 538.22 0.11 <0.01 5.73 4.65 — —
R age 1 age2 557.08 0.02 0.05 1.31 1.97 21.46 —
S* age 1 age2 543.80 0.09 <0.01 4.16 4.00 21.56 —
T age 555.30 0.02 0.02 1.81 22.41 — —
U intercept only 559.23 0.00 — — — — —
V sex 557.16 0.02 0.05 1.34 — — 20.14

*Model significant at P< 0.01.
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was observed and found to be significantly different
between groups (at 5%: t 5 2.732, P 5 0.008; excluding
females: t 5 3.16, P 5 0.002; at 20%: t 5 2.40, P 5 0.018;
excluding females: t 5 2.77, P 5 0.007). The spatial patterns
associated with this component at each threshold match
closely to that described above.

DISCUSSION

In this study, we modeled structural connectivity net-
works as the combination of separable subnetworks, or
network components, using a data-driven and multivariate
approach. We first showed that complex networks could
be reliably decomposed into network components using
simulated data. We then applied this method to two inde-
pendent cohorts, demonstrating that network components

follow specific developmental trajectories with age and
can capture disruptions to neurodevelopment in autism
spectrum disorder.

NMF provides a natural setting for the analysis of neu-
roimaging data due to the inherent non-negativity com-
mon to many imaging-derived metrics (e.g., tissue volume,
fiber count) [Sotiras et al., 2015]. In image analysis, NMF
leads to a parts-based representation of the data, extracting
sparse image components with localized spatial support
[Lee and Seung, 1999]. In this way, NMF confers a rela-
tively simple interpretation of the data, namely that the
complex whole can be approximated by the summation of
the localized parts. We show that decomposing structural
connectivity networks with NMF results in a soft cluster-
ing of connections that co-vary together across the popula-
tion forming relatively sparse subnetworks. We also find
that these components are biologically relevant, capturing

Figure 3.

Age-related variation in component strength. Four network

components are highlighted as examples of age-related variation

in subnetwork connectivity (see Supporting Information Figure

S1 for all components). For visualization, components maps

were thresholded at the 95th percentile and connections are

shown in circular format. To show the anatomical location of

connected regions, node degree was calculated for each cerebral

ROI as the sum of its connections in the thresholded

component and projected onto cortical/subcortical surfaces. The

relationship between (normalized) component strength and age

was modeled using polynomial regression. The best model fit is

shown for each component. Separate model fits indicate when

sex was included as an additional factor. Red indicates male;

blue, female. Cere 5 cerebellum, BG 5 basal ganglia and thala-

mus. [Color figure can be viewed at wileyonlinelibrary.com]
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known subsystems (e.g., subcortical-cortical projections;
components C, D, N, and P), local patterns of connectivity
between anatomically or functionally homologous regions
(e.g., components L, O, and T), and varying with age
across the lifespan.

MR studies have found that both white and gray matter
tissue volumes follow an inverted U trajectory over the
human lifespan, rising rapidly in development, peaking in
the second or third decade and declining into older age
[Giedd et al., 1999; Westlye et al., 2010; Ziegler et al.,
2012]. Markers of microstructural maturation in cerebral
white matter also follow similar trends [Lebel et al., 2012;
Westlye et al., 2010]. In the NKI-Rockland cohort, a recent
graph theoretical analysis of structural connectivity found
several network properties, including efficiency, varied
along the similar polynomial trajectories [Zhao et al.,
2015]. In contrast, the modularity—or extent to which a
network could be segregated into regional communities—
remained stable over time.

In this study, using a subsample of the NKI-Rockland
dataset, we found that several network components fol-
lowed an inverted U-shaped trajectory. Significant varia-
tion in component strength with age was found in 16 of 22
components, of which 9 followed a nonlinear trajectory.
When ordered by reliability across subsamples, age varia-
tion in 8 of the top 10 most robust components was best
described by a polynomial relationship. Of the remaining
components, 6 increased linearly with age, and 1
decreased. We found that components linking densely-

connected network hub regions tended to follow a nonlin-
ear trajectory with age, decreasing in strength in later life.
In contrast, components that increased in strength with
age reflected local connectivity patterns between neighbor-
ing regions, or between corresponding regions in the
opposite hemisphere (e.g., components H, L, M, O, and
Q), compared to more global connectivity patterns (A, E,
F, J). This increase in component strength may represent a
relative sparing of local connections. It may also reflect
age-related alterations to the underlying microstructural
white matter organization. For example, a consequence of
regional decreases in the number of crossing fibers in
older subjects could be the improved resolution of the pre-
dominant fiber direction, resulting in an apparent increase
in fiber number in short, local connections.

