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Abstract: Diffusion tensor imaging (DTI) has often been used to examine white matter (WM) tract
abnormalities in depressed subjects, but these studies have yielded inconsistent results, probably, due
to gender composition or small sample size. In this study, we applied different analysis pipelines to a
relatively large sample of individuals with depression to determine whether previous findings in
depression can be replicated with these pipelines. We used a “standard” DTI algorithm and maps
computed through a free-water (FW) corrected DTI. This latter algorithm is able to identify and sepa-
rate the effects of extracellular FW on DTI metrics. Additionally, skeletonized and WM voxel-based
analysis (VBA) methods were used. Using the skeletonized method, DTI maps showed lower fractional
anisotropy (FA) in depressed subjects in the left brain hemisphere, including the anterior thalamic
radiation (ATR L), cortical spinal tract (CST L), inferior fronto-occipital fasciculus, inferior longitudinal
fasciculus, and superior longitudinal fasciculus (SLF L). Differences in radial diffusivity (RD) were also
found. For the VBA using RD, we found different results when we used FW uncorrected and corrected
DTI metrics. Relative to the VBA approach, the skeletonized analysis was able to identify more clusters
where WM integrity was altered in depressed individuals. Different significant correlations were found
between RD and the Patient Health Questionnaire in the CST L, and SLF L. In conclusion, the skeleton-
ized method revealed more clusters than the VBA and individuals with depression showed multiple
WM abnormalities, some of which were correlated with disease severity Hum Brain Mapp 38:4690–
4702, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Major depressive disorder (MDD) is projected to account
for an accumulated $16 trillion in lost productivity over
the next 20 years and is among the most common and
devastating mental health conditions worldwide [White-
ford et al., 2013]. This disorder is characterized by pro-
found dysregulation of mood and additional symptoms
including fatigue, insomnia, cognitive dysfunction, and
appetite disturbance [APAD-SMMD, 2000].
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Diffusion tensor imaging (DTI) is probably the most
popular noninvasive magnetic resonance imaging (MRI)
techniques for assessing the integrity and orientation of
white matter (WM) tracts. In recent years, DTI has been
widely used to investigate differences in WM tracts
between depressed and healthy control (HC) subjects. The
most commonly used index in DTI is fractional anisotropy
(FA). It has a scalar value between zero and one that
describes the degree of anisotropy of a diffusion process.
A value of zero means that diffusion is isotropic while a
value of one means that diffusion occurs only along one
axis and is fully restricted along all other directions. This
index has often been used as a quantitative biomarker of
WM integrity; however, equating FA to WM integrity is
not strictly correct, because FA cannot disentangle the
individual microscopic contributions of different non-WM
components [Jones and Cercignani, 2010; Vos et al., 2012].
Moreover, other DTI indices have been used in depression
studies, such as axial (a.k.a. longitudinal or parallel) diffu-
sivity, called kk or AD which is related to axonal damage,
and radial (a.k.a. transverse or perpendicular) diffusivity,
called k? or RD which correlates with myelin integrity,
axonal diameter and density, and fiber coherence [Concha,
2014; Song et al., 2002]. Finally, mean diffusivity (MD) is
an index often used in DTI studies, which comprises the
average of the diffusion eigenvectors and quantifies the
overall size of the tensor representing a rotationally invari-
ant apparent diffusion coefficient (ADC) measure. It is
important to emphasize that all DTI indices largely
depend on the angle between two or more crossing fiber
populations; therefore, DTI techniques cannot resolve dif-
ferent single-fiber orientations within each voxel. This is a
big issue, which is associated not only with the WM trac-
tography but also with the DTI-derived metrics.

The two common analysis methods in MDD studies
include voxel-based analysis (VBA) [Ashburner and Fris-
ton, 2000; Srivastava et al., 2016] and tract-based spatial
statistics (TBSS) [Guo et al., 2012a; Guo et al., 2012b; Han
et al., 2014; Olvet et al., 2016; Zuo et al., 2012].

VBA is a fully automated approach that allows investiga-
tion of WM integrity in each voxel inside the whole brain. It
involves the spatial normalization of high- and low-
resolution images from the subjects’ native space to stereo-
tactic space. The main issue with this method is related to
the normalization and smoothing pipeline, requiring very
reliable normalization between DTI data and the standard
image. Moreover, pathologies and lesions can affect the
results.

