Skip to main content
. 2017 Aug 28;38(11):5804–5821. doi: 10.1002/hbm.23769

Table 4.

Performance comparison of the proposed and competing methods on the NYU dataset

Method ACC (%) SEN (%) SPEC (%) PPV (%) NPV (%)
Single cluster (sc) SVM 67.34** (ES: 0.58) 53.33 77.32 70.71 68.38
RSVM 63.54* (ES: 0.53) 55.67 69.11 62.33 66.51
GSVM 64.24 (ES: 0.38) 55.67 70.71 56.90 68.54
DRBM 68.23* (ES: 0.47) 59.00 74.82 69.71 70.03
Multiple cluster (mc) SVM 71.97 (ES: 0.34) 61.00 80.00 74.93 72.02
RSVM 70.42 (ES: 0.33) 57.33 80.00 74.05 70.71
GSVM 68.10 (ES: 0.31) 32.67 95.71 80.83 64.94
DRBM 75.24 61.33 85.71 82.10 73.73

SVM: support vector machine; RSVM: recursive feature elimination‐based SVM; GSVM: graph theory‐based SVM; DRBM: discriminative restricted Boltzmann machine; ACC: accuracy; SEN: sensitivity; SPEC: specificity; PPV: positive predictive value; NPV: negative predictive value. Asterisks represent the results of the Wilcoxon signed‐rank test (*P < 0.05, **P < 0.01) and with the proposed mcDRBM ES denotes the effect size.