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Abstract: Psychophysiological interaction (PPI) is a widely used regression-based method to study con-
nectivity changes in different experimental conditions. A PPI effect is generated by point-by-point mul-
tiplication of a psychological variable (experimental design) and a physiological variable (time series of
a seed region). If the psychological variable is non-centered with a constant component, the constant
component will add a physiological variable to the PPI term. The physiological component would in
theory be accounted for by the physiological main effect in the model. But due to imperfect deconvolu-
tion and convolution with hemodynamic response function, the physiological component in PPI may
no longer be exactly the same as the physiological main effect. This issue was illustrated by analyzing
two block-designed fMRI datasets, one simple visual checkerboard task and a set of different tasks
designed to activate different hemispheres. When PPI was calculated with deconvolution but without
centering, significant results were usually observed between regions that are known to have baseline
functional connectivity. These results could be suppressed by simply centering the psychological vari-
able when calculating the PPI term or adding a deconvolve–reconvolved version of the physiological
covariate. The PPI results with centering and with deconvolve–reconvolved physiological covariate are
consistent with an explicit test for differences in coupling between conditions. It was, therefore, sug-
gested that centering of the psychological variable or the addition of a deconvolve–reconvolved covari-
ate is necessary for PPI analysis. Hum Brain Mapp 38:1723–1740, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Studying brain functional connectivity using functional
MRI (fMRI) has enabled great progress in mapping brain
networks and brain functions in resting-state [Biswal et al.,
1995, 2010; Fox et al., 2005; Greicius et al., 2003]. However,
brain functional connectivity is thought to be dynamic
[Bullmore and Sporns, 2012; Park and Friston, 2013], and
theories in cognitive neuroscience usually hypothesized
that information flow between brain regions varies
depending on task contexts. Therefore, it is essential to
study task modulated connectivity, using methods such as
psychophysiological interaction (PPI) [Friston et al., 1997]
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and dynamic causal modeling (DCM) [Friston et al., 2003].
Unlike DCM that is fully hypothesis-driven, PPI imple-
ments regression-based models, which enables voxel-wise
statistics. Given that task modulated connectivity it is still
largely unknown, PPI is particularly desirable in the cur-
rent state of research. The PPI method has been validated
using simulations [Kim and Horwitz, 2008; McLaren et al.,
2012], and has been widely used to investigate context
dependent brain connectivity in different task domains
[e.g., Di et al., 2017].

Because the blood-oxygen-level dependent (BOLD) sig-
nals in fMRI are an indirect measure of neural activity, it
is critical for the PPI method to properly handle the asyn-
chrony between an experimental design and its hemody-
namic responses. In the psychophysiological interaction
(PPI) framework, both task activations (the psychological
variable) and task independent fluctuations of a seed

region (the physiological variable) are modeled. And most
importantly, the PPI model includes an interaction term
between the task design and the seed time series. In a sim-
ple case where there is only one psychological variable,
the general linear model (GLM) for the time series of a
given voxel y could be expressed as follows:

y5b01b1 � xPsych1b2 � xPhysio1b3 � xPPI1e (1)

where xPsych represents the psychological variable, xPhysio

represents the seed time series for physiological variable,
and xPPI represents the psychophysiological interaction. To
account for hemodynamic delays, early implementation of
PPI calculated the psychological variable by convolving a
box-car psychological function with a hemodynamic
response function (HRF) (Fig. 1). The PPI term is then cal-
culated by point-by-point multiplication between the

Figure 1.

Illustrations of the calculation of psychophysiological interaction

(PPI) without deconvolution. The part figure (A) shows the time

series of a seed region. The part figure (B) shows a box-car func-

tion representing task on (coded as 1) and off (coded as 0). The

box-car function is convolved with the canonical hemodynamic

response function (HRF) to form a predicted psychological vari-

able at the BOLD (blood-oxygen-level dependent) level (C). A

PPI term (D) could then be calculated by point-by-point multipli-

cation between the physiological variable (A) and psychological

variable (C). A PPI term (F) could also be calculated by point-by-

point multiplication between the physiological variable (A) and a

demeaned version of psychological variable (E). Because the psy-

chological variable (C) contains a constant component, the result-

ing PPI (D) contains a component of the physiological variable. It

could be illustrated by removing the PPI with centering (F) from

the PPI without centering (D), which results in a residual of G.

The residual G and the physiological variable (A) are essentially

the same. Green color represents variables at the neuronal level,

and blue color represents variables at the BOLD level. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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physiological variable xPhysio (Fig. 1A) and (mean centered)
psychological variable xPsych (Fig. 1E):

xPPI5xPsych � xPhysio (2)

To better illustrate the meaning of the interaction term,
we put Eq. (2) into Eq. (1), and rewrote it as:

y5b01b1 � xPsych1b2 � xPhysio1b3 � xPsych � xPhysio1E

5b01b1 � xPsych1ðb21b3 � xPsychÞ � xPhysio1E
(3)

It shows that the relationship between the seed region
xPhysio and target region y is expressed as b2 1 b3 � xPsych,
which is a linear function of task design xPsych. This task
dependent regression coefficient can now be regarded as
an estimate of effective connectivity that couples the seed
region to the test or target region. Crucially, this connectiv-
ity changes in a context sensitive way with the psychologi-
cal variable.

We note that it is in general advisable to center (subtract
the mean from a variable) the two main effect variables
before calculating the interaction term, because otherwise
the correlations between the interaction term and main
effects would be very high. In the case of PPI calculation,
the PPI term (Fig. 1D) could be calculated by multiplica-
tion between the physiological variable (Fig. 1A) and the
non-centered psychological variable (Fig. 1C). We use
x�Psych to represent the non-centered psychological variable,
and it could be expressed as x�Psych 5 xPsych 1 c, where c
represents a constant. The PPI term without centering the
psychological variable x�PPI becomes:

x�PPI5x�Psych � xPhysio

5ðxPsych1cÞ � xPhysio

5xPsych � xPhysio1c � xPhysio

5xPPI1c � xPhysio

(4)

Therefore, the PPI term without centering the psychologi-
cal variable contains a component of the physiological
main effect. This could be visually illustrated by regressing
out xPPI (Fig. 1F) from x�PPI (Fig. 1D). The residual (Fig. 1G)
turns out to be almost identical to the physiological vari-
able. The physiological component in the non-centered PPI
term may lead to high correlation between the PPI and
physiological main effect. However, because the main
effect of physiological variable is always added in the
GLM as a covariate [Eq. (1)], the collinearity would not be
a problem. Using PPI terms with or without centering
would generate exactly the same PPI effects (see
Appendix).

