Skip to main content
. 2017 Aug 28;38(11):5804–5821. doi: 10.1002/hbm.23769

Table 5.

Performance comparison of the proposed and competing methods on the (UM + NYU) combined dataset

Method ACC (%) SEN (%) SPEC (%) PPV (%) NPV (%)
Single cluster (sc) SVM 65.15 56.67 72.22 62.96 66.67
RSVM 57.58 53.33 61.11 53.33 61.11
GSVM 62.88 50.00 73.61 61.22 63.86
DRBM 64.39 58.33 69.44 61.40 66.67
Multiple cluster (mc) SVM 65.15 50.00 77.78 65.22 65.12
RSVM 64.39 53.33 73.61 62.75 65.43
GSVM 65.91 56.67 73.61 64.15 67.09
DRBM 67.42 58.33 75.00 66.04 68.35

SVM: support vector machine; RSVM: recursive feature elimination‐based SVM; GSVM: graph theory‐based SVM; DRBM: discriminative restricted Boltzmann machine; ACC: accuracy; SEN: sensitivity; SPEC: specificity; PPV: positive predictive value; NPV: negative predictive value.