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Abstract: The hippocampus is composed of distinct subfields linked to diverse functions and disorders.
The subfields can be mapped using high-resolution magnetic resonance images, and their volumes can
potentially be used as quantitative phenotypes for genetic investigation of hippocampal function. We
estimated the heritability of hippocampus subfield volumes of 465 subjects from the Human Connec-
tome Project (twins and non-twin siblings) using two methods. The first used a univariate model to
estimate heritability with and without adjustment for total brain volume (TBV) and ipsilateral hippo-
campal volume to determine if heritability was uniquely attributable to subfield volume rather than
confounds that attributed to global volumes. We observed the right: subiculum, cornu ammonis 2/3,
and cornu ammonis 4/dentate gyrus subfields had the highest significant heritability estimates after
adjusting for ipsilateral hippocampal volume. In the second analysis, we used a bivariate model to
investigate the shared heritability and genetic correlation of the subfield volumes with TBV and ipsilat-
eral hippocampal volume. Genetic correlation demonstrates shared genetic architecture between phe-
notypes and shared heritability is what proportion of the genetic architecture of one trait is shared by
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the other. Highest genetic correlations were between subfield volumes and ipsilateral hippocampal vol-
ume than with TBV. The pattern was opposite for shared heritability suggesting that subfields share
greater proportion of the genetic architecture with TBV than with ipsilateral hippocampal volume. The
relationship between the genetic architecture of TBV, hippocampal volume, and of individual subfields
should be accounted for when using hippocampal subfield volumes as quantitative phenotypes for
imaging genetics studies. Hum Brain Mapp 38:4337–4352, 2017. VC 2017 Wiley Periodicals, Inc.

Key words: genetic variation; genetic correlation; quantitative phenotypes; extended twin design; hip-
pocampal subfield segmentation; univariate and bivariate model
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INTRODUCTION

The hippocampus plays a key role in cognitive function-
ing, influencing processes such as learning, episodic and
working memory [Braskie et al., 2013]. Structural variation
within the hippocampal structure and function has been
implicated in neurodegenerative and neuropsychiatric dis-
orders such as Alzheimer’s disease [Braak and Braak, 1991;
Mouiha and Duchesne, 2011], depression [Bremner et al.,
2000; Campbell et al., 2004; Treadway et al., 2015] and
schizophrenia [Altshuler et al., 1998; Bogerts et al., 1993;
Haukvik et al., 2015; Tamminga et al., 2010]. Although the
hippocampus is often referred to in neuroimaging studies
as a single unitary structure, it is composed of several dif-
ferent subfields. While there are varying definitions for the
delineation and the nomenclature of these subfields, there
is a general consensus in the neuroimaging research disci-
pline that subfields can be resolved using magnetic reso-
nance imaging (MRI) techniques to include some
combination of cornu ammonis (CA) 1–4, dentate gyrus
(DG), subiculum and the molecular layers composed of the
stratum: radiatum, lacunosum and moleculare (SRLM)
[Duvernoy, 2005]. Subfields within the hippocampus differ
from each other in terms of connection to other regions of
the brain, their cytoarchitectonic structure, and their role in
memory formation and cognitive function [Amunts et al.,
2005; Duvernoy, 2005; Fatterpekar et al., 2002; La Joie et al.,
2010; Mai et al., 2008; Mueller et al., 2007; Mueller and Wei-
ner, 2009; Voineskos et al., 2015; Yang et al., 2013].

As improved techniques for automated mapping of the
hippocampal subfields emerge [Iglesias et al., 2015; Pipi-
tone et al., 2014; Van Leemput et al., 2008; Yushkevich
et al., 2010] in concert with large-scale consortia dedicated
to genome-wide association analysis [Thompson et al.,
2014], it is critical to determine whether the individual
subfields can be used as quantitative traits in such studies.
Prior to using volumetric estimates of the hippocampal
subfields as quantitative phenotypes, we must first investi-
gate whether these volumes are indeed heritable. Herita-
bility estimates are defined by the proportion of observed
variation in a trait that can be attributed to inherited
genetic factors [Jacquard, 1983] and can be estimated using
twin studies, family studies and genome wide association
data from large unrelated populations based on three

factors: genetics (A), common (C), and unique environ-
ment (E). Typically, structural equation modeling (SEM) is
used in twin studies to estimate variation of the phenotype
of interest [Neale and Cardon, 1992].

While several other studies on the heritability of brain
structures exist [Baare et al., 2001; Pennington et al., 2000;
Sullivan et al., 2001], there is only one study that examines
the heritability of the hippocampal subfields [Whelan
et al., 2015]. Whelan et al., [2015] used standard T1-
weighted MRI data from the Queen Twins Imaging
(QTIM) and also investigated the reliability of automati-
cally segmented human hippocampus with a newly devel-
oped FreeSurfer subfield segmentation tool. Whelan et al.
[2015] demonstrated moderate 4T QTIM test-retest reliabil-
ity scores of intraclass correlation coefficient (ICC) in the
range of 0.50–0.86, where the CA1 region had the highest
ICC of 0.86 and hippocampal-amygdaloid transition
(HATA) area had the lowest ICC of 0.5. In addition Whe-
lan et al. [2015] found high heritability estimates ranging
from 0.67 (HATA region) to 0.85 (molecular layer of DG)
of hippocampal subregion volumes. Our study differs
from the study of Whelan et al. based on the previously
validated segmentation technique [Pipitone et al., 2014]
and the use of high-resolution and contrast of MRI scans,
from the Human Connectome Project (HCP) [Van Essen
et al., 2013]. Furthermore, when exploring heritability it is
important to consider the relationship of the hippocampal
subfields, with overall volume of the brain and or the
entire hippocampus; both of which vary between individu-
als [Blatter et al., 1995]. Recent studies that have examined
the heritability of neuroanatomical volume measurements
have not adjusted for total brain volume (TBV) or volumes
of larger structures encompassing the region of interest.
Baare et al. demonstrated that the whole brain is highly
heritable, estimated to be 90% [Baare et al., 2001], therefore
not accounting for TBV on regions of interest can influence
the heritability estimates of the target regions resulting in
inaccurate heritability scores.

