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Abstract: Schizophrenia is a complex disorder that may be the result of aberrant connections between
specific brain regions rather than focal brain abnormalities. Here, we investigate the relationships
between brain structural connectivity as described by network analysis, intelligence, symptoms, and
polygenic risk scores (PGRS) for schizophrenia in a group of patients with schizophrenia and a group
of healthy controls. Recently, researchers have shown an interest in the role of high centrality networks
in the disorder. However, the importance of non-central networks still remains unclear. Thus, we spe-
cifically examined network-averaged fractional anisotropy (mean edge weight) in central and non-
central subnetworks. Connections with the highest betweenness centrality within the average network
(>75% of centrality values) were selected to represent the central subnetwork. The remaining connec-
tions were assigned to the non-central subnetwork. Additionally, we calculated graph theory measures
from the average network (connections that occur in at least 2/3 of participants). Density, strength,
global efficiency, and clustering coefficient were significantly lower in patients compared with healthy
controls for the average network (pFDR< 0.05). All metrics across networks were significantly associ-
ated with intelligence (pFDR< 0.05). There was a tendency towards significance for a correlation
between intelligence and PGRS for schizophrenia (r 5 20.508, p 5 0.052) that was significantly medi-
ated by central and non-central mean edge weight and every graph metric from the average network.
These results are consistent with the hypothesis that intelligence deficits are associated with a genetic
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INTRODUCTION

Schizophrenia is a neuropsychiatric disorder character-
ized by delusions, hallucinations, absence of function, and
cognitive impairments. It is increasingly seen as the result
of aberrant connections between specific brain regions
rather than focal brain abnormalities (Friston, 1998; Friston
and Frith, 1995; Stephan et al., 2006, 2009). The dysconnec-
tivity hypothesis of schizophrenia suggests that abnormal
brain integration may underlie the cognitive profile and
symptoms found in the disorder. There is consistent evi-
dence supporting reduced levels of overall structural con-
nectivity in schizophrenia using diffusion tensor MRI (DT-
MRI) with frontal, parietal, and temporal projections being
the most consistently impaired in the disorder (Skudlarski
et al., 2010; van den Heuvel et al., 2010; van den Heuvel
and Fornito, 2014; Zalesky et al., 2011). Additionally, more
specific white matter alterations in the uncinate fasciculus,
corpus callosum, cingulum, and arcuate fasciculus are con-
sistently described (reviewed in Burns et al., 2003; Ellison-
Wright and Bullmore, 2009; McIntosh et al., 2005). Even
though a number of studies have discussed the importance
of white matter impairments in schizophrenia, there is still
no consensus on how to measure structural dysconnectiv-
ity in the disorder. One approach is to characterize how
impairments in white matter microstructure affect the
organization of the structural connectome using graph the-
ory, which conceives the brain as a network composed of
nodes and the connections (edges) between them (Bull-
more and Sporns, 2009). Graph theory segregation mea-
sures, such as clustering coefficient and modularity, are
reportedly altered in schizophrenia (Alexander-Bloch
et al., 2010; van den Heuvel et al., 2013; van den Heuvel
and Fornito, 2014; Zalesky et al., 2011) suggesting a more
segregated pattern of network organization. In line with
this hypothesis, numerous authors have found longer path
lengths and reductions in communication efficiency, pro-
posing reduced communication between more segregated
areas of the brain (reviewed in van den Heuvel and
Fornito, 2014).

Nodes and edges can be associated with peripheral or
more central tasks, depending on their degree of connec-
tivity and their position within or between modules
(Sporns, 2011). Nodes characterized by high degree and
high centrality are termed “hubs.” Several lines of investi-
gation have suggested that topological organization of hub
nodes appear to be altered in schizophrenia. Both struc-
tural covariance and structural connectivity studies in
schizophrenia suggest a less hierarchical organization, a