These observations support evidence of an increasing
dependence on local connectivity in the elderly connec-
tome with corresponding decreases in long-range connec-
tion strength between cortical hubs [Betzel et al., 2014; Cao
et al., 2014; Perry et al., 2015; Zhao et al., 2015]. Analyses
of functional connectivity networks have shown that hub
connectivity follows a U shaped trajectory over the human
lifespan alongside a decrease in network modularity, sug-
gesting a less segregated network topology in old age
[Cao et al., 2014; Chan et al., 2014]. Performing a compara-
tive analysis of both functional and structural networks,
Betzel et al. showed structural connectivity of hub regions
decreases dramatically with age, while local connectivity is
relatively spared. In addition, functional connectivity

TABLE II. Rich club analysis of network components

Component Number of edges Rich edges Richnessa P Local edges Localitya P

A 2549 780 1.34 0.001* 658 1.00 0.418
B 788 115 0.64 1.000 223 1.10 0.035
C 530 61 0.50 1.000 152 1.12 0.059
D 605 155 1.12 0.049 134 0.87 0.987
E 1119 434 1.69 0.001* 158 0.55 1.000
F 835 238 1.25 0.001* 169 0.79 1.000
G 1583 396 1.09 0.015 333 0.82 1.000
H 757 160 0.92 0.882 211 1.08 0.071
I 520 155 1.30 0.001* 119 0.89 0.917
J 623 73 0.51 1.000 193 1.21 0.001*
K 1400 293 0.91 0.967 309 0.86 1.000
L 628 86 0.60 1.000 210 1.30 0.001*
M 576 44 0.33 1.000 254 1.71 0.001*
N 535 119 0.97 0.612 103 0.75 1.000
O 761 93 0.53 1.000 316 1.62 0.001*
P 710 161 0.99 0.540 184 1.01 0.446
Q 498 111 0.98 0.599 153 1.19 0.007
R 342 70 0.89 0.830 94 1.07 0.236
S 572 132 1.01 0.425 120 0.82 0.999
T 599 157 1.15 0.019 132 0.86 0.987
U 481 41 0.37 1.000 120 0.97 0.648
V 345 55 0.70 0.999 100 1.13 0.073

aNumber of edges compared to 1,000 random networks of the same size.
*Significant at P 5 0.001.
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within resting state networks (RSN) decreased with age
whereas connectivity between RSN increased. This
increase in between-network connectivity was subserved
by multi-step structural connections. Similarly, Perry et al.
showed that alterations to edge strength in the aging struc-
tural connectome likely lead to an increased preference for
network communication via multiple, non-hub, local path-
ways [Perry et al., 2015]. Taken together, this evidence
suggests that the decline of long-distance, hub-to-hub

connections with a relative sparing of topologically, local
connections results in less efficient network communica-
tion in older age, a process that a may underlie progres-
sive cognitive decline [Andrews-Hanna et al., 2007;
O’Sullivan et al., 2001].

Structural connectivity is established early in develop-
ment [Ball et al., 2014; Kostovic and Jovanov-Milosevic,
2006], and early disturbances to network organization may
be a marker of abnormal neurodevelopment [Ecker et al.,

Figure 4.

Rich network components. Network components with significantly more rich-club edges than in

a set of 1,000 equivalent random networks are shown. Thresholded connectivity maps are dis-

played in circular diagrams as in Figure 3, with rich club nodes highlighted in red. The number

and probability distribution of rich, feeder, and local edges are displayed for each component.

[Color figure can be viewed at wileyonlinelibrary.com]
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2015]. In our second experiment, we performed a network
decomposition in an adolescent cohort and found a single
subnetwork with significantly greater connectivity in ASD.
This network was composed primarily of multiple, local
connections between neighboring regions in the cingulate
and paracingulate cortices, both within and between hemi-
spheres, along with connections between supplementary
motor areas, parietal cortex and the putamen. The cingu-
lum, and in particular the anterior cingulate cortex, has
been linked to ASD due mainly to its role in social interac-
tion and attention [Mundy, 2003]. Indeed, fMRI studies

have found that altered anterior cingulate activation in
ASD is associated with errors in response inhibition and
repetitive behavior [Agam et al., 2010; Kana et al., 2007;
Thakkar et al., 2008] and performance during social tasks
[Di Martino et al., 2009; Dichter et al., 2009]. Similarly,
metabolic [Tebartz van Elst et al., 2014], neuropathological
[Simms et al., 2009] and neuroanatomical disturbances
[Schumann et al., 2010] have also been reported in the cin-
gulate in ASD. In a comprehensive diffusion tractography
study of the white matter tracts of the limbic system,
Pugliese et al. found significantly increased tract volume

Figure 5.