In our study, we explored how heritability of individual
hippocampal subfields is influenced by both TBV and ipsi-
lateral (left or right) hippocampus volume to the subfield
being examined using two different methods. Our first
approach was using a univariate model examining the her-
itability of a single phenotype at a time; in our case, we
examined the heritability of hippocampal subfields. First,
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we adjusted hippocampal subfield volume for TBV, then
we adjusted for only ipsilateral hippocampal volume and
finally the last step was adjusting for both TBV and ipsilat-
eral hippocampal volumes. In our second approach, we
used a bivariate model where we examined the heritability
of two structures together instead of one structure alone.
We went on to quantify the relationship of the shared
genetic variation between hippocampal subfield volumes
with TBV and ipsilateral hippocampal volume by examin-
ing the genetic correlation and shared heritability in a
bivariate model. Both models give us heritability estimates
which can reveal the genetic architecture of a phenotype
by itself but also in relation to other phenotypes (see Box 1
for definitions of heritability terms). In the univariate
model, the heritability estimates are based on the genetic
variation of one phenotype. Heritability estimates in our
univariate model are based on genetic variation of subfield
volumes alone. We removed the genetic influence of TBV
and hippocampal volume which provided us with unique
heritability estimates for subfield volumes. Conversely, the
bivariate model allows us to account for the genetic influ-
ence of TBV and hippocampal volume by estimating both
the genetic correlation and shared heritability between the
two phenotypes. Genetic correlation measures the genetic
relationship in terms of how similar the genetic architec-
ture is between the two phenotypes. Shared heritability
measures the shared genetic variation between the two
phenotypes as a proportion of the heritability of one phe-
notype. Using both the univariate and bivariate model to
investigate the genetic variation within the hippocampal
subfields allows us to identify potential quantitative phe-
notypes to be used in imaging genetic studies.

METHODS

Human Connectome Project Dataset

Data from the HCP was used for this study. The aim of
the HCP is to investigate properties of human brain

connectivity and function. To better understand the inter-
action of brain circuits and human behavior, structural
and functional properties of neuroanatomical structures as
well as genetic factors can be studied. The HCP investi-
gators are recruiting 1,200 healthy twin and non-twin sib-
ling adults. The HCP consortium aims to have a healthy
population that represents the ethnic and racial composi-
tion of United States and diversity in terms of behavioral,
ethnic, and socioeconomic status. Sibling relationships were
removed if the individuals within the relationship had neu-
ropsychiatric, neurodevelopmental, or neurological disor-
ders. Individuals having other illnesses such as diabetes and
high blood pressure were excluded. Premature twins (born
before 34 weeks gestation) and non-twins (born before 37
weeks gestation) were excluded. Individuals who smoked
or who were overweight were included in the study. Also
individuals who have not experienced severe symptoms but
have a history of heavy drinking or recreational drug use
were included. Reason for including individuals who
smoked, who are overweight or use of recreational substan-
ces can be used for future psychiatric studies [Van Essen
et al., 2013]. For more information on the inclusion and
exclusion criteria, see Supporting Information Table S1 of
Van Essen DC et al. [2013].

The sample used for this study contained 542 individuals
of which imaging data was available on 511 individuals
(data release June 2014). Imaging data were collected using
a Siemens 3 Tesla (T) Skyra scanner which has been modi-
fied with a Siemens SC72 gradient coil to increase the maxi-
mum gradient strength from 40 to 100 mT/m [Van Essen
et al., 2012, 2013]. For our study, we used the 3T, high-
resolution T1 weighted MRI data (0.7mm isotropic voxel
dimensions). Acquisition parameters are: inversion time-
5 1,000 ms, echo time 5 2.14 ms, repetition time 5 2,400 ms,
acquisition time 5 7 min 40 sec, flip angle 5 8 degrees and
field of view 5 224 mm 3 224 mm [Van Essen et al., 2012].

After quality control (QC) of the segmented imaging
data and removal of families with one individual and no

BOX I. Key Heritability Concepts

� Heritability estimates the amount of genetic variation that is seen in a phenotypic trait within a population. Total
variation includes genetics [A], common environment [C] and unique environment [E]. Heritability is the propor-
tion of the variation that can be attributed to genetics.
� Unique heritability accounts for the genetic variation out of total variation (genetic and common and unique

environment) of one trait only. This can be calculated in a univariate model where only one phenotype is being
analyzed. In a univariate model, factors that may confound heritability estimates such as total brain volume can
be controlled for within the model.
� In a bivariate model, the genetic variation is accounted for between two phenotypes instead of focusing on only

one trait. In these models we can calculate the genetic correlation between the two phenotypes and the shared
heritability. Genetic correlation is the genetic relationship between the two traits. It indicates how similar the
genetic variation (genetic architecture) is between both traits. Shared heritability measures the amount of varia-
tion from the genetic correlation that is common from trait one and present in trait two. Both genetic correlation
and shared heritability estimates should be considered when examining heritability estimates in bivariate model.
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siblings (described below), the final sample consisted of
100 monozygotic (MZ) twins, 94 dizygotic (DZ) twins and
271 non-twin siblings (277 women and 188 men with age
range of 22- to 36-year old and the average age was 29.24-
(6 3.49 SD) year old). Average handedness for our sample
was 65.39 (6 46.42 SD). The scale for handedness ranges
from 2100 (left-hand dominant) to 100 (right-hand domi-
nant). The measure of fluid intelligence was represented
using Raven’s Progressive Matrices test where the final
score represents the number of correct responses out of 24
questions. Demographic information is summarized in
Table I. Handedness and fluid intelligence measures are
not used in subsequent heritability calculations, but simply
to demonstrate that MZ, DZ, and non-twin sibling sub-
groups are well matched to one another and represent a
healthy population.