The above mentioned approach only works when the
psychological variable changes slowly relative to the
hemodynamic response. If the psychological variable
changes quickly relative to the hemodynamic response
time constants, it is generally advisable to deconvolve the
hemodynamic response from observed time series before

constructing the interaction term [Gitelman et al., 2003].
We use z to represent variables at the neuronal level, and
* to represent convolution operator. The deconvolution
process of the physiological variable xPhysio means to find a
variable zPhysio, so that:

xPhysio5zPhysio � hrf (5)

In SPM, hemodynamic deconvolution was performed
using an empirical Bayes procedure [Friston et al., 2002;
Gitelman et al., 2003]. Once the deconvolved physiological
time series zPhysio (Fig. 2B) was calculated, the PPI term
could then be calculated by multiplying zPhysio with a cen-
tered box-car psychological function zPsych (Fig. 2G), and
then convolve it with HRF (Fig. 2H,I).

xPPI5ðzPsych � zPhysioÞ � hrf (6)

Again, if the psychological box-car function z�Psych was
not centered, the PPI term is then expressed as the follow-
ing equation:

x�PPI5ðz�Psych � zPhysioÞ � hrf

5½ðzPsych1cÞ � xPhysio�

5ðzPsych � zPhysioÞ � hrf1ðc � zPhysioÞ � hrf

5xPPI1c � zPhysio � hrf

(7)

Comparing with the PPI term with centering (Fig. 2I), the
x�PPI (Fig. 2F) contains a component of physiological vari-
able c�zPhysio*hrf. This physiological component can be visu-
alized by regressing out xPPI from x�PPI (Fig. 2J). Even
though the general trend of the physiological component
is quite similar to the original physiological variable (Fig.
2A), clear differences could be seen. The physiological
component in PPI (Fig. 2J) is smoother than the original
signal. We argue that it is because of imperfect deconvolu-
tion and convolution processes. We can also directly con-
volve the deconvolved physiological variable zPhysio with
HRF. And it could be seen that the resulting time series
(Fig. 2K) turns out to be identical to the physiological com-
ponent (Fig. 2J). Because it is the original physiological
variable (Fig. 2A) which will be added in a PPI GLM mod-
el, the original physiological variable could no longer fully
account for the physiological component in a PPI term.
This could result in spurious PPI effects that could not be
accounted for by the main effects.

A real fMRI experiment usually has more than one
experimental condition in addition to an implicit baseline.
Theoretically, the total n conditions could be modeled
using n – 1 psychological variables using many different
ways. A straightforward way is to model each of the
experimental condition with respect to all other conditions
(with the implicit baseline not modeled) [McLaren et al.,
2012]. In such a framework, the calculation of PPI term for
each condition faces the same problem as has been
described above.
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The current study was motivated by our observations in
our lab that some regions that are known to be highly cor-
related with the seed regions are likely to show positive
PPI effects. In earlier version of SPM, it did not center the
psychological variable when calculating the PPI term. Giv-
en that PPI calculated with deconvolution and without
centering contains a physiological main effect component
that could not be fully taken into account by the physio-
logical main effect covariate, we predicted that spurious
PPI results may take place in brain regions who has high

baseline functional connectivity with the seed regions. The
aim of the present study is firstly to demonstrate that with
and without centering would generate different PPI
results. To establish the construct validity of the different
PPI approaches, we calculated correlation differences
between conditions. We predict that centering when calcu-
lating PPI term will produce results that reflect differences
in correlation (functional connectivity) in relation to the
results with not centering. We also considered the addition
of a deconvolve–reconvolved version of the physiological

Figure 2.

Illustrations of the calculation of psychophysiological interaction

(PPI) with deconvolution. The part figure (A) shows the time

series a seed region. The time series (A) is deconvoved with the

canonical hemodynamic response function (HRF) to form a neu-

ronal level physiological variable (B). The part figure (C) shows a

box-car function representing task on (coded as 1) and off (coded

as 0), which is then convolved with a canonical HRF to form a

psychological variable at the BOLD (blood-oxygen-level depen-

dent) level (D). A PPI term (F) is calculated by first point-by-point

multiplication between the physiological variable (B) and psycho-

logical variable (C) (as shown in E), and then convolved with the

canonical HRF to form a PPI term at the BOLD level. A PPI term

(I) could also be calculated using a centered psychological variable

(G). Because the psychological variable (C) contains a constant

component, the resulting PPI (F) contains a component of the

physiological variable. It could be illustrated by removing the PPI

with centering (I) from the PPI without centering (F), which

results in a residual of J. Even though the residual J is still highly

correlated with the physiological variable (A), they are not exactly

the same. The discrepancy is caused by imperfect deconvolution

and convolution processes with the HRF. If the physiological vari-

able is deconvolved with the HRF (B), and convolved back with

the HRF, the resulting variable (K) is exactly the same as the

residual J. Green color represents variables at the neuronal level,

and blue color represents variables at the BOLD level. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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variable as a covariate to remove potential confounds. We
present two block-designed fMRI studies. The first is a
simple flickering checkerboard task against a fixation con-
dition. We adopted a typical PPI analysis protocol, that is,
performing “conventional” GLM analysis to identify
regions that were activated by the checkerboard stimula-
tions, and performing PPI analysis using these regions to
identify regions that had task modulated connectivity with
them. In what follows, we analyzed fMRI data from six
different tasks conditions. We defined 160 regions of inter-
est (ROIs) sampling the whole brain [Dosenbach et al.,
2010] to calculate pair wise PPI effects of the six task con-
ditions against their respective fixation conditions.

MATERIALS AND METHODS

Visual Checkerboard Task

We first used a simple visual checkerboard task to illus-
trate the effects of mean centering on PPI effects. This is a
simple block-designed task, with an experiment condition
of flickering checkerboard presentation versus a control
condition of simple fixation. The analysis strategy followed
commonly used strategy of PPI analysis; that is, first iden-
tifying regions that were activated in the task, and per-
forming PPI analysis using these regions. Specifically, we
expected that the conventional general linear model
(GLM) could show reliable activations of the visual cortex
in the checkerboard condition compared with fixation con-
dition. Therefore, we used the activated visual regions as
seeds to perform PPI analysis to show which regions in
the brain that have task modulated connectivity with the
visual seeds during the checkerboard condition compared
with the fixation condition.