On the other hand, TBSS, introduced by Smith et al.
[2006], is able to alleviate the alignment and smoothing
problems related to VBA. It is a popular pipeline used to
co-register sets of DTI maps for performing voxel-wise
comparisons using a skeleton projection analysis. There-
fore, it does not facilitate the study of whole WM tracts of
the entire brain. In recent years, investigations [Zalesky,
2011] have questioned the reliability and interpretability of

TBSS and various improvements over the original TBSS
pipeline have been suggested [Schwarz et al., 2014].

The DTI methods described above have yielded conflict-
ing results for individuals with depression. For instance,
lower FA values in depressed individuals compared with
HC have been reported in different WM locations [Guo
et al., 2012a,b; Versace et al., 2010; Wu et al., 2011; Zou
et al., 2008]. In comparison, other studies failed to find sig-
nificant differences in DTI metrics between depression and
control groups [Choi et al., 2014; Olvet et al., 2016].

To date, the source of inconsistent findings in DTI investi-
gations of individuals with depression has been unclear. It
could stem from variability in extra-experimental factors
such as gender composition or be related to small sample
size. Another important issue is that only few studies have
used more than one analysis method to examine DTI indices
[Choi et al., 2014; Olvet et al., 2016]. Furthermore, DTI met-
rics can be influenced by variability introduced by different
brain tissue compartments, including cerebrospinal fluid
and extracellular water [Pierpaoli et al., 1996]. For this rea-
son, Pasternak et al. developed an algorithm for identifying
and separating the effects of extracellular free water on DTI
metrics to improve tissue specificity [Metzler-Baddeley
et al., 2012] and DTI-based tract reconstruction [Pasternak
et al., 2009]. This approach is able to remove the effects of
extracellular free water on DTI metrics.

The main aim of this investigation was to apply different
analysis pipelines to a relatively large sample of individuals
with depression to determine whether previous findings in
depression can be replicated with these pipelines. We inves-
tigated WM microstructural integrity in a cohort of individ-
uals with depression compared to age-matched HC subjects
using FA, MD, AD, and RD indices to understand whether
differences in DTI metrics can be found between HC and
depressed groups. We examined these differences using
two different methods: (1) a voxel-wise statistical analysis,
using DTI skeletonized maps, (skeletonized method) and (2)
a WM-VBA approach. For both analysis methods we used
Advanced Normalization Tools (ANTs) with a symmetric
image normalization (SyN) algorithm [Avants et al., 2008],
instead of the standard TBSS pipeline for the skeletonized
method, to coregister all DTI-derived metrics to a common
standard space. We decided to use two different analysis
approaches to determine which method was more sensitive
for detecting WM microstructural changes in depressed
individuals and the location of these changes. The skeleton-
ized approach is able to alleviate the alignment and smooth-
ing problems related to VBA; therefore, our hypothesis was
that it could be more sensitive in detecting alterations in
WM tracts than the VBA method. In addition, a comparison
between DTI-derived “standard” indices (now called FA,
RD, etc.) and maps computed by a FW-corrected DTI matrix
(now called FA-FW, RD-FW, etc.) was performed to verify
results previously reported in another study [Bergamino
et al., 2016].

Finally, we calculated voxel-based correlations between
DTI indices and the Patient Health Questionnaire (PHQ-9),
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a self-reported depression scale, to better understand if the
WM changes in depressed individuals may be related to
illness severity, with the expectation that increased abnor-
mality would be associated with increased disease
severity.

METHODS

Subjects

This study was approved by the Western Institutional
Review Board (www.wirb.com), and all participants
signed informed consent prior to study participation. The
current study included 131 depressed (90 females; mean
age: 35.7 6 11.2 years) and 40 HC (22 females; 33.4 6 11.9
years) participants. All participants were recruited from
the Tulsa, Oklahoma (USA) area. Subject characteristics
are summarized in Table I. The inclusion criteria for
depressed subjects were as follows: (1) age between 18
and 55 years; (2) PHQ-9 score� 5; (3) body mass index
between 17 to 38 kg/m2; and (4) sufficient proficiency in
written and spoken English to understand and complete
interviews, questionnaires, and all other study procedures.
The exclusion criteria were as follows: (1) a reported his-
tory of brain injury or other neurocognitive disorder; (2) a
positive test for drugs of abuse, including alcohol; (3)
active suicidal ideation with intent or a plan; (4) any
change in the dose or prescription of a medication that
could affect brain functioning within 6 weeks before
enrolling in the study; (5) moderate to severe traumatic
brain injury or other neurocognitive disorder with evi-
dence of neurological deficits, neurological disorders, or
severe or unstable medical conditions; and (6) any of the
following DSM-IV disorders: schizophrenia spectrum and
other psychotic disorders, bipolar and related disorders,
and obsessive-compulsive and related disorders.