Image Processing

Hippocampal subfield segmentation was estimated
using Multiple Automatically Generated Templates
(MAGeT Brain) [Chakravarty et al., 2013; Pipitone et al.,
2014]. The segmentation procedure consists of three steps.
First, five independent high-resolution MRI atlases (0.3mm
isotropic voxels) of the hippocampus and hippocampal
subfields containing detailed segmentations of the left and
right CA1, CA2/CA3, CA4/DG, subiculum, SRLM are
used as inputs [Winterburn et al., 2013]. Then, a “template
library” is generated where a subset of individuals from
the HCP dataset is first selected (n 5 21; a number demon-
strated as being optimal in previous work [Pipitone et al.,
2014]). The 21 templates were selected to represent the
HCP dataset (12 females, 9 males, aged range: 22 to 36
years). Each template undergoes a model-based segmenta-
tion procedure with each atlas yielding five candidate
labels for each template. The next step is similar to a regu-
lar multi-atlas segmentation strategy, where each subject is
nonlinearly matched to template, thereby growing the
number of candidate segmentations to 105 (5 atlases 3 21
templates) for each subject. The 105 labels per subject are
then fused using a majority vote [Collins and Pruessner,
2010], a method which was previously demonstrated to be
accurate relative to weighted voting. Pipitone et al. [2014]

showed that using weighted voting methods did not sig-
nificantly improve MAGeT Brain segmentation when com-
pared to using majority vote labeling [Bhagwat et al., 2016;
Pipitone et al., 2014]. Recent work by Bhagwat et al. [2016]
has also demonstrated accuracies to be homologous to
Joint Label Fusion [Wang et al., 2013] when used within
the MAGeT Brain framework [Bhagwat et al., 2016]. In
Winterburn et al. [2013] protocol for human hippocampal
subfields segmentation, intra reliability was measured via
test-retest and results ranged from 0.64 in the CA2/CA3
region to 0.83 mean Kappa in the CA4/DG region. The
second lowest test-retest was the SRLM region with mean
Kappa of 0.71. The subiculum and the CA1 region had a
Kappa mean of 0.75 and 0.78, respectively.

QC of hippocampal segmentation was completed for
511 subjects with imaging data and 502 passed QC. Images
were rated on a three point scale of 0, 0.5, and 1, where 1
was a pass with very negligible errors, 0.5 was satisfactory
with few errors but still considered pass and images
scored 0 is a fail and the subject was removed for the final
analysis. Subjects scored as 1 had less than 5 slices with
minor errors whereas subjects that contained minor errors
found in 5 to 10 slices were assigned 0.5. Subjects that con-
tain errors in more than 10 slices unilaterality were scored
0. Minor errors included small deviation from the correct
segmentation within subjects which are scored 1 and 0.5.
Major deviation from the correct segmentation where large
portions of the hippocampus are missing or segmented in
the wrong location on the slice was scored as 0. In the
Supporting Information section Figure S1, A–C show
examples of subjects scored 0, 0.5, and 1.

MAGeT Brain was implemented using the publicly avail-
able pipeline (https://github.com/CobraLab/MAGeTbrain)
and atlases (https://github.com/CobraLab/atlases/tree/
master/hippocampus-subfields). In addition, TBV was
extracted using the automated BEaST pipeline [Eskildsen
et al., 2012] along with minc-bpipe-library and within BEaST
output all subjects passed QC. Nonlinear registration opera-
tions were performed using Automatic Normalization Tools
(ANTs) [Avants et al., 2008]. All images were converted to
the MINC format and MAGeT Brain was implemented using
tools included in MINC (http://www.bic.mni.mcgill.ca/
ServicesSoftware/ServicesSoftwareMincToolKit), including
a version of ANTs adapted to work with MINC-tools.

TABLE I. Demographic breakdown of monozygotic twins (MZ), dizygotic twins (DZ), and non-twin siblings from

the subset data of the HCP, including averages and standard deviation (6 SD)

N

Average age
(year 6 SD) Age range

Gender
female: male

Average
handedness (6 SD)

Average fluid
intelligence (6 SD)

MZ 100 29.97 (3.11) 22–36 74:26 72.4 (41.76) 16.26 (4.64)
DZ 94 29.86 (2.93) 22–35 67:27 63.19 (46.06) 16.71 (4.81)
Non-twin siblings 271 28.75 (3.72) 22–36 136:135 63.56 (48.06) 16.12 (5.11)
Total 465 29.24 (3.49) 22–36 277:188 65.39 (46.42) 16.27 (4.95)

Average fluid intelligence is a measure of number of correct responses out of 24 questions.
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Method 1: Heritability of Subfields After

Adjusting for Ipsilateral Hippocampal Volume

and TBV Using a Univariate Model

Before adjusting for TBV and ipsilateral hippocampal vol-
ume on hippocampal subfield volumes, we examined the
correlation between hippocampal subfields volumes with
ipsilateral hippocampal volume and TBV; we also investi-
gated correlation between left and right hippocampal sub-
field volumes. Pearson’s correlation along with a P-value
was calculated using R 3.2.1 statistical computing software
[R Core Development Team, 2013]. Hippocampal subfield
volumes were adjusted for: (1) sex and age alone, hereafter
called “unadjusted,” (2) TBV, (3) ipsilateral hippocampal vol-
ume, (4) ipsilateral hippocampal volume and TBV together.
A residual approach in R was used for each adjustment on
the hippocampal subfields volumes and then heritability
was calculated for each type of adjustment in a univariate
ACE model (calculating the: genetics [A], common environ-
ment [C], and unique environment [E] variation). The result-
ing analysis examines the influence of overall brain and
hippocampus volume on subfield heritability measures.

Broad sense heritability (H2) of hippocampal subfield
volumes was estimated using SEM implemented with the
OpenMx 2.3.1 [Neale et al., 2016] package within R. Fol-
lowing the imaging QC described above, the number of
subjects was reduced to 465 healthy subjects from 502,
based on removing subjects in which the family only had
one individual. The sample included: 100 MZ twins, 94
DZ twins, and 271 siblings (from 177 families, 96 families
had siblings added to the twin pair and 81 families con-
sisted of non-twin siblings only).

Heritability is the ratio of variance of a phenotypic mea-
surement in which the numerator is the variation attribut-
able to genetics [A] and the denominator is the total
observed variation (genetics [A], common environment [C],
and unique environment [E]). In classical twin studies, the
model assumes that twins (both MZ and DZ twins) are
raised together; therefore, the common environment is based
on twin status and is the same for each individual within the
twin pair. When siblings are introduced the environment is
also assumed to be identical but this may be a less valid
assumption. However, heritability estimates were similar
whether or not we included siblings lending weight to the
robustness of the test. Therefore, common environment [C]
was assumed to be identical within a family. MZ twins share
100% of their genes whereas DZ twins share 50% of segregat-
ing genes, similar to DZ twins, non-twin siblings share on
average 50% of their genes. To account for the genetic [A]
component on the twins and non-twin siblings in the model,
MZ twins had a coefficient of 1 and DZ twins and non-twin
siblings a coefficient of 0.5. In the dataset, some families had
data for only non-twin siblings; in these cases, a coefficient of
0.5 was used for both family members. Heritability was cal-
culated for volume of both ipsilateral hippocampal subfields
(CA1, CA2/CA3, CA4/DG, subiculum, and SRLM) along
with TBV and ipsilateral hippocampal volumes.