Subjects

The data were adopted from the Enhanced Nathan Kline
Institute—Rockland Sample (http://fcon_1000.projects.
nitrc.org/indi/enhanced/). We used a subset of data from
the release 1, which the subjects were all adult subjects
without any mental and physical diseases. The data were
also discarded if a subject’s head motion was greater than
3 mm or 38 during the experiments. As a result, data from
26 subjects (8 females) were included in the analysis. The
mean age of the sample was 31.7 years (18–60 years).

Visual checkerboard tasks

The block designed fMRI experiment consisted of 20 s
of fixation condition and 20 s of flickering checkerboard
condition repeated three times. The remaining period until
fMRI scan complete was blank screen. Only the data with
a TR (repetition time) of 0.645 s were used. 239 or 240 of
fMRI images were scanned in total for each subject.

MRI scan parameters

MRI data were scanned using a 3T Siemens Magnetom
TrioTim syngo MR B17 scanner. The following parameters
were used to scan the fMRI data: TR 5 645 ms; TE 5 30
ms; flip angle 5 608; voxel size 5 3 mm3 isotropic; number
of slices 5 40. The following parameters were used to scan
the MPRAGE (magnetization-prepared rapid acquisition
with gradient echo) T1 images: TR 5 1900 ms; TE 5 2.52
ms; flip angle 5 98; voxel size 5 1 mm3 isotropic. More
information of the data can be found in Nooner et al.
[2012].

MRI imaging processing

Preprocessing. Imaging data preprocessing and analysis
were performed using SPM8 (http://www.fil.ion.ucl.ac.
uk/spm/) under MATLAB (http://www.mathworks.
com/). The first 14 images (�9 s) were discarded from
analysis. The last image was also discarded if there were
240 images in total, so that the number of remaining
images for each subject was 225. The functional images for
each subject were then realigned to adjust displacements
due to head motion, and coregistered to the subject’s own
high resolution T1 image. The T1 images were segmented
and normalized into standard Montreal Neurological Insti-
tute (MNI) space using the new segment function in
SPM8. The deformation field maps from the segmentation
step were used to normalize functional images into MNI
space. During normalization, the functional images were
resampled at 3 3 3 3 3 mm3 spatial resolution. Finally,
the functional images were spatially smoothed using an
8 mm full-width at half maximum (FWHM) Gaussian
kernel.

Activation analysis. A general linear model (GLM) was
first built for each subject to detect regions that had higher
activity in the checkerboard condition than in the fixation
condition. A box-car function convolved with canonical
hemodynamic response function (HRF) was used to model
task activations. In addition to the task predictor, 24
motion parameter time series were also added in the GLM
to minimize the effects of head motion [Friston et al.,
1996], as well as two regressors representing the first
eigenvariate of white matter (WM) signals, and the first
eigenvariate of cerebrospinal fluid (CSF) signals. The
parameter estimates (b) maps for each subject representing
activations by checkerboard stimulation were used for
group-level analysis of one sample t-test. Not surprisingly,
reliable activations could be observed in the visual cortex.
Therefore, two regions from the left and right middle
occipital gyrus (MOG) were selected, respectively, based
on maxima activations in each hemisphere. The MNI coor-
dinates of the two regions were 224, 291, 4 for the left
MOG (LMOG), and 27, 294, 10 for the right MOG
(RMOG).
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PPI analysis. For each subject, spherical ROI were
defined, centered at the peak coordinates of the LMOG
and RMOG seeds, with a radius of 8 mm. The first eigen-
variate was extracted after adjusting for head motion and
WM/CSF signals. This time series was the physiological
variable. The psychological variable was defined by a box-
car function convolved with the canonical HRF. The PPI
terms were calculated in four different ways based on
whether the physiological variable was deconvolved and
whether the psychological variable was mean centered.
We included the non-deconvolved method to better illus-
trate our derivation in the introduction. And this method
is still used in other fMRI software such as FSL (FMRIB
Software Library) [Jenkinson et al., 2012]. The first PPI was
calculated with deconvolution and with psychological var-
iable not centered (Fig. 3 Model 1). Practically, a seed time
series was deconvolved with the canonical HRF, so that
the resulting time series represented activities at the neu-
ronal level. Then the deconvolved seed time series was
demeaned, and multiplied with the non-demeaned psy-
chological box-car function. This was the default option in
SPM after revision r3271 in SPM5 and before revision
r6556 in SPM12. The second PPI was calculated with
deconvolution and with psychological variable centered
(Model 2). The deconvolved seed time series was
demeaned, and multiplied with the demeaned psychologi-
cal box-car function. This was the default option in SPM12
after revision r6556. The third PPI was calculated without
deconvolution and without psychological variable centered
(Model 3). The psychological box-car function was

convolved with the canonical HRF and multiplied with
the raw physiological time series. And the fourth PPI was
calculated without deconvolution and with psychological
variable centered (Model 4). The psychological box-car
function was convolved with the canonical HRF, centered,
and then multiplied with the raw physiological time
series. In addition to these three regressors, 24 variables
for head motions, and 2 variables of WM and CSF signals,
and a constant term were also included in the GLMs. Last-
ly, to illustrate that the significant effects using the Model
1 may be due to artifact of deconvolution and reconvolu-
tion, we added the deconvolve–reconvolved variable as a
covariate to Model 1, which formed the Model 5. Separate
analyses were conducted for the LMOG and RMOG seeds.
The b maps representing the PPI effects were used for
group level analysis. One sample t-test was performed for
each of the four PPI analyses, separately. The resulting sta-
tistical maps were first set as P< 0.001, and a cluster-level
correction of false discovery rate (FDR) of P< 0.05 was
used to identify statistically significant clusters. To illus-
trate the spatial distributions of the deconvolve–reconvolve
effects, the corresponding b maps in Model 5 were also
analyzed in terms of group level one sample t-test.

Direct comparisons of correlation differences. We
expected different PPI results when the PPI terms were
calculated in different ways. To establish which results
reflect functional connectivity changes between task condi-
tions, we directly calculated correlation differences of
BOLD signals between the two experimental conditions.
We defined two ROIs from the results of PPI analysis (see

Figure 3.