Local network components. Network components with significantly more local edges than in a

set of 1,000 equivalent random networks are shown. Connectivity maps and edge distributions

are shown as in Figure 4. [Color figure can be viewed at wileyonlinelibrary.com]
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bilaterally in the cingulum bundle (determined by stream-
line count) of adults with Asperger’s syndrome [Pugliese
et al., 2009]. This observation is convergent with post-
mortem findings in autistic cases of excessive axonal con-
nectivity between neighboring cortical regions in the cin-
gulate [Zikopoulos and Barbas, 2010]. This is of particular
interest, given the putative neurodevelopmental origins of
ASD, as the cingulum bundle forms early in gestation, fol-
lowed by short range cortico-cortical connections in the
third trimester [Takahashi et al., 2012; Vasung et al., 2010]
suggesting that any early disruptions to white matter
development in utero could have significant long-term
implications on neurodevelopment.

Previous structural network analyses in autistic popula-
tions have found significantly increased structural connec-
tivity, inferred from tractography streamline count, among
cortical regions including anterior and posterior cingulate
cortex, superior frontal, superior parietal, and insula cortex
[Ray et al., 2014]. In a subset of the UCLA cohort, Wata-
nabe and Rees found evidence for delayed, or immature,
hub connectivity in ASD [Watanabe and Rees, 2015]
whereas Ghanbari et al. used a supervised variant of NMF
coupled with a graph embedding approach to define dis-
criminative network components and found decreased
interhemispheric connection strength in subcortical subnet-
works in ASD [Ghanbari et al., 2014]. Similarly, other

studies have reported decreases in structural connectivity,
dependent on measures of white matter microstructure
[Lo et al., 2011; Noriuchi et al., 2010; Thakkar et al., 2008].
These discrepancies may relate, in part, to the uncertain
correspondence between different measures of structural
connectivity. In the original study of this cohort, Rudie
et al. found that streamline count was significantly
increased in four times as many connections in ASD sub-
jects compared to controls [Rudie et al., 2012]. However, a
concomitant decrease in fractional anisotropy and increase
in mean diffusivity was also noted in white matter connec-
tions on average in ASD. These differences resulted in an
atypical age-related development of network efficiency in
ASD, a factor that related to symptom severity [Rudie
et al., 2012].

NMF belongs to a class of multivariate matrix decompo-
sition and dimension reduction techniques that include
principal component analysis and independent component
analysis (ICA). Recently, exploratory multivariate analysis
methods have proven well-suited to the discovery of com-
plex organizational relationships in the brain [Beckmann
and Smith, 2005; Calhoun et al., 2009; McIntosh and Mi�sić,
2013]. Previous studies have shown the potential of matrix
factorization techniques to isolate topological subnetworks
from functional and structural connectivity matrices on an
individual or group level [Clayden et al., 2013; Ghanbari

TABLE III. Between-group comparison of component

loadings

Component t(1,92) P Cohen’s d

1 1.769 0.080 0.366
2 1.576 0.119 0.326
3 0.809 0.421 0.168
4 0.308 0.759 0.064
5 1.388 0.168 0.287
6 20.735 0.464 20.152
7 20.342 0.733 20.071
8 21.180 0.241 20.244
9 0.698 0.487 0.145
10 3.161 0.002* 0.654
11 0.730 0.467 0.151
12 1.421 0.159 0.294
13 20.095 0.925 20.020
14 20.019 0.985 20.004
15 1.670 0.098 0.346
16 20.376 0.708 20.078
17 0.146 0.884 0.030
18 0.328 0.744 0.068
19 0.283 0.778 0.059
20 0.162 0.872 0.033
21 1.459 0.148 0.302
22 1.162 0.248 0.241
23 0.410 0.683 0.085
24 20.528 0.599 20.109

*Significant at P< 0.05 after Bonferroni correction for multiple
comparisons.

Figure 6.