less prominent role of high degree hub regions such as the
prefrontal and parietal cortex, while nonfrontal hubs
emerge more prominently (Bassett et al., 2008; Guusje Col-
lin et al., 2013; Zhang et al., 2012). Rubinov et al. (2009)
suggested that a characteristic of the disorder is a random-
ization of connections, an alteration of community struc-
ture which results in impaired integration and segregation,
and reduced centrality of cortical hubs. Most brain imag-
ing studies in schizophrenia focus on these effects in net-
works with high centrality while the remaining
connections are overlooked (Collin et al., 2014; Schmidt
et al., 2016). Owing to the apparent hierarchical disorgani-
zation of the brain in schizophrenia, the role of these cen-
tral nodes may be displaced to other brain regions or
networks. Thus, in this study, we address specifically net-
works based on centrality to investigate this hypothesis.
Even though the cognitive and symptomatic implications
of various network metrics have been addressed, there has
been little discussion about the role of non-central net-
works in the disorder.

Schizophrenia is associated with cognitive deficits; some
correlations between intelligence and the brain’s function
and structure have been described in healthy participants.
Although there are a small number of established associa-
tions between intelligence and brain basic structural
parameters, such as fractional anisotropy (FA), the rela-
tionship between the observed white matter alterations in
schizophrenia and intelligence remains unclear. However,
graph theory metrics may be able to provide greater
explanatory power for these cognitive deficits in schizo-
phrenia than more traditional structural connectivity mea-
sures, such as FA (Alloza et al., 2016). There is some
evidence that structural network metrics are related to
intelligence and that there is a degree of shared genetic
overlap between schizophrenia and these measures. For
instance, Li et al. (2009) found significant correlations
between intelligence and network properties in a healthy
cohort of subjects. Specifically, higher intelligence scores
were associated with shorter path lengths and higher
global efficiency. Yeo et al. (2016) showed that global mea-
sures of increased characteristic path length and reduced
overall connectivity predicted lower general intelligence in
a group of patients with schizophrenia, while van den
Heuvel et al. (2009) also found a strong negative correla-
tion between characteristic path length and IQ suggesting
that more efficiently connected brains tend to show higher
levels of intelligence. Hence, graph theory metrics may
provide an insight into the underlying brain structural
substrate for intelligence.
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Differences in structural connectivity are useful for
establishing brain topology abnormalities in schizophrenia
compared with healthy participants. However, as our aim
is to shed light on the clinical manifestation of schizophre-
nia, we therefore examine the extent to which clinical
symptoms are associated with brain extracted measures.
What we know about brain connectivity and clinical
symptoms is largely based on empirical studies that inves-
tigate the relationship between white matter and different
symptom’s scales. For instance, FA of specific white matter
tracts has been significantly associated with positive symp-
toms in the disorder. These tracts include the internal cap-
sule, fronto-occipital fasciculus, superior longitudinal
fasciculus, cingulum, and corpus callosum (Mitelman
et al., 2007; Rotarska-Jagiela et al., 2008; Seok et al., 2007).
To date, several authors have examined the effects of
graph theory metrics of connectivity on symptomatology
in schizophrenia. Positive symptom severity has been asso-
ciated with reduced overall connectivity, increases and
decreases in structural and functional coupling, strength of
temporal and frontal regions, reduced network efficiency,
and reduced clustering (reviewed in van den Heuvel and
Fornito, 2014). Wang et al. (2012) found significant associa-
tions between global efficiency and positive, negative, and
total symptoms. However, most studies focus on func-
tional connectivity determined using fMRI and thus,
uncertainty remains regarding the relationship between
structural connectivity measured in central, non-central,
and average networks and genetic risk factors.