Illustrations of five general linear models (GLMs) for different

psychophysiological interaction analysis. Red blocks represent

the variables that are kept the same in all the five GLMs. They

include a psychological variable of a (non-centered) box-car

function convolved with hemodynamic response function (HRF),

a physiological variable, covariates including white matter/cere-

brospinal fluid signals and head motion models, and a constant

term. The five models only differ in the blue blocks. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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Results for details), and extracted their time series for each
subject. The first six seconds of each block (either fixation
or checkerboard) were discarded to get rid of transient
hemodynamic responses (Fig. 4). The remaining time
points of each block were first demeaned, and concatenat-
ed together for each condition. Pearson’s correlation coeffi-
cients between the resulting ROIs and the seed regions
were calculated for each condition and each subjects. The
correlation coefficients were transformed into Fisher’s z
values, and compared between the checkerboard and fixa-
tion conditions using paired t-test.

Lateralization Tasks

Because the visual checkerboard task is a fairly simple
task, the PPI analysis was restricted to visual seeds. We
next analyzed an fMRI data of different tasks, which were
designed to activate different regions and hemispheres of
the brain [Cai et al., 2013]. Therefore, we focused on large
scale brain connectivity between regions of the whole
brain to evaluate how different tasks modulated large
scale brain connectivity. In addition to these tasks, resting-
state fMRI data were also collected, so that we could study
the relationships between task related connectivity changes
and resting-state connectivity strengths.

Subjects

Subjects were university students recruited from New
Jersey Institute of Technology. All subjects were right
handed, and had normal or corrected-to-normal vision.
After removing subjects due to large head motion (>3 mm
or 38), 24 subjects were included in the current analysis (10
females). The mean age was 20.5 years old (18–25 years).
Written consents were obtained from all the participants
before MRI scanning. The study was approved by the
institutional review board (IRB) at University of Medicine
and Dentistry of New Jersey.

Task design

There were three tasks, each having an experimental
condition and a control condition.

Landmark task. For each trial, a horizontal line appeared
in the middle of the screen, which occupied the whole
width of the screen. A small vertical line was also

presented at the same time. In the experimental condition,
the vertical line crossed the horizontal line in the middle.
The vertical line was either in the center of the entire hori-
zontal line, or slightly off the center to either left or right.
The subjects were asked to judge whether the vertical line
was on or off the center by pressing the left or right button
of the response box. In the control condition, the vertical
line was either intersecting with the horizontal line, or
slightly up to the horizontal line without touching it. The
subjects were asked to indicate whether the vertical line
was intersecting or non-intersecting the horizontal line
with left or right button pressing of the response box.

Mental rotation task. The stimuli of the mental rotation
experiment was obtained from Peters and Battista [2008].
For each trial, two pictures of the stimuli were presented
side by side on the screen. The subjects needed to indicate
whether the two pictures were the same stimuli or left/
right mirrored. For the experimental condition, one of the
pictures was rotated for some degree and mirrored or not
mirrored. While for the control condition, the two pictures
were either exactly the same or mirrored.

Word generation task. For the experiment condition, a
letter was presented at the center of the screen. The sub-
jects were asked to think about words started with the
presented letter. For the control condition, four letters
“baba” were presented. The subjects were asked to simply
repeat reading “baba” silently, without thinking about spe-
cific words.

The three tasks were designed as three separate fMRI
runs. All three experiments were block design. For each
task run, the fMRI scan was started and ended with 20 s of
fixation condition with a “1” presented at the center of the
screen. Each task block lasted for 40 s, with 20 s fixation
condition between each two task blocks. The experimental
and control blocks were repeated four times. The order of
experimental and control conditions were counterbalanced
within a run. The total scan time for each task run was
8 min 20 s. The orders of the three tasks were counterbal-
anced across subjects. The subjects were familiarized with
the three tasks before entering the MRI scanner.

In addition to the three tasks, a separate resting-state
run of 8 min was also collected. The subjects were asked
to lay still and not think about anything particular. The
resting-state run was always scanned at the beginning of

Figure 4.

Illustration of correlation difference calculation. Six seconds after onset of each (fixation or

checkerboard) condition were removed from analysis to get rid of transient hemodynamic

responses. Time points of different blocks of the same condition (indicated by red or blue) were

demeaned for each block, and then concatenated together to calculate correlations. [Color

figure can be viewed at wileyonlinelibrary.com]
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the MRI scan session to make sure that the “resting-state”
was not contaminated by other tasks.

MRI scan protocol

The MRI images were acquired at functional imaging
center at New Jersey Medical School using a 3T Siemens
Allegra scanner with a standard head only coil. With a TR
of 2 s for all fMRI scans, we acquired 240 resting-state
fMRI images, and 250 fMRI images for each task run. The
functional echo planar imaging (EPI) images were scanned
using a gradient echo sequence with the following param-
eters: TR, 2 s; TE, 30ms; flip angle, 808; slice thickness,
4 mm; in-plane matrix size, 64 3 64; voxel size, 3.4375 3

3.4375 3 4 mm3; number of slices, 34. The co-planar was
aligned along the AC-PC line, and the fMRI images cov-
ered the whole cerebral cortex and the superior portion of
the cerebellum. Two dummy scans were automatically dis-
carded at the beginning of each fMRI scan run.

In addition, high resolution T1 image for each subject
was also collected at the end of the MRI scan session using
MPRAGE sequence with the following parameters: TR,
2 s; TE, 4.38 ms; Flip angle, 88; Slice Thickness, 1 mm;
Matrix size, 256 3 256; voxel size, 0.859 3 0.859 3 1 mm3,
FOV, 220 3 220.

Data processing and analysis

Preprocessing. Imaging data preprocessing and data
analysis was also performed using SPM8. The preprocess-
ing was in general the same, except that only two images
of each fMRI run were discarded from analysis. Briefly
speaking, all the functional images were realigned, and
coregistered to subjects’ own anatomical image. Subjects’

data with head motion greater than 3 mm or 38 in any
tasks were discarded. The anatomical image was segment-
ed and normalized to standard MNI space. The deforma-
tion field maps were used to normalize all subjects’
functional images into MNI space. The functional images
were not smoothed because the subsequent analyses were
all ROI based but not voxel based.