All participants completed the PHQ-9, a self-
administered diagnostic instrument for depression. The
PHQ-9 scores each of the 9 DSM-IV criteria for depression
as “0” (not at all) to “3” (nearly every day). Scores of 5–9
are considered mild depression, 10–14 moderate

depression, 15–19 moderately severe depression, and
20–27 severe depression [Kroenke et al., 2001].

MRI Protocol

MRI data were acquired using a 3 T scanner (GE Dis-
covery MR750) with a brain-dedicated receive-only 32-
element coil array optimized for parallel imaging (Nova
Medical, Inc.). DTI was performed using 60 diffusion-
encoding directions (b value 5 1000 s/mm2, TR/
TE 5 9000/83.6 ms, with acquisition and reconstruction
matrix 5 128 3 128, field of view (FOV) 5 25.6 3 25.6 cm,
slice thickness 5 2 mm, without interslice spacing, 73 axial
slices, acceleration factor R 5 2 in the phase encoding
direction) and 8 non-diffusion-weighted images (b0
images). Total acquisition time for the DTI sequence was
10 min and 50 s.

Data Preprocessing

DTI DICOM images were converted to NIFTI format
and preprocessed using the functional magnetic resonance
imaging of the brain (FMRIB) Software Library tool (FSL,
version 5.0.4) [Smith et al., 2004]. Following translation
and rotation estimation, the raw DTI images were cor-
rected for eddy currents and motion; the relative-motion
parameters were estimated from the transformation matri-
ces for each subject [Ling et al., 2012]. Data with transla-
tional or rotational motion estimates greater than three
standard deviations (SDs) from the mean were excluded.
To account for the rotational component of registration,
after motion correction the gradient orientations were com-
pensated prior to calculating b matrices. FSL FUGUE was
used to reduce the distortions caused by B0 inhomogene-
ity during the DWI acquisition and a brain mask was
defined for each subject by applying the Brain Extraction
Toolbox (BET) [Smith, 2002] to the average of the b0
images. DTI “standard” maps were created by using dtifit

tool included in FMRIB’s Diffusion Toolbox.

TABLE I. Number of females and males, means with (standard deviations) for age, body mass index (BMI), educa-

tion, number of depression episodes (# Episodes), and PHQ-9 scores for HC and depressed subjects

Group Female Male Age (years) BMI Education # Episodes PHQ-9

HC 22 18 33.4 (11.9) 28.1 (5.9) 6.6 (1.7) 0 0.75 (1.13)
MDD 90 41 35.7 (11.2) 28.8 (5.3) 6.5 (1.7) 6.3 (9.4) 13.33 (4.60)

Levels of depression severity

# (F) PHQ-9 scale

Mild dep. 24 (17) 5–9
Moderate dep. 62 (45) 10–14
Moderately severe dep. 29 (18) 15–19
Severe dep. 16 (10) 20–27

For education: 1 5 lowest education and 11 5 highest education. Number of depressed subjects with different levels of depression sever-
ity. In parenthesis, the number of female participants.
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DTI free-water-corrected maps were calculated using an
in-house MATLAB script in the subjects’ native space. The
free-water maps were computed by fitting each voxel to
the following model [Pasternak et al., 2009]:

Aq D; fð Þ5f exp 2bqTDq
� �

1 12fð Þ exp 2bdwater½ � (1)

in which Aq is the modeled attenuated signal (normalized
by b0) for the applied diffusion gradient q and b is the b
value (1000 s/mm2). The first term in Aq reflects the tissue
compartment, D is the diffusion tensor of this compart-
ment, and f is the fractional volume of the compartment.
The second term reflects an isotropic free-water compart-
ment with a fractional volume of (1 2 f); dwater is the diffu-
sion coefficient, set to the diffusivity of water at body
temperature (3 3 1023 mm2/s).

For both analysis methods, all DTI-derived metrics were
co-registered to the Illinois Institute of Technology (IIT)
Human Brain Atlas (v.4.1), which contains both anatomical
and DTI brain templates in International Consortium for
Brain Mapping (ICBM)-152 space (Varentsova et al., 2014).
For this purpose, we averaged the b0 images of each sub-
ject and then we created a b0 group template image using
buildtemplateparallel.sh included in ANTs. The b0 group
template image was subsequently normalized to the IIT-
mean_b0 image by ANTs SyN coregistration algorithm.
The warp fields obtained from this normalization and

from the b0 group template creation were used to transfer
all DTI maps to the IIT Human Brain standard space.