A full univariate ACE model was applied to each hippo-
campal subfield and compared against a CE model to exam-
ine the significance of the genetic variation when “A” is
removed from the full model using a likelihood ratio test. A
significant P-value (P< 0.05) for the difference in fit of the
two models indicates that the “A” component plays an
important role in explaining the variance of the trait thereby
demonstrating the significance of the heritability. This was
applied to all four models (1) unadjusted subfield volumes,
(2) adjusted for TBV, (3) adjusted for ipsilateral hippocam-
pal volume, (4) adjusted for TBV and ipsilateral hippocam-
pal volume together. Confidence intervals of 95% on the
heritability estimates were calculated for each hippocampal
subfield in all four models within the univariate model.

For both univariate model and bivariate models (shown
below), we simply observed the heritability estimate of the
subfields to see which regions are heritable within the hip-
pocampus instead of statistically comparing the heritability
estimates between regions. As the subfield volumes are
highly correlated with TBV and ipsilateral hippocampal
volume, the tests would not be independent and applying
Bonferroni correction would be too stringent. Therefore,
the P values reported when comparing the full ACE model
against the CE model are uncorrected values.

Method 2: Heritability Using a Bivariate Model

A bivariate Cholesky decomposition ACE model was
used to examine the shared genetic variation (H2) and the
genetic correlation (rg) between the hippocampal subfield
volumes with TBV and ipsilateral hippocampal volume.
Genetic correlation measures the shared genetics effects
(genetic architecture) between the two volumes. Shared her-
itability estimates the proportion of genetic variation of one
trait that is present in the other. Therefore, two structures
can have a high genetic correlation such as 0.8 but a low
shared heritability of 0.55. This means that there is a large
overlap in genes that may influence the variation on both
structures but the proportion of shared genetic variation
between the structures is low. For the calculation of shared
heritability, the order of the phenotypic variables under
study is important within the model. We selected the larger
global structure as the reference trait while controlling for
sex and age. Volumes of the hippocampus subfields and
TBV were normalized using z-scores. To examine the signifi-
cance of heritability scores, the bivariate ACE model was
compared to a bivariate CE model and confidence intervals
(95%) on the heritability scores were calculated.

RESULTS

Segmentation and Volumes of Hippocampal

Subfields

From the 511 images segmented using MAGeT Brain,
502 passed QC (example of a segmented hippocampus in
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Fig. 1). Table II shows the average volumes and standard
deviation of each hippocampal subfield including left and
right hippocampal volume and TBV. From the five subfield
regions and as expected, the CA1 region showed the largest
average volume (left CA1 5 771.51 mm3, 6 92.15 SD, right
CA1 5 836.47 mm3, 6 98.14 SD) and the CA2/CA3 subfield
was the smallest (left CA2/CA3 5 147.91 mm3, 6 25.11 SD,
right CA2/CA3 5 179.22 mm3, 6 25.18 SD). Table II also
includes average volumes and standard deviation for MZ,
DZ and non-twin siblings. Higher TBV found in non-twin
siblings compared to both twin groups is accounted by hav-
ing a higher ratio of females whereas the ratio between
males and females are the same in the non-twin sibling
group. It has been shown that females have smaller TBV
compared to males [Kretschmann et al., 1979; Swaab and
Hofman, 1984], which explains the differences in average
volumes between both the twins groups and non-twin
siblings.

Hippocampal Subfield Correlation With TBV and

Ipsilateral Hippocampal Volume

Both the left and right hippocampal subfield volumes were
highly positively correlated with left and right hippocampal
volume, respectively (Table III). The highest correlation coef-
ficient between hippocampus subfields and ipsilateral hippo-
campal volume was the right and left CA1 and SRLM region
(r 5 0.96, P< 0.001) and the lowest correlation coefficients
were left CA2/CA3 (r 5 0.56, P< 0.001) and right subiculum
(r 5 0.60, P< 0.001). In contrast, the correlation coefficient
was lower between hippocampal subfields and TBV but still
positive. The highest coefficient between hippocampus sub-
field and TBV was left and right CA1 (r 5 0.69, r 5 0.66,
respectively) and lowest correlation coefficient was the left
and right CA2/CA3 region (r 5 0.32, r 5 0.47, respectively). In
addition, the left and right hippocampal volume was highly
correlated with TBV (r 5 0.72, r 5 0.70, respectively).

Figure 1.

Hippocampal subfield segmentation, T1 sagittal scan. Left image is non-segmented and right

image is segmented. Hippocampal subfields: CA1, CA2/CA3, CA4 and DG, SRLM, Subiculum.

TABLE II. Average volume and standard deviation (6SD) of unadjusted left and right hippocampal subfields in

monozygotic twins (MZ), dizygotic twins (DZ), and non-twin siblings

Region
MZ average volume
(mm3 6 SD) N 5 100

DZ average volume
(mm3 6 SD) N 5 94

Non-twin sibling
average volume

(mm3 6 SD) N 5 271

Total Sample
average volume mm3

(6 SD) N 5 465

Left CA1 755.71 (89.43) 761.50 (74.00) 780.82 (97.77) 771.51 (92.15)
Right CA1 821.41 (90.97) 826.97 (87.04) 845.33 (103.51) 836.47 (98.14)
Left CA2CA3 145.9705 (22.55) 146.69 (21.56) 149.04 (27.10) 147.91 (25.12)
Right CA2CA3 174.82 (22.61) 174.13 (24.04) 182.61 (25.98) 179.22 (25.18)
Left CA4DG 623.61 (70.02) 621.75 (55.12) 649.06 (73.27) 638.07 (70.34)
Right CA4GD 615.00 (65.91) 616.62 (55.99) 649.88 (72.54) 635.67 (70.00)
Left SRLM 577.99 (67.90) 581.60 (61.98) 589.51 (73.93) 585.44 (70.42)
Right SRLM 543.56 (64.33) 546.66 (63.48) 558.37 (68.70) 552.81 (66.94)
Left subiculum 331.43 (46.22) 327.84 (43.27) 335.89 (50.83) 333.31 (48.43)
Right subiculum 329.45 (43.63) 327.48 (38.08) 333.92 (45.87) 331.66 (43.92)
Left hippocampus 2434.72 (253.57) 2439.39 (216.75) 2504.33 (277.15) 2476.23 (262.56)
Right hippocampus 2484.25 (249.13) 2491.87 (233.02) 2570.11 (277.67) 2535.82 (265.78)
Total brain 1344941.77 (138663.72) 1351379.79 (117637.94) 1393633.69 (150431.05) 1374620.66 (143368.64)
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Univariate Model: Heritability Estimates of