Activation analysis. Separate GLM models were built
for the three tasks. For each task, the two task conditions
were modeled as two box-car functions convolved with
the canonical HRF. Additionally, 24 regressors of Friston’s
head motion model [Friston et al., 1996], one regressor of
the first eigenvariate of the WM signal, and one regressor
of the first eigenvariate of the CSF signal were also added
as covariates. Time series from 160 ROIs [Dosenbach et al.,
2010] were extracted using the volume of interest function
in SPM. During the time series extraction, effects of no
interest were adjusted.

PPI analysis. We performed ROI based PPI analysis for
the lateralization data, that is, the dependent variable was
the time series of a ROI, instead of a voxel. Because the
ROI time series were adjusted for head motion and WM/
CSF signals, the PPI GLM model no longer included these
regressors as covariates. In this analysis, we only focused
on deconvolved methods, so that three PPI models were
constructed for each pair of ROIs (Fig. 5). The PPI term
was calculated separately for the two task conditions. In
the first model, the PPI terms were calculated by point-by-
point multiplication between non-centered psychological
box-car function and deconvolved ROI time series, and
then convolved with the canonical HRF. The GLM models
included two regressors representing two task conditions,
one regressor representing the time series of a ROI, and

Figure 5.

Example design matrices for psychophysiological interaction

(PPI) analysis of the lateralization tasks without centering (A),

with centering (B), and without centering and with deconvolve–

reconvolved physiological covariate (C). All the three methods

are with deconvolution. The first two regressors represent two

task conditions. The third regressor represents the time course

of a seed region. The last regressor represents constant term.

In A and B, the fourth and fifth regressors represent PPI effects

of the two tasks, respectively. Please note the differences of the

fourth and fifth regressors of the two matrices. C is the same

as A except that an additional regressor (the fourth column)

was added representing the deconvolve–reconvolved version of

the physiological variable. Please note the differences between

columns three and four in C.
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two regressors representing the PPIs for the two task con-
ditions (Fig. 5A). In the second model, the PPI terms were
calculated by point-by-point multiplication between cen-
tered psychological box-car function and deconvolved ROI
time series, and then convolved the canonical HRF. The
main effects remained the same as those in Model 1 (Fig.
5B). Please notice the differences of the fourth and fifth
regressors in Figure 5A,B. The third PPI model was the
same as Model 1, except that a deconvolve–reconvolved
version of the ROI time series (column 4 in Fig. 5C) was
added as a covariate. The PPI GLMs were estimated
between each pair of ROIs and for the three tasks. The cor-
responding b estimates of the PPI effects were used to
form a 160 3 160 matrix representing task modulated con-
nectivity of the task condition. The matrix of b4 of Model 3
was also calculated to illustrate the effect of deconvolu-
tion–reconvolution. The matrices were symmetrized by
averaging corresponding lower and upper diagonal ele-
ments in the matrices (see Supporting Information). One
sample t-test was used to test whether a given effect was
consistently different than 0 across subjects. FDR correc-
tion at P< 0.05 was used to correct for the total 12,720 (160
3 159/2) comparisons.

Direct comparisons of correlation differences. For each
task, we similarly grouped the time points into three con-
ditions after removing the first three time points (6 s) at
the beginning of each block; that is, the fixation condition,
experimental condition, and control condition. The time

points in each block were first mean centered, and
concatenated in each condition. Pearson’s correlation coef-
ficients were calculated across the 160 ROIs for each condi-
tion. The correlation matrices were transformed into
Fisher’s z matrices. Then mean cross subject correlation
Fisher’s z matrices were subtracted between the task con-
ditions and corresponding fixation conditions.

Resting-state data. The time series of the 160 ROIs in
resting-state were extracted from the preprocessed fMRI
data. When extracting the time series, 24 variables of head
motion model, one variable of the first eigenvariate of the
WM signal, and the first eigenvariate of the CSF signal
were regressed out using a linear regression model. Tem-
poral filtering was not performed to make sure that the
connectivity measures were comparable between resting-
state and other task states. Spearman’s correlation coeffi-
cients across 160 ROIs were calculated for each subject.
The resulting correlations matrices were first transformed
into Fisher’s z scores, and averaged across subjects.

RESULTS

Visual Checkerboard Task

As expected, activations of the visual checkerboard task
mainly involved bilateral posterior occipital regions, which
were used for PPI analysis (the left penal in Fig. 6). PPI
analysis of the LMOG and RMOG seeds only showed

Figure 6.

Positive psychophysiological interaction (PPI) effects of the left

middle occipital gyrus (LMOG) (upper panels) and right middle

occipital gyrus (RMOG) (lower panels) in the visual checker-

board task. The LMOG and RMOG seeds are illustrated in the

left most column. The five remaining columns show PPI effects

of five different models as illustrated in Figure 3. For illustration

purpose, the PPI effect maps were thresholded at P< 0.05

(uncorrected). Z value and seeds coordinates are in MNI (Mon-

treal neurological institute) space. [Color figure can be viewed

at wileyonlinelibrary.com]
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significant positive effects when using the deconvolved
and non-centered model (Model 1) but not all other four
models (see Supporting Information Tables S1 and S2 for
the lists of all significant clusters). The significant positive
PPI effects were mainly located in the bilateral middle
occipital gyrus. We show positive PPI effects of all the five
models in Figure 6 using a threshold of P< 0.05 (uncor-
rected), not only to show significant effects in Model 1,
but also to show non-significant effects in models 2
through 5. The positive PPI effects in the bilateral middle
occipital gyrus could only be observed in the deconvolved
and non-centered model (Model 1), but not when the psy-
chological variable was centered (Model 2), or when not
performing deconvolution. Please note that the results of
non-centered (Model 3) and centered (Model 4) effects
without deconvolution were exactly the same, because the
physiological main effect component in this case could be
completely accounted for by the physiological main effect.
Lastly, if we added a deconvolve–reconvolved physiologi-
cal variable as a covariate to the Model 1 (i.e., Model 5),
the positive PPI effects also disappeared. The spatial distri-
butions of the deconvolution–reconvolution effects of the

LMOG and RMOG are shown in Figure 7, with the bilater-
al middle occipital regions coincident with the positive
PPI effects in Model 1. These further confirmed that the
PPI effects in Model 1 might be artifact resulting from
imperfect deconvolution–reconvolution processes on the
physiological variable.