Graph theory analysis has shown that impairments pre-
sent in patients with schizophrenia are also found in their
relatives suggesting a genetic basis (Clemm von Hohen-
berg et al., 2014; Guusje Collin et al., 2014; Skudlarski
et al., 2013). Moreover, topological network properties
have been found to be heritable (Thompson et al., 2013).
For instance, in white matter FA, the variance explained
by genetic factors has been reported to be between 75%
and 90% in almost every white matter tract (Chiang et al.,
2011). Moreover, in the same study, heritability of FA was
associated with the level of IQ. Genome-wide association
studies (GWAS) have indicated a polygenic component of
schizophrenia with hundreds of common alleles of small
effect at the population level having been reported (Inter-
national Schizophrenia Consortium et al., 2009; Schizo-
phrenia Working Group of the Psychiatric Genomics
Consortium, 2014). Thus far, only a small number of stud-
ies have analyzed the relationship between polygenic risk
scores (PGRS), neuroimaging biomarkers, and/or cogni-
tion (Birnbaum and Weinberger, 2013; McIntosh et al.,
2013; Whalley et al., 2015). Connectomic measures are,
potentially, possible intermediate phenotypes between
genetic liability and cognitive deficits in schizophrenia.

In this study, we investigate the relationships between
brain structural connectivity described by network-
averaged FA (mean edge weight) measured in central and
non-central networks and by graph theory metrics

calculated from the average network (defined as networks
in which connections that occur in at least two-thirds of
participants are retained) in relation to intelligence, clinical
symptoms and PGRS for schizophrenia in patients with
schizophrenia and healthy controls. We will focus on
graph theory metrics that have been consistently reported
to be impaired in schizophrenia, namely mean edge
weight, density, strength, clustering coefficient, and global
efficiency in the average network. Due to the severely
affected hierarchical disorganization of the brain found in
schizophrenia, our aim is to investigate the roles central
and non-central network mean edge weight play in this
disorder. Thus, this is the first study where intelligence,
symptoms, and PGRS have been studied together in rela-
tion to networks based on their centrality. Specifically, we
hypothesized that impaired structural organization of the
networks (decreased mean edge weight, density, strength,
clustering coefficient, and global efficiency) will be associ-
ated with lower intelligence, higher genetic risk factor for
schizophrenia, and higher symptom score.

METHODS

Participants

Information about participants has been reported in
detail previously (Whalley et al., 2015). Participants were
recruited across Scotland as part of the Scottish Family
Mental Health Study. DT-MRI data were acquired from a
total of 28 individuals diagnosed with schizophrenia and
36 healthy controls. Diagnosis of schizophrenia was con-
firmed using the structured clinical interview for DSM IV
(SCID) administered by one of two trained psychiatrists
(First et al., 2002). Exclusion criteria included any major
medical or neurological conditions, or any personal history
of substance misuse in the last year. Additionally, subjects
were excluded if there were MRI safety considerations. A
detailed description of the study was given to all recruited
individuals, and all participants provided written informed
consent. The study was approved by the Multicentre
Research Ethics Committee for Scotland (09/MRE00/81).

Scan Acquisition

All imaging data were collected on an MAGNETOM
Verio 3T MRI scanner running Syngo MR B17 software
(Siemens Healthcare, Erlangen, Germany). For each sub-
ject, whole-brain DT-MRI data were acquired using a pro-
totype single-shot spin-echo echo-planar (EP) imaging
sequence with diffusion-encoding gradients applied in 56
directions (b 5 1,000 s/mm2) and six T2-weighted (b 5 0 s/
mm2) baseline scans. Fifty-five 2.5-mm-thick axial slices
were acquired with a field-of-view of 240 3 240 mm and
matrix 96 3 96 giving 2.5 mm isotropic voxels. In the
same session, a 3D T1-magnetization-prepared rapidly
acquired gradient-echo (MPRAGE) volume was acquired
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in the coronal plane with 160 contiguous slices and 1 mm
isotropic voxel resolution.