Hippocampal Subfields Volumes

Unadjusted hippocampal subfield volumes demonstrated
moderate to high heritability estimates. The highest heritability
estimate within hippocampal subfield volumes was the right
subiculum at 85% and the lowest estimate was the left CA2/
CA3 at 38% (Table IV, Fig. 2). Observed heritability estimates
of left and right hippocampal volume were 80% and 81%,
respectively, and the heritability of TBV was 92%. When

adjusted for TBV and ipsilateral hippocampal volume the heri-
tability of subfield volumes ranged from 38% (left CA1) to 79%
(right subiculum) (Table IV, Fig. 2) and the heritability of left
and right hippocampal volume was lower with estimates of
65% and 63%, respectively, when adjusting for TBV. When
both TBV and ipsilateral hippocampal volume were adjusted
for, the observed heritability estimate of each subfield volume
was similar to only adjusting for ipsilateral hippocampal vol-
ume (Table IV, Fig. 2).

Overall, a trend of lower heritability scores of the hip-
pocampal subfields was seen when adjusting for ipsilat-
eral hippocampal volume compared to adjusting for only
TBV. For example, unadjusted left CA2/CA3 volumes
(Table IV, Fig. 2) had a heritability estimate of 38% but
after adjusting for TBV and left hippocampal volume sep-
arately, the estimate was higher (41% and 53%, respec-
tively). When the left CA2/CA3 volume was adjusted for
both left hippocampal volume and TBV together, the heri-
tability estimate was similar to when adjusting for left
hippocampal volume only (52%). Similarly, heritability of
the left subiculum unadjusted volume was 50%, but when
adjusted for TBV the estimate was higher (63%). However,
adjusting for the left hippocampal volume along with
TBV, the heritability estimate of left subiculum volume was
also higher than unadjusted left subiculum volume but lower
than accounting for only TBV. When the ACE model is com-
pared to the CE model, the heritability was significant for all
regions whether or not the subfield volume was adjusted for
TBV (P< 0.05). When subfield volumes were adjusted for
ipsilateral hippocampal volume all but one subfield had a sig-
nificant heritability estimate (the left CA1 region P 5 0.09)
(Table IV).

TABLE III. Pearson correlations (r) between subfield

with ipsilateral hippocampal volume and total brain

volume (TBV)

Left hippocampal volume TBV

Left CA1 0.96 0.69
Left CA2CA3 0.56 0.32
Left CA4DG 0.91 0.64
Left SRLM 0.96 0.60
Left subiculum 0.58 0.63
Left hippocampus 1.00 0.72

Right hippocampal volume TBV

Right CA1 0.96 0.66
Right CA2CA3 0.74 0.47
Right CA4DG 0.89 0.63
Right SRLM 0.96 0.60
Right subiculum 0.60 0.61
Right hippocampus 1.00 0.71

All subfield volumes showed significant correlation between ipsi-
lateral hippocampal volume and TBV (P< 0.001).

TABLE IV. Heritability estimates of left and right hippocampal subfield volumes with 95% confidence intervals (sam-

ple size N 5 465)

No volume adjustment
(only adjusted for sex

and age)
Total brain volume

adjustment
ipsilateral hippocampal

volume adjustment

ipsilateral hippocampal
and total brain volume

adjustment

Region H2 (%)
95% confidence

interval H2 (%)
95% confidence

interval H2 (%)
95% confidence

interval H2 (%)
95% confidence

interval

Left CA1 73** 55–83 56** 33–72 39** 21–55 39 21–55
Right CA1 70** 50–83 54** 29–71 59* 42–72 59* 42–72
Left CA2CA3 38* 18–58 41** 21–59 53* 35–67 52* 34–67
Right CA2CA3 70** 51–82 68** 51–80 67* 52–78 66* 50–78
Left CA4DG 77** 58–87 65** 41–81 57** 38–73 57** 37–73
Right CA4DG 80** 65–88 72** 54–83 65** 50–76 65** 50–76
Left SRLM 64** 42–78 53** 30–70 47* 30–62 40* 22–56
Right SRLM 74** 56–84 64** 43–78 59** 42–72 55** 38–69
Left subiculum 50* 16–77 63** 26–75 60* 20–72 57** 22–71
Right subiculum 85** 68–90 76** 62–84 82** 71–88 78** 65–86
Left hippocampus 80** 66–88 65** 43–80
Right hippocampus 81** 66–89 63** 41–78
Total brain 92** 75–95

Significant heritability P values are represented by * indicates P< 0.05, and ** indicates P< 0.001 when ACE model is compared to CE
model. Heritability estimates highlighted in yellow are not significant, but show a trend toward significance.
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Bivariate Model: Shared Heritability Estimates of

Hippocampal Subfields Volumes With TBV and

Ipsilateral Hippocampal Volume

In the bivariate model, both the genetic correlation and
heritability was measured between hippocampal subfield
volumes with TBV and ipsilateral hippocampal volume.
The shared and unique heritability estimates were signifi-
cant (P< 0.05) when the full ACE bivariate model was
compared to the CE model across all subfields with both
the TBV and ipsilateral hippocampal volume.

The genetic correlation (rg) between TBV and hippocampal
subfield volumes (Table V) was positive and slightly higher
than the Pearson correlation performed in the univariate
model (Table III). The shared heritability between TBV and
subfield was high ranging from 86% in left subiculum to 99%
heritability in right subiculum and left CA2/CA3 region
(Table VI, Fig. 3). Overall the genetic correlation between ipsi-
lateral hippocampal volume and hippocampal subfield vol-
umes showed a higher positive genetic correlation trend
compared to TBV and hippocampal subfield. The genetic cor-
relation of left hippocampal volume and left hippocampal
subfield volumes ranged from 0.75 in left CA2/CA3 to 0.98 in
left CA1 and left SRLM. The range in the right was from 0.66
in the right subiculum to 0.97 in the right CA1 and SRLM
region (Table V). The shared heritability between left hippo-
campal and left hippocampal subfield ranged from 77% in the
CA2/CA3 region to 93% in the left subiculum region
(Table VII, Fig. 4). For the right, the range was 83% in the CA1
region to 94% in the right subiculum region (Table VII, Fig. 4).