For the skeletonized analysis method, the mean of FA
maps were created and thinned to produce a mean FA skele-
ton using a threshold value of 0.20 to exclusively select WM.
Each subject’s aligned FA data were projected onto this skele-
ton by assigning the maximum FA value found in a direction
perpendicular to each tract to the skeleton voxel. DTI cor-
rected and uncorrected maps were projected onto the group
template skeleton for further analysis. For the VBA method,
we analyzed all voxels inside of the WM using an FA thresh-
old value of 0.20. Figure 1 shows the workflow of the images
normalization and the different analysis pipelines.

Statistical Analysis

We used FSL’s randomise [Winkler et al., 2014] for per-
voxel statistical comparisons with threshold-free cluster
enhancement (TFCE) [Smith and Nichols, 2009] and with
correction for multiple comparisons via Family-Wise Error
(FWE) Rate [Keihaninejad et al., 2012]. The statistical anal-
ysis was the same for both methods, except that for the
skeletonized analysis we used the option “–T2” to generate
the 2D WM skeleton and the mean of the WM FA skeleton
binarized image as the mask. For VBA, we used option
“2T” for normalized 3D data and the white matter image

Figure 1.

This diagram shows the workflow of the images normalization and the different analysis pipelines

used in this study. [Color figure can be viewed at wileyonlinelibrary.com]
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as the mask. The number of randomized permutations was
set at 10,000 for both methods. We used age, gender, BMI,
education, and number of depressive episodes as covariates.
The WM tract each cluster belonged to was identified
through labeling of the Johns Hopkins University White
Matter Tractography Atlas. We report all results with a sig-
nificance threshold of P value< 0.01, corrected for FWE.

Differences in age, BMI, education, and PHQ-9 scores
between the two groups were evaluated using two-sample
t tests. Correlations between DTI indices and PHQ-9 scores
were assessed by the Pearson correlation coefficient; the P
values were corrected for multiple comparisons through
the Bonferroni procedure.

RESULTS

Data from five depressed participants and one HC were
excluded from the analyses due to excessive motion.

Therefore, data from 128 MDD and 39 HC subjects were
analyzed. MDD and HC groups did not differ significantly
in age (P 5 0.26), BMI (P 5 0.50), or education (P 5 0.75),
but they did differ with respect to PHQ-9 score (P< 0.001).

The skeletonized approach identified several clusters
with lower values of FA-FW and FA in subjects with
depression. Greater volumes of these clusters were found
when we used the FW uncorrected FA index. In addition,
differences between these two groups were found in dif-
ferent WM tracts when VBA analysis and FA index were
used. In comparison, only one cluster, in the left anterior
thalamic radiation (ATR L), was found when FA-FW was
used (Fig. 2).

Skeletonized analysis on RD and RD-FW metrics found
clusters with higher RD values in depressed subjects in
similar WM tracts already found by the FA index. The
VBA approach found differences between groups in only 2
clusters, in cortical spinal tract (CST L) and in SLF L,

Figure 2.

Clusters where lower values of free-water corrected and uncor-

rected FA were found in depressed individuals. (a) Comparison

of FA and FA-FW through the skeletonized analysis method. (b)

Comparison of FA and FA-FW through the VBA analysis

method. We report clusters at a significance threshold of

P value< 0.01 corrected for FWE. Regions showing reduced FA

values are thickened using the TBSS fill script for emphasis. The

results are overlaid onto the IITmean_t1 template. [Color figure

can be viewed at wileyonlinelibrary.com]
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when the FW uncorrected RD index was used. No differ-
ences were found by the RD-FW metric (Fig. 3).

For both analysis pipelines, Table II shows the complete
WM tracts and the mean of the DTI metric values (with
SD) found inside the clusters shown in Figures 2 and 3.
Figure 4 shows the differences in volume of the clusters
found by both analysis approaches and by FW-corrected
and uncorrected metrics.

No differences were detected in AD and MD between
these two groups and there were no clusters indicating
lower FA and higher RD in HC than the depression
group.

No significant correlations were found between FA/FA-
FW metrics and PHQ-9 scores. However, using the skele-
tonized approach we found significant correlations
between RD and PHQ-9 in the left cortical spinal tract
(CST L; P< 0.01) and in the SLF L (P< 0.05), whereas the

VBA analysis yielded correlations between PHQ-9 and
CST L (P< 0.05). Finally, using the RD-FW we found one
correlation only inside the CST L (P< 0.05) when the skel-
etonized approach was used (Fig. 5 and Table III).