Image Analysis

Image processing

Each 3D T1-weighted MPRAGE volume was parcellated
into 85 (Desikan-Killiany atlas; Desikan et al., 2006) and 165
(Destrieux atlas) regions-of-interest (ROIs) using FreeSurfer
(http://surfer.nmr.mgh.harvard.edu). The results of the
segmentation procedure were then used to construct grey
and white matter masks for use in network construction
and to constrain the tractography output as described
below. Using tools provided by the FDT package in FSL
(http://fsl.fmrib.ox.ac.uk/fsl), the DT-MRI data were pre-
processed to reduce systematic imaging distortions and
bulk subject motion artifacts by affine registration of all
subsequent EP volumes to the first T2-weighted EP volume
(Jenkinson and Smith, 2001). Skull stripping and brain
extraction were performed on the registered T2-weighted
EP volumes and applied to the FA volume calculated by
DTIFIT in each subject (Basser and Pierpaoli, 1996; Smith,
2002). The neuroanatomical ROIs determined by Freesurfer
were then aligned from 3D T1-weighted volume to diffu-
sion space using a cross-modal nonlinear registration
method. As a first step, linear registration was used to ini-
tialize the alignment of each brain-extracted FA volume to
the corresponding FreeSurfer extracted 3D T1-weighted
brain volume using a mutual information cost function and
an affine transform with 12 degrees of freedom (Jenkinson
and Smith, 2001). Following this initialization, a nonlinear
deformation field based method (FNIRT) was used to refine
local alignment (Andersson et al., 2007). FreeSurfer segmen-
tations and anatomical labels were then aligned to diffusion
space using nearest neighbour interpolation.

Tractography

Whole-brain probabilistic tractography was performed
using FSL’s BedpostX/ProbTrackX algorithm (Behrens
et al., 2007). Probability density functions, which describe
the uncertainty in the principal directions of diffusion, were
computed with a two-fiber model per voxel (Behrens et al.,
2007). Streamlines were then constructed by sampling from
these distributions during tracking using 100 Markov Chain
Monte Carlo iterations with a fixed step size of 0.5 mm
between successive points. Tracking was initiated from all
white matter voxels (Buchanan et al., 2014) and streamlines
were constructed in two collinear directions until termi-
nated by the following stopping criteria designed to mini-
mize the amount of anatomically implausible streamlines:
(i) exceeding a curvature threshold of 708; (ii) entering a
voxel with FA below 0.1 (Verstraete et al., 2011); (iii) enter-
ing an extracerebral voxel; (iv) exceeding 200 mm in length;
and (v) exceeding a distance ratio metric of 10. The distance
ratio metric (Bullitt et al., 2003), excludes implausibly

tortuous streamlines. For instance, a streamline with a total
path length 10 times longer than the distance between end
points was considered to be invalid. The values of the cur-
vature, anisotropy, and distance ratio metric constraints
were set empirically and informed by visual assessment of
the resulting streamlines.

Network construction

FA-weighted networks were constructed by recording
the mean FA value along streamlines connecting all ROI
(network node) pairs. The endpoint of a streamline was
considered to be the first grey-matter ROI encountered
when tracking from the seed location.

In this study, we assume the existence of a central sub-
network that is shared across participants (Reijmer et al.,
2016). To identify this central subnetwork, the average brain
network across both patients and controls was determined
by including those connections which occurred in more
than two-thirds of the participants (de Reus and van den
Heuvel, 2013). Connections with the highest centrality (the
fraction of all shortest paths in the network that contain a
given connection, also referred as “edge betweenness cen-
trality”) within this average network (>threshold value of
75%) were selected and used to create a mask representing
the central subnetwork. The remaining connections were
assigned to the non-central subnetwork mask. Therefore,
connections with high values of centrality are involved in a
large number of shortest paths and as a consequence con-
tribute to the global efficiency of the network. These masks
were then used as templates and applied to each partici-
pant’s connectivity matrix to select central and non-central
subnetworks. As the threshold value of 75% is arbitrary,
analyses were repeated for thresholds of 25% and 50% of
connections with highest centrality.

Organizational properties of the different networks were
then obtained using the brain connectivity toolbox (www.
brain-connectivity-toolbox.net). For each FA-weighted con-
nectivity matrix for the average network, five global net-
work measures were computed, namely, mean edge
weight (mean value of FA across the network), density
(the fraction of present connections to possible connec-
tions), strength (the average sum of weights per node),
clustering coefficient (fraction of triangles around a node),
and global efficiency (the average of the inverse shortest
path length). As a result of possible alterations in topology
when extracting central and non-central networks, only
mean edge weight was computed for these subnetworks
(Reijmer et al., 2016).