In contrast, PPI analysis of the RMOG seed in all the
PPI models but Model 1 showed significant negative PPI
effects. The consistent clusters across the four models were
located in the bilateral fusiform gyrus (BA 37) and supple-
mentary motor area (SMA) (BA 32) (Fig. 8). We note that
the analysis of LMOG seed showed a similar pattern of
negative results, but the clusters did not survive a multiple
comparison correction.

To get a sense which results were correct, we directly
compared correlation differences between the two condi-
tions. Correlation differences were calculated between the
RMOG and LMOG, which showed positive PPI effects
using the deconvolved and non-centered method (Model
1). Correlation differences were also calculated between
the RMOG and the three regions that showed consistent
negative PPI effects when using other models (Model 2

Figure 7.

Effects of deconvolution–reconvolution of the seed signals of the left (A) and right (B) middle occip-

ital gyrus (LMOG and RMOG). The effects represent the reconvolution regressor in model 5 in

Figure 3. Clusters were thresholded at P< 0.001 uncorrected. Z values represent z coordinates in

MNI (Montreal neurological institute) space. [Color figure can be viewed at wileyonlinelibrary.com]
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through 5), that is, the left fusiform gyrus (LFuG) (cen-
tered at: 224, 255, 217), right fusiform gyrus (RFuG)
(centered at: 30, 252, 214), and SMA (centered at: 9, 14,
49). As shown in Figure 9, the correlations (Fisher’s z)
between the LMOG and RMOG were not significantly dif-
ferent between the fixation condition (mean Fisher’s
z 5 1.20) and checkerboard condition (mean Fisher’s
z 5 1.09) (paired t test: t 5 1.360, P 5 0.186). In contrast, the
correlations between the RMOG and FuG/SMA regions
showed higher connectivity in the fixation condition than
the checkerboard condition. Mean Fisher’s z between
RMOG and LFuG was 0.32 in the fixation condition and
0.14 in the checkerboard condition (paired t test: t 5 3.063,
P 5 0.005). Mean Fisher’s z between RMOG and RFuG was
0.38 in the fixation condition and 0.15 in the checkerboard
condition (paired t test: t 5 4.122, P< 0.001). Mean Fisher’s
z between RMOG and SMA was 0.17 in the fixation condi-
tion and 20.17 in the checkerboard condition (paired t
test: t 5 4.930, P< 0.001).

Lateralization Tasks

Task activations of the six task conditions relative to
their corresponding fixation conditions are shown in Sup-
porting Information Figure S1. Typical activations in the
visual cortex and distributed regions in the task positive
networks, and negative activations in regions of the
default mode network could be observed in all the six task
conditions.

Task modulated connectivity across the 160 ROIs by the
six tasks are illustrated in Figure 10. PPI effects without
centering in general showed positive effects along the
diagonal (Fig. 10A). Because the ROIs were sorted by their
network affiliations defined by Dosenbach et al. [2010], the
square like positive PPI effects reflected positive effects
within each network. In contrast, PPI effects with centering
showed generally smaller effects compared with PPI with-
out centering, with many negative effects along the diago-
nal (Fig. 10B). Similar effects could be observed when

Figure 8.

Negative psychophysiological interaction (PPI) effects of the right

middle occipital gyrus (RMOG) in the visual checkerboard task.

The RMOG seed is illustrated in the left most column. Model

numbers correspond to the five PPI models in Figure 3. Please

note that model 1 did not generate statistically significant results,

and model 3 and 4 produced exactly the same results. The results

were first thresholded at P< 0.001, and clusters were identified

using cluster-level false discover rate (FDR) at P< 0.05. Z values

and seed coordinates are in MNI (Montreal neurological institute)

space. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 9.

Correlations (Fisher’s z) between ROIs (regions of interest) in the fixation (Fix) and checker-

board (Ch) conditions. Each line in the plots represents one subject. And the diamond markers

represent means across subjects. LMOG, left middle occipital gyrus; RMOG, right middle occipi-

tal gyrus, LFuG, left fusiform gyrus; RFuG, right fusiform gyrus; Fix, fixation; Ch, checkerboard. *

indicates statistical significant between the two conditions at P< 0.05.

Figure 10.

Matrices of task modulated connectivity across 160 ROIs estimated from PPI method without

centering (A), with centering (B), without centering and with reconvolved covariate (C), and

direct correlation differences (D). All PPI methods are with deconvolution. [Color figure can be

viewed at wileyonlinelibrary.com]
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adding deconvolve–reconvolved covariate (Fig. 10C). Inter-
estingly, correlation differences calculated directly between
task conditions (Fig. 10D) showed similar patterns to the
PPI results with centering and with deconvol-
ve–reconvolved covariate. The similarities among the
matrices could be quantified by calculating correlations
across elements in the lower diagonals of each matrix (Fig.
11). The correlations between PPI effects without centering
and correlation differences were around 0.5 (0.47–0.55). In

contrast, the PPI effects with centering and with deconvol-
ve–reconvolved covariate generally showed larger correla-
tions with correlation changes (all >0.7).

Figure 12 demonstrates significant task modulated con-
nectivity for the six task conditions as revealed by PPI
analysis with mean centering (see thresholded matrices in
the Supporting Information). The majority of task modu-
lated connectivity was negative, and mainly between
regions within the visual network, and between regions
within the sensorimotor network. There was a small num-
ber of increased connectivity, mainly between one region
in the DMN and one region in the sensorimotor network
or fronto-parietal network.

We next show the deconvolution–reconvolution effects
for the three tasks in Figure 13. For reference, we also
show resting-state functional connectivity (correlation coef-
ficients) calculated from a separate resting-state session of
the same group of subjects (Fig. 13D). It could be seen that
the deconvolution–reconvolution effects highly resembled
the resting-state connectivity effects, that is, the higher a
resting-state connectivity between two ROIs the more like-
ly one ROI showed correlations with deconvol-
ve–reconvolved time series of the other ROI. These
positive correlations caused positive correlations between
PPI without centering and resting-state connectivity

Figure 11.

Correlations between task related connectivity changes estimat-

ed from PPI (without centering, with centering, and with recon-

volved covariate) and correlation differences.

Figure 12.

Increased (warm color) and decreased (cold color) functional connectivity for the six task condi-

tions compared with their corresponding fixation conditions estimated from PPI analysis with

centering. Statistical significant was determined using P< 0.05 after controlling multiple compari-

sons using false discovery rate (FDR). Data visualization used BrainNet Viewer [Xia et al., 2013].