DISCUSSION

This study was aimed to compare different analysis
pipelines (skeletonized method and a white matter VBA
approach) and measures (FW corrected and uncorrected
DTI metrics) in a large group of individuals with depres-
sion to compare which measurement approach would
yield the most robust findings.

Lower values of FA in depressed subjects were found in
ATR L, CST L, left inferior fronto-occipital fasciculus
(IFOF L), left inferior longitudinal fasciculus (ILF L),

Figure 3.

Clusters with higher values of free-water corrected and uncor-

rected RD in depressed subjects. (a) Comparison of RD and

RD-FW through the skeletonized analysis method. (b) WM

regions found by VBA analysis for only the FW-uncorrected RD.

We report clusters at a significance threshold of P value< 0.01

corrected for FWE. Regions showing increased RD values are

thickened using the TBSS fill script for emphasis. The results are

overlaid onto the IITmean_t1 template. [Color figure can be

viewed at wileyonlinelibrary.com]
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TABLE II. White matter tracts where differences between depressed and HC groups were found using the skele-

tonized and VBA analyses

Skeleton—FA Skeleton—FA-FW VBA—FA VBA—FA-FW

WM Tract HC MDD HC MDD HC MDD HC MDD

ATR L 0.438 (0.026) 0.413 (0.024) 0.560 (0.044) 0.519 (0.033) 0.514 (0.038) 0.469 (0.047) 0.519 (0.057) 0.467 (0.048)
CST L 0.608 (0.033) 0.583 (0.030) 0.740 (0.043) 0.713 (0.043) - - - -
IFOF L 0.567 (0.034) 0.537 (0.025) 0.714 (0.030) 0.683 (0.034) 0.572 (0.044) 0.522 (0.034) - -
ILF L 0.605 (0.036) 0.572 (0.031) 0.738 (0.032) 0.711 (0.037) 0.573 (0.058) 0.517 (0.052) - -
SLF L 0.506 (0.036) 0.482 (0.030) 0.632 (0.047) 0.601 (0.046) 0.496 (0.055) 0.450 (0.046) - -
UF L 0.475 (0.038) 0.451 (0.032) - - - - - -

Skeleton—RD Skeleton—RD-FW VBA—RD VBA—RD-FW

WM Tract HC MDD HC MDD HC MDD HC MDD

ATR L 4.90 (0.34) 5.17 (0.37) 4.01 (0.26) 4.19 (0.27) - - - -
CST L 4.59 (0.24) 4.76 (0.23) 3.19 (0.33) 3.33 (0.30) 4.85 (0.24) 5.11 (0.29) - -
IFOF L 4.48 (0.47) 4.84 (0.33) - - - - - -
ILF L 4.68 (0.44) 5.00 (0.35) - - - - - -
SLF L 4.88 (0.27) 5.07 (0.23) 3.75 (0.26) 3.91 (0.26) 4.86 (0.30) 5.13 (0.32) - -

ATR L 5 left anterior thalamic radiation; CST L 5 left cortical spinal tract; IFOF L 5 left inferior fronto-occipital fasciculus; ILF L 5 left
inferior longitudinal fasciculus; SLF L 5 left superior longitudinal fasciculus; UF L 5 left uncinate fasciculus.
This table shows the mean of the DTI metrics with (standard deviation) in the clusters in Figures 2 and 3. RD values are in 1024 mm2/s.

Figure 4.

Comparison of cluster volumes with differences in DTI metrics

between groups: (a) skeletonized method for FA and FA-FW;

(b) VBA method for FA and FA-FW; (c) skeletonized method

for RD and RD-FW; (d) VBA method for RD and RD-FW. ATR

L 5 left anterior thalamic radiation; CST L 5 left cortical spinal

tract; IFOF L 5 left inferior fronto-occipital fasciculus; ILF

L 5 left inferior longitudinal fasciculus; SLF L 5 left superior lon-

gitudinal fasciculus; UF L 5 left uncinate fasciculus.
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superior longitudinal fasciculus (SLF L), and left uncinate
fasciculus (UF L) by skeletonized analysis. Similar regions
were also found when FA-FW maps were analyzed. In the
last case, only the UF L did not reveal differences between
groups. In addition, with the FA maps we obtained higher
cluster volumes than with the FA-FW maps. By using the
VBA analysis, we found differences between groups in the
FA index in ATR L, IFOF L, ILF L, and SLF L. Only one

cluster inside the ATR L was found to have lower FA val-
ues in depressed participants when the FA-FW index was
used.