Polygenic Risk Score Calculation

PGRS is a method to aggregate the small effects that con-
tribute to the liability of schizophrenia on predicting the dis-
order. The capacity to predict onset of schizophrenia has
been established and has been reported to explain up to 7%
of additive genetic liability for the disorder (Schizophrenia
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Working Group of the Psychiatric Genomics Consortium,
2014). PGRS for schizophrenia were created for all individu-
als with suitable genotype data; only genotypes passing strin-
gent quality control were used in analyses. PGRS for
schizophrenia were estimated using summary data from an
independent GWAS of schizophrenia in 150,064 individuals
(36,989 cases and 113,075 controls), conducted by the Psychi-
atric Genomics Consortium (Schizophrenia Working Group
of the Psychiatric Genomics Consortium, 2014). PGRS were
estimated using the PRSice software package according to
previously described protocols (Euesden et al., 2015), with
linkage disequilibrium and distance thresholds for clumping
of r2 5 0.2 and within a 300 kb window. Five scores were cre-
ated for each individual using single-nucleotide polymor-
phisms (SNPs) selected according to the significance of their
association with the phenotype at nominal p value thresholds
of 0.01, 0.05, 0.1, 0.5, and 1.0 (all SNPs). For the analysis, we
used the threshold of 0.5 which explained the most variance
in our data and has been reported to maximally capture
schizophrenia liability (International Schizophrenia Consor-
tium et al., 2009). The four multidimensional scaling factors
were entered as additional “nuisance” covariates to control
for population stratification, along with age.

Cognitive Testing and Medication

Participants underwent cognitive assessment using tests
from the Wechsler Adult Intelligence Scale (WASI; Wechs-
ler, 1955) using standard administration and scoring pro-
cedures. Symptom severity was assessed using the
Positive and Negative Symptoms Scale (PANSS) (Kay
et al., 1987). Full-scale IQ was derived from four subtests
of the WASI: vocabulary, block design, similarities, and
matrix reasoning. Participants also provided information
on antipsychotic medication which was transformed into
chlorpromazine equivalents (CPZ) (Woods, 2003).

Statistical Analysis

Group differences were analyzed using a multivariate
general linear model (GLM). Dependent variables were

mean edge weight for central, non-central, and connectiv-
ity metrics for the average networks separately. Age, sex,
diagnosis, and the interaction between diagnosis and sex
were entered as predictors. FA was added as additional
predictor in the average network analysis. Owing to small
sample size, effect sizes were then calculated using
Hedges’ g and based on the p value of the individual anal-
ysis of covariance (ANCOVAS). Using the whole sample,
regression analyses were then performed separately for
central, non-central, and average metrics and IQ. Due to
the distribution of data, PANSS positive, negative, and
total symptom scores were only analyzed in the patient
sample. For both models, age, gender, and CPZ were used
as covariates. p values (a 5 0.05) were corrected for multi-
ple comparisons using false discovery rate (FDR; pFDR)
(Benjamini and Hochberg, 1995). Analyses were repeated
for varying threshold values to define the number of cen-
tral connections (25%, 50%, and 75%). Analyses were also
repeated for different Freesurfer brain atlases (Desikan
and Destrieux). Regression models were then applied to
investigate the association between risk score and case-
control status in the whole sample. Connectivity metrics
were dependent variables and principal components for
population stratification, PGRS, age, gender, and diagnosis
were used as predictors. All statistical analyses were per-
formed with R version 3.2.3 (https://www.r-project.org).

Mediation analysis was subsequently used to examine
the hypothesis that higher PGRS is related to poorer intel-
ligence via reduced structural connectivity. We employed
the PROCESS macro in SPSS 22.0 (Hayes and Rockwood,
2016) to formally quantify mediation effects using 5000
bootstrapped samples. Due to our clear directional hypoth-
esis, a one-tailed test of mediation was conducted (http://
www.afhayes.com). Mediation effects were considered sig-
nificant if the confidence interval (CI) did not include zero
(Preacher and Hayes, 2008).

RESULTS

Table I shows the demographic data for both healthy
controls and schizophrenia patients.