DISCUSSION

In this manuscript, we used 465 healthy twin and non-
twin siblings from the HCP dataset to estimate the

heritability of hippocampal subfield volumes. Overall in
the univariate ACE model, unadjusted hippocampal sub-
field volumes showed moderate to high heritability esti-
mates ranging from 38% (left CA2/CA3) to 85% (right
subiculum). Furthermore, within each subfield the right
subfields showed higher heritability estimates compared to
left subfields when adjusting for both TBV and ipsilateral
hippocampal volume. However, the confidence intervals
between left and right corresponding subfields overlap
suggesting that the amount of genetic variation is similar.
A trend of lower heritability estimates was seen when
adjusting for both TBV and ipsilateral hippocampal vol-
ume. The TBV and ipsilateral hippocampal volume was

Figure 2.

Heritability scores (H2) of left (L) and right (R) hippocampal subfields volumes, L and R hippo-

campal volumes and TBV with 95% confidence intervals (sample size N 5 465). Pink bars indicate

unadjusted subfield volume, whereas green bars indicate TBV adjustment, blue bars indicates ipsi-

lateral (left or right) hippocampal volume adjustment and purple bars indicates ipsilateral hippo-

campal and TBV adjustment on subfield volumes.

TABLE V. Bivariate genetic correlation (rg) between hip-

pocampal subfield volumes with ipsilateral hippocampal

volume and total brain volume (TBV)

Left hippocampal volume TBV

Left CA1 0.98 0.77
Left CA2CA3 0.75 0.49
Left CA4DG 0.94 0.69
Left SRLM 0.98 0.70
Left subiculum 0.76 0.71
Left hippocampus 0.77

Right hippocampal volume TBV

Right CA1 0.97 0.77
Right CA2CA3 0.79 0.55
Right CA4DG 0.93 0.69
Right SRLM 0.97 0.68
Right subiculum 0.66 0.67
Right hippocampus 0.78

All subfield volumes showed significant correlation between ipsi-
lateral hippocampal volume and TBV (P< 0.001).
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also highly heritable. Interestingly, hippocampal subfield
heritability was often lower when adjusting for ipsilateral
hippocampal volume compared to adjusting for only TBV
alone. This trend suggests that once you have accounted
for the hippocampal volume, the overall brain volume
minimally influences the outputs of hippocampal subfield
heritability measures. These results suggest when investi-
gating heritability estimate of small brain structures such
as hippocampal subfields it is important to account for the
influence of larger structures surrounding the region of

interest. In addition, these results also provide indirect evi-
dence of the shared heritability between each of the sub-
fields and TBV and ipsilateral hippocampal volume.

To further investigate how TBV and ipsilateral hippo-
campal volume influence heritability estimates of hippo-
campal subfield volumes, we used a bivariate model to
examine the shared genetics variance within the two struc-
tures. Shared heritability between ipsilateral hippocampal
volume and hippocampal subfields was quite high
(77%–94%) (Table VII), albeit lower than shared heritability

TABLE VI. Bivariate heritability estimates between TBV and subregions (left and right hippocampal subfield vol-

umes and whole hippocampal volumes) with 95% confidence intervals (sample size N 5 465)

TBV Subregion Shared (TBV and subregion)

Region H2 (%)
95% confidence

interval H2 (%)
95% confidence

interval H2 (%)
95% confidence

interval

Left CA1 95 87–97 77 62–86 96 84–100
Right CA1 96 86–97 76 62–86 97 87–100
Left CA2CA3 95 84–97 52 24–68 99 80–100
Right CA2CA3 95 85–97 75 56–84 95 82–100
Left CA4DG 95 87–97 79 63–88 95 83–100
Right CA4DG 96 86–97 85 73–91 97 87–100
Left SRLM 95 86–97 70 53–81 95 81–100
Right SRLM 96 86–97 79 65–87 98 87–100
Left subiculum 93 82–97 62 29–82 86 63–100
Right subiculum 95 85–97 88 75–92 99 86–100
Left hippocampus 95 87–97 83 70–90 96 85–99
Right hippocampus 96 86–97 84 73–91 98 89–100

All values were significant at P< 0.001, when ACE model is compared to CE model.

Figure 3.

Bivariate heritability scores (H2) between TBV and left (L) and right (R) hippocampal subfields

volumes, with 95% confidence intervals (sample size N 5 465). Pink bars indicate heritability esti-

mates of TBV, whereas green bars indicate heritability estimates of subregions (hippocampal sub-

fields and whole hippocampal volumes) and blue bars indicates shared heritability estimates

between TBV and subregions.
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between TBV and hippocampal subfields volume
(86%–99%) (Table VI). However, overall the genetic corre-
lation between ipsilateral hippocampal volume and hippo-
campal subfields volume was higher (0.66–0.98) than TBV
and subfield volumes (0.49–0.77) (Table V), which is simi-
lar to the general correlation without accounting for the
genetic effects (Table III). The highest phenotypic and
genetic correlation between TBV and hippocampal subfield
region was the CA1 region (0.69 and 0.77, respectively).
Similarly, Harding et al. [1998] also reported high correla-
tion between CA1 and cerebral volume of 0.68 when

exploring the variation in the number of hippocampal neu-
rons with age and brain volume [Harding et al., 1998].
These correlations suggest a possible similarity in genetic
etiologies governing the size between CA1 region and total
brain which can be seen in the high genetic correlation
observed in our study. Overall the genetic correlation
trend suggests that there is less overlap in genetic effects
(genetic variation) that influence TBV and hippocampal
subfield volume than those that influence ipsilateral hippo-
campal volume and subfields based on genetic correlation
estimates. However, in terms of the proportion of the

TABLE VII. Bivariate heritability estimates between ipsilateral hippocampal volume and subregions (left and right

hippocampal subfield volumes) with 95% confidence intervals (sample size N 5 465)

Ipsilateral hippocampal
volume Subregion

Shared (ipsilateral hippocam-
pal volume and subregion)

Region H2 (%)
95% confidence

interval H2 (%)
95% confidence

interval H2 (%)
95% confidence

interval

Left CA1 86 76–92 82 69–89 86 75–92
Right CA1 85 73–91 78 62–87 83 69–90
Left CA2CA3 80 64–89 43 9–67 77 45–98
Right CA2CA3 86 74–92 76 53–85 84 67–93
Left CA4DG 87 76–92 83 70–90 87 76–93
Right CA4DG 87 77–92 87 75–92 89 79–94
Left SRLM 85 75–91 75 62–84 82 70–89
Right SRLM 87 76–92 81 69–88 85 74–91
Left subiculum 81 67–89 63 32–82 93 67–100
Right subiculum 84 72–91 88 75–92 94 80–100

All values were significant at P< 0.001, when ACE model is compared to CE model.