Differences between groups were also detected for RD.
Skeletonized analysis showed higher RD values in
depressed subjects in ATR L, CST L, IFOF L, ILF L, and
SLF L. Fewer clusters were found when RD-FW maps
were used. Additionally, with RD maps we found higher

Figure 5.

Pearson’s correlation coefficient (R) between RD index and PHQ-9 in the left cortical spinal

tract and in the left superior longitudinal fasciculus. **P< 0.01 (Bonferroni corrected); *P< 0.05

(Bonferroni corrected). [Color figure can be viewed at wileyonlinelibrary.com]
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cluster volumes than with RD-FW maps. By VBA analysis,
we found differences in the RD index between groups in
only one cluster inside the CST L. On the other hand, no
cluster was found when RD-FW maps were used.

These findings support the notion that relative to the
VBA approach, the skeletonized analysis is more sensitive
in detecting altered depression-related integrity in WM
areas. For the FA index, we did not find large differences
when the FW uncorrected and corrected maps were used
(we did not find any difference between group only in UF
L when free-water corrected maps were analyzed). How-
ever, relevant differences were found when the compari-
son between free-water corrected and uncorrected maps
was evaluated for FA index in the VBA approach and for
the RD metric (Table II). It is recognized that the skeleton-
ized method is less sensitive to the partial volume effects
than VBA [Van Hecke et al., 2016]; therefore, the differ-
ences between corrected and uncorrected DTI metrics
found for VBA analysis might be associated to its sensitiv-
ity to partial volume effects.

Significant Pearson’s correlations between the RD index
and PHQ-9 scores were found in CST L in in the SLF L
when the skeletonized analysis was employed, which
might suggest that more severe depression is a predictor
of WM abnormalities in these tracts. Similar correlations
were also found inside the CST L for RD through the VBA
analysis and for RD-FW through the skeletonized
approach.

To date, many DTI studies in depressed subjects can be
found in the extant literature, but conflicting results are
often reported. The small sample size of depressed partici-
pants and gender composition may lead to spurious

results. Additionally, the findings can also be related to
the DTI method and acquisition used for the analysis.
Some studies on depression have been performed using
<30 directions of DTI acquisition [Guo et al., 2012a,b; Han
et al., 2014; Li et al., 2007; Zhu et al., 2011]. To achieve
robust anisotropy estimation, at least 20 unique sampling
orientations and at least 30 tensor orientations are
required. Otherwise, schemes with a lower number of
sampling orientations may introduce bias and spurious
correlations between tensor orientation and apparent diffu-
sion characteristics [Jones, 2004].

Additionally, it is important to consider that the stan-
dard DTI metrics can be influenced by contributions of dif-
ferent brain tissue compartments. To overcome this
problem, Bergamino et al. [2016] compared standard DTI
metrics and FW-corrected DTI indices in a group of 17
MDD females finding that applying a free-water correction
to DTI data may increase the sensitivity of DTI-based met-
rics to detect clinical effects in MDD.

For the skeletonized analysis method, we did not use
the standard TBSS pipeline. In the past years, several stud-
ies have evaluated and updated the TBSS processing pipe-
line with contemporary advancements in registration
techniques. The TBSS registration process can be improved
by using, for instance, a single registration step, where
DTI metrics are constrained to the skeleton, instead of a
standard TBSS’s two-step registration–projection pipeline
[de Groot et al., 2013], or by using group-wise registration
for co-registering FA images to a custom-generated tem-
plate, rather than co-registering all images to a standard
template [Keihaninejad et al., 2012]. Therefore, in our
study we decided to use the ANTs SyN algorithm and a

TABLE III. Pearson’s correlation coefficients between PHQ-9 scores and DTI metrics in white matter tracts where

differences were found between groups

WM Tract skeleton – FA skeleton – FA-FW VBA – FA VBA – FA-FW

ATR L R 5 20.133 R 5 20.013 R 5 20.111 R 5 0.025
CST L R 5 20.150 R 5 20.035 R 5 20.138 R 5 20.037
IFOF L R 5 20.054 R 5 0.022 R 5 20.075 R 5 20.005
ILF L R 5 20.065 R 5 20.008 R 5 20.100 R 5 20.051
SLF L R 5 20.133 R 5 20.089 R 5 20.136 R 5 20.080
UF L R 5 0.004 R 5 0.059 R 5 20.019 R 5 20.052