TABLE I. Demographic details for healthy controls and patients with schizophrenia

HC SZ P value

Age in years (SD) 37.22 (14.99) 38.04 (10.34) 0.807
Gender, M/F (%) 53/47 57/43 0.733
IQ (SD) 116.11 (10.75) 105.09 (15.89) 0.003

PANSS positive (SD) [range] 12.30 (5.19) [7, 28]
PANSS negative (SD) [range] 13 (7.05) [7, 35]
PANSS total (SD) [range] 51.64 (17.33) [34, 91]
Age of onset in years (SD) 25.25 (9.89)
Duration of illness in years (SD) 13.58 (10.30)
CPZ (SD) 434.97 (371.90)

HC, healthy controls; SZ, schizophrenia; CPZ, chlorpromazine equivalents; SD, standard deviation.
Bold typeface indicates significant group difference (P< 0.05).
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Average Network

Diagnosis (F (5, 54) 5 703.1, p< 0.001, partial eta
squared 5 0.080), age (F (5, 54) 5 137.64, p< 0.001, partial
eta squared 5 0.030), gender (F (5, 54) 5 19.80, p< 0.001,
partial eta squared 5 0.032), and mean edge weight (FA) (F
(5, 54) 5 15263.7, p< 0.001, partial eta squared 5 0.001)
effects were significant for the average network graph the-
ory metrics.

As indicated in Table II, there were significant differ-
ences in network density (Hedges’ g 5 0.54 (0.03, 1.05),
pFDR 5 0.04), strength (Hedges’ g 5 1.08 (0.54, 1.62),
pFDR< 0.001), global efficiency (Hedges’ g 5 1.95 (1.34,
2.56), pFDR< 0.001), and clustering coefficient (Hedges’
g 5 1.94 (1.33, 2.55), pFDR< 0.001) between groups. Mean
edge weight showed a tendency towards significance
(Hedges’ g 5 0.43 (20.07, 0.93), pFDR 5 0.08). All metrics
were reduced in patients compared to healthy controls.
Boxplots for group differences can be found in Supporting
Information, Figure 1.

Central Subnetwork

Figure 1 shows the network maps for the central (>75%
of centrality values) and non-central subnetworks across
all participants. There was no significant difference in cen-
tral subnetwork mean edge weight between patients with
schizophrenia and healthy controls (mean HC 5 0.45, SD
5 6 0.02; mean SZ 5 0.44, SD 5 6 0.02) (Hedges’ g 5 0.36
95% CI (20.14, 0.86), p> 0.05). Central mean edge weight
was reduced in patients compared with healthy controls.

Non-central Subnetwork

There was a tendency towards significance for a differ-
ence in mean edge weight between patients with schizo-
phrenia and healthy controls (mean HC 5 0.44, SD
5 6 0.02; mean SZ 5 0.43, SD 5 6 0.02) (Hedges’ g 5 0.45
95% CI (20.06, 0.95), p 5 0.07). Non-central mean edge
weight was reduced in patients compared with healthy
controls.

Age, Antipsychotic Medication, and Illness

Duration

There were positive significant associations between age,
mean edge weight (r 5 20.290, p 5 0.02) and clustering
coefficient (r 5 20.269, p 5 0.03) for the average network.
However, these associations did not survive multiple com-
parison correction (pFDR> 0.05). Antipsychotic medication
show a significant effect on mean edge weight (r 5 20.262,
pFDR 5 0.048), strength (r 5 20.287, pFDR 5 0.048), global
efficiency (r 5 20.263, pFDR 5 0.048), and clustering

TABLE II. Mean 6 standard deviation (SD) values of con-

nectivity metrics in the average network for healthy

controls and patients with schizophrenia

Average

Metric HC SZ PFDR

Mean edge weight 0.44 6 0.02 0.43 6 0.02 0.08
Density 33.15 6 0.92 32.56 6 1.25 0.04

Strength 12.31 6 0.57 11.88 6 0.73 <0.001

Global efficiency 0.30 6 0.01 0.30 6 0.01 <0.001

Clustering coefficient 0.30 6 0.01 0.30 6 0.01 <0.001

HC, healthy controls; SZ, schizophrenia.
Bold typeface indicates significant group difference (PFDR< 0.05).