Figure 4.

Bivariate heritability scores (H2) between ipsilateral hippocampal volume and left (L) and right

(R) hippocampal subfields volumes, with 95% confidence intervals (sample size N 5 465). Pink

bars indicate heritability estimates of ipsilateral hippocampal volume, whereas green bars indicate

heritability estimates of subregions (hippocampal subfield volumes) and blue bars indicates shared

heritability estimates between ipsilateral hippocampal volume and subregions.
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genetic correlation estimates, the shared heritability
between subfield volume and TBV demonstrates a greater
proportion of shared genetic variation from the genetics
correlation than ipsilateral hippocampal volume. This
could be due to the fact that the genetic architecture
related to TBV is simpler than that of the ipsilateral hippo-
campal volume and warrants more study. For example,
there can be different genetic signaling mechanisms for
both TBV and ipsilateral hippocampal development, where
the types of genes and gene expression can differ [Cipriani
et al., 2016; Roy et al., 2000; Stein et al., 2012]. In addition,
the role of genes that influence brain development pro-
cesses [Miller et al., 2014] is another area of research that
can be used to understand the genetic architecture. To
tease apart these differences, more studies are required
comparing the development of the brain as a whole and
the subfields of the hippocampus at pre-natal stages to
adult hood.

The recent study by Whelan et al. [2015] also analyzed
heritability of hippocampal subfields using the QTIM data-
set (T1-weighted MRI from 132 MZ twins pairs and 232
DZ twin pairs [Whelan et al., 2015]). The differences
between our study and the Whelan study relate to the
quality of the dataset used and the study design. A signifi-
cant advantage in the use of the HCP dataset is that it not
only includes twins but also their non-twin siblings. Fami-
lies within our data consisted of twin pairs, non-twin sib-
lings and twin pairs with their non-twin sibling. Posthuma
and Boomsma [2000] have shown that within a family,
adding one or two non-twin siblings along with their twin
siblings is an advantage in heritability analysis by reduc-
ing the sample size needed and increase the statistical
power to detect heritability [Posthuma and Boomsma,
2000]. Also the HCP dataset has high-resolution MRI T1-
weighted scans with voxel dimensions of 0.7 3 0.7 3

0.7 mm, (whereas QTIM data has a voxel dimension of
0.94 3 0.98 3 0.98mm). Implicitly, the specific subfields
can actually be resolved using HCP data whereas this has
yet to be proven to be the case in more standard T1-
weighted acquisition [Pipitone et al., 2014]. Furthermore,
in our study the heritability estimates are presented bilat-
erally and we explore the effects of ipsilateral hippocam-
pal volume and TBV on subfield volume heritability,
whereas only the overall heritability of each subfield vol-
umes was described by Whelan et al. [2015]. This is a criti-
cal distinction as we clearly show a significant impact of
ipsilateral hippocampal volume and a moderate impact of
TBV on subfield heritability. We note here that our find-
ings report similar results for the heritability of the hippo-
campus, where Whelan et al. [2015] reported an estimate
of 88% heritability in total hippocampal volume and our
study estimates slightly lower heritability of 80% and 81%
for left and right hippocampal volume, respectively. Simi-
larly across subfields the heritability estimates were lower
in our study compared to Whelan et al. [2015]. Heritability
estimates for unadjusted left (77%) and right (80%) CA4/

DG were similar to estimates reported by Whelan et al.,
for the CA4 region (79%) and the granule cells of the DG
region (82%). Our article also extends the analysis through
the use of the bivariate model. This approach has previ-
ously only been used to examine TBV with total hippo-
campal volumes [DeStefano et al., 2009]. Lastly, the
segmentation process differs between both studies. We
used MAGeT Brain, the Whelan study used FreeSurfer
(which was previously validated against our own Winter-
burn protocol [Iglesias et al., 2015]), which results in dif-
ferences between the hippocampal subfield definitions and
the methodology used to define these subfields. In our
study, we define five subfields which included the CA1,
CA2/CA3, CA4/DG, SRLM, and subiculum [Winterburn
et al., 2013]. Whereas, subfield delineation in the Whelan
et al. study did not include the CA2 region in their herita-
bility estimates. However, the Whelan paper examined
other regions which we did not, such as the fimbra (white
matter tracts) and HATA area. The framework provided
in our study allows us to examine the role of TBV and
overall hippocampal volume to the heritability of individ-
ual subfields, which will allow for further investigation
with respect to newer subfield definitions that are the
product of the ongoing subfield segmentation harmoniza-
tion effort [Yushkevich et al., 2015a].

The use of twin/non-twin sibling HCP design and data-
set presents limitations due to variation in intrauterine
environment and pre/postnatal complications. Unfortu-
nately, to the best of our knowledge, this information is
not provided for HCP subjects. As part of the exclusion
process, individuals that were premature (see method sec-
tion) was excluded but other prenatal or postnatal infor-
mation was not collected which may affect hippocampal
volume and in turn affect heritability estimates. For exam-
ple, the CA1 region is hypoxia-sensitive and prenatal hyp-
oxia may be related to greater neuronal loss in the CA1
region compared to other regions [Kuchna, 1994].