WM Tract skeleton – RD skeleton – RD-FW VBA – RD VBA – RD-FW

ATR L R 5 0.154 R 5 0.073 R 5 0.171 R 5 20.023
CST L R 5 0.284** R 5 0.252* R 50.266* R 5 0.008
IFOF L R 5 0.092 R 5 20.051 R 5 0.096 R 5 20.006
ILF L R 5 0.077 R 5 20.035 R 5 0.105 R 5 0.005
SLF L R 5 0.271* R 5 0.032 R 5 0.172 R 5 0.053
UF L R 5 0.046 R 5 0.088 R 5 0.072 R 5 20.037

*p< .05 (Bonferroni corrected).
**p< .01 (Bonferroni corrected).
Correlations were computed only within the MDD group. Bonferroni correction was used to correct the P values for multiple compari-
sons. Significant correlations were found for RD index inside the CST L and SLF L for the skeletonized analysis and inside the CST L
for the VBA analysis. For RD-FW only inside the CST L when the skeletonized approach was used. The names of the tracts are the
same of Table II.
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group-wise b0 template, by using the subjects’ b0 images,
to improve the DTI maps co-registration to a standard
space.

Klein et al. [2009] evaluated ANTs coregistration soft-
ware, finding that this algorithm provides superior regis-
tration performance in T1-weighted MR registration tasks
and metrics when compared to FNIRT and 13 other core-
gistration tools. In addition, Tustison et al. [2014] found
that ANTs algorithm is superior to FNIRT specifically for
FA coregistration.

Clusters in which WM integrity was altered in the
depressed subjects were located in the ATR L, CST L,
IFOF L, ILF L, SLF L, and in UF L. This indicates that our
results are in line with other previous DTI studies in
depression. Huang et al. examined the WM integrity in 15
depressed and 15 non-depressed patients with Parkinson’s
disease. Interesting, they found decreased FA in the left
UF, SLF, ATR, and in the ILF. Moreover, they also found
other WM differences between these two groups in the
forceps minor [Huang et al., 2014]. Liu et al. found similar
WM locations. They evaluated the relationship between
WM integrity during a first depressive episode in drug-
naive patients with MDD using TBSS method. Also in this
case, the MDD group was found to have significantly
reduced FA values in the IFOF, UF and ATR [Liu et al.,
2016]. Zou et al., by using a voxel-based analysis, investi-
gated the difference in FA in a group of 45 patients with
MDD compared with 45 healthy controls. Different WM
locations in the left hemisphere, including the SLF, were
found to have decreased value of FA in MDD patients
[Zou et al., 2008]. Similar to our results, Lai and Wu in
2016 found low FA values in depressed subjects in SLF,
ILF, IFOF, and in the corpus callosum. Ota et al. [2015]
studied 21 individuals with depression found significant
decreases of FA and increases of MD in patients with
MDD compared with HC in the corpus callosum, IFOF,
and left SLF.

Differing results have been found by other authors.
Choi et al. [2014] published a study in 2014 where 134
MDD patients were compared to HCs using voxel-based
morphometry and (TBSS) approaches. In that study, MDD
patients, compared with a HC group, showed no signifi-
cant differences in FA, RD, MD, and AD with either the
VBM or the TBSS methods. Similar results were also found
by Olvet et al. [2016], where 139 participants with MDD
were studied using ROI, TBSS, and diffusion tractography
methods. Some differences can be found between these
two studies and our work. For instance, in Ovelt at al.,
only unmedicated patients were analyzed. Moreover, in
both studies, the standard TBSS pipeline, with FLIRT and
FNIRT coregistration algorithms, was used, while in our
study, we replaced these algorithms with ANTs SyN core-
gistration (and a group template), which may lead to supe-
rior registration performance than the algorithms included
in FSL. Another important difference was that they used
only age [Choi et al., 2014] and age and sex [Olvet et al.,

2016] as coveriates in the statistical analysis, while in our
study, we also used BMI, education, and number of
depressive episodes.

It is important to observe that our results also differ
from findings reported in a previous study where FW-
corrected indices were found to be more sensitive than the
metrics computed by the standard DTI [Bergamino et al.,
2016]. This may be due to the difference in the sample
size.

Fibers running through the UF connect the orbitofrontal
cortex with the temporopolar region, the rostral parahip-
pocampal gyrus (entorhinal/perirhinal region), and the
amygdala. Therefore, alterations in the UF integrity may
indicate that information processing between these regions
is less well integrated in MDD patients.