[Color figure can be viewed at wileyonlinelibrary.com]
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strengths (Fig. 14). While, the pattern reversed when PPI
were centered or the deconvolution–reconvolution covari-
ate was added, that is, the task related connectivity gener-
ally showed small negative correlations with resting-state
strengths for five of the six task conditions, and task relat-
ed connectivity of the word generation control condition
showed close to zero correlation with resting-state connec-
tivity strengths.

DISCUSSION

We have presented a range of empirical results showing
that not centering the psychological variable when calcu-
lating deconvolved PPI usually produce different results
than using other PPI calculation methods. Adding a
deconvolve–reconvolved physiological covariate could

Figure 13.

Deconvolution–reconvolution effects across the 160 ROIs for the three lateralization tasks (A

through C), and the resting-state functional connectivity matrix from a separate resting-state run

of the same subjects (D). [Color figure can be viewed at wileyonlinelibrary.com]

Figure 14.

Correlations between resting-state connectivity (mean Fisher’s z

scores) and PPI effects without centering, with centering, and

with reconvolved physiological covariate.
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minimize the differences, and make the results more corre-
lated with correlation differences between conditions.

For the checkerboard task, PPI without centering
showed two main regions that had positive PPI effects
with the LMOG and RMOG seeds; that is, the left and
right middle occipital gyrus, which actually overlapped
with the seeds themselves. These two regions were not
only activated during the checkerboard task, but also
showed high baseline correlations in resting-state [Beck-
mann et al., 2005; Biswal et al., 2010; Lowe et al., 1998].
However, adding a deconvolve–reconvolved covariate of
the physiological variable or centering the psychological
variable when calculating PPI removed these PPI effects.
In addition, the correlations between the LMOG and
RMOG were not different between the checkerboard con-
dition and fixation condition. Together, the positive PPI
effects in the bilateral MOG are possibly artifactual
derived from imperfect deconvolution–reconvolution pro-
cesses. For the lateralization tasks, large PPI effects using
deconvolved non-centered method generally occurred
between regions within a network, for example, the DMN,
fronto-parietal network, and the sensorimotor network. It
is known that there are high baseline correlations between
regions within the same network (e.g., Fig. 13CD). These
square like within network effects were largely suppressed
when performed centering, or included deconvol-
ve–reconvolved covariate of the physiological variable.
Taken together, the results also suggest that the significant
PPI effects are artifacts produced by an imperfect deconvo-
lution–reconvolution processes that cannot reproduce the
original physiological regressor. This failure means that
any physiological main effect in the PPI will not be
explained away—and will appear as a significant effect
that could be misinterpreted as an interaction.

For the checkerboard task, the regions that showed
effects of deconvolve–reconvolved effects of the LMOG
and RMOG resemble the regions that have high baseline
correlations with two regions. Similarly for the lateraliza-
tion tasks, the effects of deconvolve–reconvolved physio-
logical covariate were also similar to the baseline
connectivity between regions. Please note that the decon-
volve–reconvolution physiological effects were obtained
after taking into account the raw physiological effects. This
is consistent with our prediction. The higher the baseline
correlations between two regions, the higher the probabili-
ty that the two regions have some nonlinear relationships
that may give rise to high correlations with deconvol-
ve–reconvolved effects. These additional correlations
between a region’s raw time series and another region’s
deconvolve–reconvolved effects may reflect some nonline-
ar effects between the two regions, which could not be
explained by the raw physiological effects.

The PPI analyses with centering, without deconvolution,
and with deconvolve–reconvolved covariate in general
showed similar results, which are different from the
results of PPI analysis with deconvolution but without

centering. This inter-method consistency also suggests the
PPI results using centering, without deconvolution, or
with deconvolve–reconvolved covariate represent mean-
ingful task modulated connectivity. For the checkerboard
task, we identified the bilateral fusiform gyrus (BA 37),
and the SMA (BA 32) were consistently reported to have
reduced connectivity with the right MOG seed in the
checkerboard condition compared with the fixation condi-
tion. Further analysis validated these results, that is, the
correlations between the MOG seeds and the three resul-
tant regions had higher correlations in the fixation condi-
tion than in the checkerboard condition. Such reduced
connectivity could also be directly illustrated by studying
point-by-point dynamic connectivity changes using a slid-
ing window method [Di et al., 2015]. The fusiform gyrus is
part of the ventral visual pathway, and contained several
regions involving processing different categories, for
example, face [Kanwisher et al., 1997], human body
[Peelen and Downing, 2005], and word form [Cohen et al.,
2000]. Because the checkerboard stimulus is fairly simple,
and cannot form a meaningful percept of a specific catego-
ry, it is reasonable that the connectivity between the lower
visual cortex and higher ventral visual areas such as fusi-
form gyrus decreased during the checkerboard stimula-
tion. The SMA is part of the motor system. It may
maintain certain amount of spontaneous connectivity with
visual cortex. But since the checkerboard task did not
require overt motor response, the spontaneous connectivi-
ty may be suppressed during the checkerboard
presentation.

For the lateralization tasks, it was a little surprising to
us that different task conditions in general showed
decreased connectivity compared with corresponding fixa-
tion conditions. The decreased connectivity was generally
observed between regions within the occipital network,
and between regions within the sensorimotor network.
However, similar patterns of more reduced connectivity in
these networks have been observed previously [Cole et al.,
2014], where the authors compared task related connectivi-
ty in task runs after removing task designs variables with
connectivity in a separate resting-state run. The current
study demonstrated that, by using PPI, task related con-
nectivity can be reliably studied by comparing different
blocks within an fMRI run. Cole et al. [2014] also found
many increased connectivity in tasks compared with
resting-state, mainly between regions from different net-
works. We could observe some similar positive effects in
the PPI analysis with centering. However, the positive PPI
effects could not reach significance, probably due the small
sample size of the current study (n 5 24) compared with
Cole et al. (n 5 118). All the experiment conditions of the
lateralization tasks had visual stimulus presented, and the
landmark task and mental rotation task also required overt
manual response. Even so, the connectivity within the
visual network and sensorimotor network still decreased.
It is in line with a recent study showing that during
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visuospatial attention connectivity within the visual net-
work decreased and connectivity between the visual
region and regions in the attention networks increased
[Spadone et al., 2015]. It may reflect a rebalance of within
network and between network connectivity to ensure an
efficient communications at the whole brain level.