Structural connectivity is significantly increased in ASD. A single

subnetwork was found to be significantly stronger in the ASD

cohort. The component map is shown in A (thresholded at

95th percentile), and component loadings for both groups com-

pared in B. The anatomical locations of connected regions are

visualized as in Figure 3 and shown in C. [Color figure can be

viewed at wileyonlinelibrary.com]
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et al., 2014; Park et al., 2014]. We performed simulations to
demonstrate that PNMF is particularly able to retrieve
superposed spatial patterns and the corresponding,
population-varying component weights from a set of noisy
connectivity networks. In addition, although we were
unable to compare network components identified in the
UCLA and NKI-Rockland samples directly, due to the dif-
ferent parcelation schemes used in each study, [Meskaldji
et al., 2013;Wijk et al., 2010; Zalesky et al., 2010], a split-
half reliability analysis showed that the majority of struc-
tural subnetworks in the NKI cohort could be consistently
identified across population subsamples with shared net-
work structure.

Additionally, an important aspect of any dimension
reduction task is determining the optimal dimensionality
of the solution. In this article, we chose to use an auto-
matic model selection process that iteratively updates
model rank, removing components with low spatial vari-
ance that do not contribute significantly to the final recon-
struction [Yang et al., 2010]. This resulted in around 20
effective components selected in both experimental
cohorts. Previous studies have shown that, for ICA-based
decomposition of fMRI data, higher-dimensional decompo-
sitions can reveal nested subsystems within functional net-
works [Abou Elseoud et al., 2011; Dipasquale et al., 2015;
Kiviniemi et al., 2009]. Indeed, in the present study we
observed apparently correspondent components that were
split between opposite hemispheres (e.g., components I
and S), whereas others formed bilateral symmetric patterns
(components A, U, and H) suggesting some hierarchical
structure within components. We also note that several lat-
eralized components contributed to rich club connectivity.
Although there is some evidence for laterality in the
human rich club when hemispheric connectivity is ana-
lyzed separately, with a stronger rich club present in the
right hemisphere [Goulas et al., 2014], it is generally
accepted that the rich club is symmetric in organization
[van den Heuvel and Sporns, 2011]. Although these com-
ponents contain rich club edges, they appear to represent
a mixture of rich, local and feeder connections that vary
together with age. Future exploration of PNMF network
decomposition and the relationship between network com-
ponents derived from PNMF and modules/communities
and hierarchies derived from graph theoretical approaches
are warranted. Likewise, PNMF network decomposition at
multiple dimensionalities would provide a framework to
investigate the nested, or hierarchical nature of structural
connectivity subnetworks [Betzel et al., 2013; Betzel and
Bassett, 2016; Meunier et al., 2010]. Future analyses may
also consider the impact of group structure on PNMF
decomposition. In this study, we applied PNMF jointly
across both typically developing and ASD networks to
examine components that were present in all participants.
An alternative strategy may be to produce separate
decompositions for each group to uncover group-specific
network structures.

STUDY LIMITATIONS

The use of (log-transformed) streamline counts to esti-
mate structural connectivity could be considered a limita-
tion of this study. Is it important to note that fiber counts
do not necessarily reflect true anatomical connectivity, and
tractography is prone to mapping false positive connec-
tions due to local accumulation of modeling errors [Jones,
2010; Jones et al., 2013]. However, using available open
access datasets, we have shown that PNMF is able to
extract subnetworks that can provide insight into biologi-
cal variability, with developmental trajectories that suggest
streamline count, in part, can reflect maturational pro-
cesses in the brain. Importantly, PNMF is generalisable to
any inherently non-negative data. This opens future ave-
nues to explore network components derived from mod-
ern, probabilistic tractographic algorithms that better
reflect true anatomical connectivity [Pestilli et al., 2014;
Smith et al., 2015].

MRI studies in ASD may be at risk of selection bias due
to the additional difficulties in scanning non-compliant, or
low-functioning individuals, who may require sedation
[Erbetta et al., 2014]. In this study, only data from high-
functioning ASD participants were available. As such we
may underestimate any morphological traits of ASD
through the exclusion of low-functioning participants.
Conversely, given the phenotypic heterogeneity of ASD, it
may be that specific alterations in brain morphology are
not present in all ASD subtypes [Vissers et al., 2012], and
as such studies will benefit from identifying endopheno-
typic variations in specific sub-populations of the ASD
population. We believe this is an exciting avenue for fur-
ther research.

CONCLUSIONS

In conclusion, we present a multivariate analysis of
structural connectivity in two cohorts. We demonstrate
that complex networks can be decomposed into robust
and reliable subnetworks that vary in strength with age.
Furthermore, we identify a specific subnetwork with
increased connection strength in autism spectrum disor-
der. We propose that this form of network component
analysis shows good potential for further exploration of
the human structural connectome.
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