The HCP scans used in this study are of high-resolution
and -contrast with 0.7 mm isotropic voxels. Figure 1 and
Figure S2 in the Supporting Information section demon-
strate that the internal structure of the hippocampus can
be distinguished in the sagittal and coronal view. While
work from our group has assessed the feasibility of sub-
field segmentation using standard T1-weighted images
[Amaral et al., in press; Pipitone et al., 2014], as has work
from the FreeSurfer group [Iglesias et al., 2015, 2016]
(although see refs for criticism with respect to FreeSurfer
subfield segmentations [de Flores et al., 2015; Wisse et al.,
2014]), it is important to note that there are other options
that are often used for subfield level segmentations. Other
prevalent techniques use T2-weighted images that are
high-resolution in the coronal plane and low-resolution
outside of this plane [Goubran et al., 2016; Yushkevich
et al., 2015b]. However, it is likely that many of the well-
documented limitations inherent to other subfield segmen-
tation techniques [Yushkevich et al., 2015a], are also
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relevant here. These limitations include ambiguity in the
identification of the CA2/3 definition and the CA1/subic-
ulum border.

A limitation found in MRI-based neuroanatomical studies
is that it cannot account for all cytoarchitectonic features
within the subfields of the hippocampus. In our segmenta-
tion process, a combination of intensity, contrast, and geo-
metric rules based on known cytoarchitectonic definitions
were used to define the hippocampal subfields [Winterburn
et al., 2013]; however, there are specific boundaries where
there is less certainty across subfield protocols. For example,
defining the boundary between the CA1 region and subicu-
lum is difficult and is one of the most variable delineations
in hippocampal subfield definitions [Yushkevich et al.,
2015a]. This is not only true at the level and resolution
offered by MRI data, but even when attempting to identify
this boundary at the microscopic-level using histological
data [Adler et al., 2014]. This heterogeneity in the ability to
identify the subiculum will logically contribute to possible
measurement errors and higher uncertainty in structure-
specific heritability estimates. The ambiguity in this bound-
ary at the level of subiculum/CA1 delineation may have
also contributed to the lack of significance in our left CA1
heritability estimates after adjusting for TBV and left hippo-
campal volume together in the ACE univariate model. How-
ever, when we did not adjust for TBV or left hippocampal
volume our heritable estimates for the CA1 region are signif-
icant (comparing univariate ACE against CE model) for
both right and left CA1 volume, 73% and 72%, respectively.
Similarly, Whelan et al. [2015] reported a slightly higher and
significant heritability estimate of 84% for CA1 volume. The
CA2/CA3 and SRLM subfields are also regions that are dif-
ficult to define based on the thin and complex structure on
T1 weighted images. Winterburn et al. [2013] showed low
test-retest results of the manual segmentation protocol for
the CA2/CA3 and the SRLM region. Also Pipitone et al.
[2014] showed that the CA2/CA3 and SRLM region are less
reliably reproduced segmentation on standard 1 3 1 3

1 mm3 T1-weighted images out of the five subfields. In addi-
tion, Wisse et al. [2014] demonstrated lower accuracy
through automated segmentation of hippocampal subfields
on 7T images on small subfield such as the CA2/CA3
regions which are undersegmented. In our study, the herita-
bility was higher in the left CA2/CA3 region when adjust-
ing for total hippocampal volume compared to no
adjustment which is the opposite trend compared to other
subfields regions in the ACE univariate model. These limita-
tions in defining the CA2/CA3 and SRLM region can poten-
tially influence the accuracy of the heritability scores.
Therefore, higher resolution images, the use of T2 weighted
images, and methodological improvements to segmentation
techniques may further help with defining these regions. As
such, direct comparison of results between studies need to
be made with caution and a detailed understanding of these
different protocols to define the subfields.

There are different types of segmentation tools available
and used to segment the hippocampus such as FreeSurfer

[Fischl et al., 2002] and Automatic Segmentation of Hippo-
campal Subfields (ASHS [Yushkevich et al., 2015b]). Com-
parisons have been done between FreeSurfer and MAGeT
Brain by Pipitone et al. [2014] demonstrating the robust-
ness of MAGeT brain on whole hippocampal segmenta-
tions. A recent comparison of automated segmentation
approaches, including MAGeT Brain, ASHS, FreeSurfer,
and a Bayesian inference model [Van Leemput et al., 2009]
has not been done. Therefore, in future research a compar-
ison study on automatic segmentations protocols will be of
great value. Furthermore, it will be interesting to compare
the automated segmentation methods on the HCP dataset,
along with calculating heritability estimates of hippocam-
pal subfield volumes across each segmentation protocol to
evaluate the reliability in the heritability scores.

In conclusion, we have demonstrated the heritability of
hippocampal subfield volumes using the HCP data in a
twin and non-twin sibling design using a univariate and
bivariate model. The univariate model allowed us to
examine the heritability of each subfield itself adjusting for
TBV and ipsilateral hippocampal volume, whereas in the
bivariate model we were able to examine the shared heri-
tability and genetic correlation between two traits. The
univariate model demonstrated the heritability of the sub-
field volumes was lower but significant compared to the
heritability of the left or right hippocampal volume. From
the bivariate model, shared heritability between many sub-
fields and the hippocampal volume was high and signifi-
cant. Identifying subfields that have significant and high
heritability estimates such as the right subiculum, right
CA2/CA3, and right CA4/DG demonstrates their utility
as quantitative phenotypes in neurological and psychiatric
illnesses.

The use of both univariate and bivariate models in the
future allows for the examination of different aspects of
the genetic architecture on the target traits. The univariate
model demonstrates the heritability of hippocampal sub-
field volumes in isolation after removing the influence of
TBV and ipsilateral hippocampal volume. However, the
bivariate model allows us to capture the influence one trait
has on another by examining the shared heritability
between the two traits. Our univariate model has shown
that volumes of smaller target structures are influenced by
larger structures that contain the smaller targeted structure
and this was quantified by shared heritability estimates in
the bivariate model. Therefore, it is important to look at
the heritability of a structure in isolation but also in rela-
tion to other neuroanatomical structures to get a full
understanding of the genetic architecture and genetic
interaction found within and between brain structures. As
segmentation and image acquisition techniques improve,
sample sizes available will also further improve heritabil-
ity and genome-wide association analysis. Our work pro-
vides a basis for similar ongoing studies, such as those
pursued through the ENIGMA consortium [Stein et al.,
2012; Thompson et al., 2014]. Therefore, the data presented
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in this manuscript further motivate the association
between the genetic basis of the structure and function of
hippocampal subfields in cases of normal brain function
and dysfunction.
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