Deconvolution was first introduced by Gitelman et al.
[2003] to deal with hemodynamic delays in PPI analysis. It
is a necessary step especially when a task block is short
and in an extreme case, an impulse (i.e., event-related
design). The current results do not mean one should avoid
decovolution when calculating PPI. However, caution is
needed, because deconvolution is not a perfect process
(because deconvolution in this context is an ill posed prob-
lem). On the other hand, the benefit of deconvolution on
slow task designs (long block blocked design) has not yet
been systematically examined. The current study showed
that the PPI effects with centering and deconvolution on
the checkerboard data are similar to those using non-
deconvolution PPI. Similarly, our previous study of
physio-physiological interactions also showed that with
and without deconvolution generated similar results [Di
and Biswal, 2013]. Studies are still needed to demonstrate
the benefit of deconvolution for PPI analysis.

The current analysis suggests that simply centering the
psychological variable before calculating PPI precludes spu-
rious artifacts. Therefore, centering should always be per-
formed. For an experiment with multiple conditions, it
might be less problematic when directly comparing PPI
effects between different experiment conditions, because the
deconvolve–reconvolve artifact may be similar in the two
conditions, thus being canceled out. However, it may be not
the case if the physiological component has different
weights for two task conditions, for example, the two task
conditions have different numbers of blocks or trials. And
practically, many studies reported PPI effects of an experi-
mental condition compared with a baseline condition but
not the well-designed control condition. Performing center-
ing would also prevent artifact when reporting PPI effects in
this situation. An alternative way to prevent convolution
artifact is to include a deconvolve–reconvolved version of
the physiological variable as a covariate. It may be useful
when the psychological variable was defined by complex
contrast or higher-order interactions (e.g., psycho-physio-
physiological interaction, PPPI [Stamatakis et al., 2005]),
where constant components may be not easy to remove.

A common argument against centering the psychological
variable is interpretability. A coding of 1 for one condition,
and 0 for other conditions seems to reflect connectivity
only in the “1” condition but “zeroing out” other condi-
tions. However mathematically, in either the non-
deconvolved case or the neurological timing case, the
effect of removing the mean of psychological variable
should only be a change in the resulting b weight of phys-
iological variable and the overall mean b weight, as is
shown in Eq. (A5). The reason for an effect on the PPI b is

that xphysio from Eq. (A5) does not survive the deconvolu-
tion and reconvolution process. In addition, PPI is not
designed to examine the connectivity in one condition, but
the differences of connectivity between conditions. The
PPI terms before and after centering are mathematically
the same. Practically, because well-structured functional
connectivity is present without any explicit tasks, that is,
in resting-state [Biswal et al., 1995, 2010; Cordes et al.,
2000], the goal of studying task-related connectivity is nev-
er to study connectivity only in one task condition but the
relative connectivity changes in one task compared with
others. In short, centering the psychological variable does
not affect the interpretability of PPI effects, and indeed
makes the interpretation of the effects more
straightforward.

We note that mean centering of the psychological vari-
able was performed in earlier PPI articles [Friston et al.,
1997; Gitelman et al., 2003]. It was the default setting in
SPM2, and was removed in revision r3271 in SPM5. It
becomes the default setting again in revision r6556 in
SPM12. We recommend performing PPI analysis using the
latest version of SPM, and the version information of SPM
needs to be reported when reporting PPI results. AFNI
(Analysis of Functional NeuroImages) [Cox, 1996] adopts a
similar approach as SPM (https://afni.nimh.nih.gov/pub/
dist/edu/data/CD.expanded/AFNI_data6/FT_analysis/
PPI/README.txt). It does have an option to center the
psychological variable. However, because the deconvolu-
tion process in AFNI is almost invertible with reconvolu-
tion, the reconvolved physiological variable is almost
identical to the original one. So the effect of removing the
mean in AFNI is very small. In addition, AFNI suggests
removing psychological effects from the physiological vari-
able before calculating PPI, which is an effective step to
minimize collinearity between the PPI term and main
effects. Lastly, FSL does not perform deconvolution when
calculating the PPI term. Therefore, whether centering or
not would not affect PPI results.

CONCLUSION

The present study demonstrated that not centering the
psychological variable when calculating deconvolved PPI
may result in spurious PPI effects. Simply centering the
psychological variable could effectively suppress the arti-
facts. We also introduced to add a deconvol-
ve–reconvolved physiological variable to suppress the
artifacts, which may be useful in complex circumstances.
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APPENDIX: CENTERING THE PSYCHOLOGI-

CAL VARIABLE DOES NOT CHANGE THE

INTERACTION EFFECT (WITHOUT

DECONVOLUTION)

Given a seed region xPhysio, a tested region y, and a cen-
tered psychological variable xPsych, the following PPI mod-
el can be used to estimate a set of effects [b1

0, b1
1, b1

2, b1
3]:

y5b1
01b1

1 � xPsych1b1
2 � xPhysio1b1

3 � xPsych � xPhysio1E (A1)

Superscript 1 denotes the first set of effect estimates.
We now have a non-centered psychological effect x�Psych,

which can be expressed as the centered psychological vari-
able plus a constant value c.

x�Psych5xPsych1c (A2)

We can estimate a new PPI model with the non-centered
psychological variable x�Psych:

y5b2
01b2

1 � x�Psych1b2
2 � xPhysio1b2

3 � x�Psych � xPhysio1E (A3)

This model gives a new set of effects [b2
0, b2

1, b2
2, b2

3].
Put Eq. (A2) into Eq. (A3):

y5b2
01b2

1 � ðxPsych1cÞ1b2
2 � xPhysio1b2

3 � ðxPsych1cÞ � xPhysio1E
(A4)

And match terms in Eq. (A4) with Eq. (A1):

y5 b2
01b2

1 � c
� �

1b2
1 � xPsych1 b2

21b2
3 � c

� �
� xPhysio1b2

3 � xPsych

� xPhysio1E
(A5)

Comparing Eq. (A5) with Eq. (A1), it can be seen that:

b1
05b2

01b2
1 � c

b1
15b2

1

b1
25b2

21b2
3 � c

b1
35b2

3

The effects of PPI with centering (b1
3) and without center-

ing (b2
3) remain the same. However, the parameter esti-

mates of the physiological variable and constant term
changed.
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