CST may be related to a range of depression-related
functioning, such as somatosensory, affective, and cogni-
tive functions. In some case, higher values of FA inside
CST in depressed subjects have been found [Sacchet et al.,
2014]. Moreover, other investigators have proposed that
increased FA in this tract can be connected to decreased
FA in SLF [Douaud et al., 2011].

SLF is a major bidirectional association tract connecting
large parts of the frontal cortex with the parietal, temporal,
and occipital lobes. The SLF facilitates the formation of a
bidirectional neural network that is necessary for core pro-
cesses such as attention, memory, emotions, and language
[Mesulam, 1998; Petrides and Pandya, 2002]. Conse-
quently, structural damage of the SFL would have detri-
mental effects on mood regulation [Alexander et al., 1986;
Clark et al., 2009]. SLF damage and depression severity
have also been found [Murphy and Frodl, 2011] with the
suggestion that WM changes in this tract may precede the
onset of depressive illness [Huang et al., 2011].

IFOF connects the inferior and lateral margins of the
occipital lobe to the inferolateral and dorsolateral regions
of the frontal lobe. Emotional visual function is connected
to this tract [Catani et al., 2002]. Frodi et al. [2012] found
that unaffected first-degree healthy relatives of patients
with MDD showed greater FA than controls in this tract,
other studies have shown that lower FA index in MDD
patients may be associated to alterations in emotional
visual perception [Phillips et al., 2003].

Similar to the IFOF, the ILF fiber bundle connects the
occipital lobe with the anterior part of the temporal lobe,
running laterally and inferiorly above optic radiation
fibers. This tract is involved in face recognition [Fox et al.,
2008], visual perception [Ffytche, 2008], reading [Epelbaum
et al., 2008], visual memory [Ross, 2008], and other func-
tions related to language [Catani and Mesulam, 2008].
Ortibus et al. [2012] noted correlations between this DTI
index in ILF and impaired object recognition in children
with visual–perceptual impairment.

Frequently, differences or changes in DTI-derived indi-
ces are interpreted as changes in the integrity of the WM
microstructure (or, in the opposite way, as structural
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damage, decline or degeneration). This suggests that some
aspect of the WM microstructure is damaged [Jones et al.,
2013]. However, this interpretation is not completely cor-
rect. For instance, the anisotropy in a brain region may
also be lower due to larger axon diameters, lower packing
density, or increased membrane permeability [Takahashi
et al., 2002]. Therefore, even if we found lower values of
FA and higher values of RD in our depressed group com-
pared with the HCs, we cannot affirm that this variation
in the diffusion metrics is totally connected to integrity
and/or damage of the WM.

This study has several strengths: (1) combining the
strengths of both “standard” DTI and FW-corrected DTI
metrics, which may improve the sensitivity of detecting
WM alterations in depression; (2) the comparison of two
DTI analyses pipelines; (3) a large cohort of depressed
subjects that includes both males and females. This work
has also some limitations. The first limitation is related to
the FW algorithm that we used for our DTI. The MRI data
were acquired with a single b-value shell. This means that
the algorithm used to fit the FW imaging model involved
spatial regularization of the data [Pasternak et al., 2009].
This decreases intra-group variability and may thus
obscure subtle spatial features. However, there are other
FW algorithms able to fit multi shell DTI data that may
yield better accuracy of the FW model [Hoy et al., 2014].
Moreover, often patients suffering from depression show
related disorders, which were not controlled for here. For
example, depression is often accompanied by alterations in
sleep patterns, which are also related to WM integrity
[Rosenberg et al., 2014]. Additionally, as this is a cross-
sectional study, we have only demonstrated a correlation
between DTI metrics and depression, but cannot infer
which occurred first.

In conclusion, for both analysis methods, differences in
FA and RD indices were observed in WM tracts previ-
ously reported in other depression studies. In addition, the
skeletonized approach was able to find more clusters than
the VBA analysis method. This difference might be related
to the reduction of the co-registration errors and partial
volume effects for the skeletonized method.

Even though we revealed better sensitivity with the FW
uncorrected DTI maps than the FW corrected maps, we
cannot affirm if this sensitivity is related only to the
pathology of depression or, also, connected to the partial
volume effects that influence the DTI-uncorrected indices.
However, for our dataset, FW corrected DTI metrics do
not seem to improve the sensitivity to detect WM tract
abnormalities in depressed individuals.
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