Figure 1.

Medium view of (A) central (>75% of centrality values) and (B)

non-central subnetworks for all participants indicating node loca-

tion and edge (FA) strength. The nodes which are connected by

edges with the highest weights (FA> 0.5) in the central subnet-

work are brainstem, left hemisphere precuneus cortex, thala-

mus, caudate, ventral diencephalon and superior frontal gyrus,

bilateral caudal anterior division of the cingulate cortex, and

isthmus division of the cingulate gyrus. Nodes are color-coded

to indicate the lobe in which they are situated. [Color figure can

be viewed at wileyonlinelibrary.com]
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coefficient (r 5 20.270, pFDR 5 0.048) for the average
network. Neither antipsychotic medication nor age had a
significant effect on central mean edge weight. However,
age (r 5 20.313, p 5 0.012) and CPZ (r 5 20.271, p 5 0.033)
showed a significant effect on non-central mean edge
weight. There were no significant associations between
network metrics and illness duration for any of the metrics
(pFDR> 0.05).

IQ

Regression coefficients between IQ and the average net-
work graph theory metrics are shown in Table III. All met-
rics were significantly associated with IQ (r range
0.284–0.471). For central network, mean edge weight was
significantly associated with IQ (r 5 0.344, p 5 0.010). For
non-central network, mean edge weight was also signifi-
cantly associated with IQ (r 5 0.338, p 5 0.014). Medication,
as CPZ equivalents, did not show any significant effect in
central, non-central, and average networks. Scatterplots
with the associations between metrics and IQ can be found
in Supporting Information, Figures 2 and 3.

Clinical Symptoms

Table IV shows the regression coefficients for positive,
negative, and total symptom scores and central, non-cen-
tral mean edge weight, and average network connectivity
metrics. Central network mean edge weight showed a ten-
dency towards significance in relation to total symptoms
(r 5 20.348, p 5 0.073). The addition of medication as a
covariate in the model made the associations weaker and
non-significant (p> 0.05). However, medication did not
have any significant effect in the regression model.

Polygenic Risk Score

The association between genetic risk score at a threshold
of p� 0.5 and case–control status in the total sample was
significant (p< 0.05). The regression estimate of the genetic
risk score at the threshold p� 0.5 was 0.44 (adjusted R-
square 5 0.057; p 5 0.029).

Next, we studied the association between central and
non-central mean edge weight and average network graph

theory measures and PGRS. None of the connectivity met-
rics was significantly associated with PGRS across networks
(pFDR> 0.05). Regression analysis between IQ and PGRS at
a threshold of p� 0.5 showed a tendency towards signifi-
cance (r 5 20.742, p 5 0.052). There was no significant corre-
lation between PGRS and symptoms (pFDR> 0.05).

Mediation Analysis

We aimed to identify mediation candidates that were
consistent with the hypothesis that a greater genetic pre-
disposition for schizophrenia is partly related to lower
intelligence through the disruption of brain connectivity.
As indicated by the bivariate association, the correlation
between IQ and PGRS (r 5 20.742, p 5 0.052) showed a
tendency towards significance. The negative correlation
between PGRS and IQ suggests a genetic liability to intelli-
gence; mediation analysis allows us to quantify the role of
topological network measures in this relationship. Given
the substantial effect sizes, and the need to consider medi-
ation in terms of zero and nonzero rather than using p val-
ues in isolation (Hayes, 2009), we tested whether the direct
effect of PGRS and IQ was significantly mediated by mean
edge weight and average network metrics (i.e., magnitude
of change from path c to path c0; Fig. 2A). The results are
shown in Figure 2B,C. A bias-corrected bootstrap CI for
the indirect effect based on 5,000 bootstrap samples served
as a formal statistical test of the degree to which mean
edge weight mediated the relationship between PGRS and
IQ. The 30.52% reduction in magnitude (b 5 20.154 to
b 5 20.107) identified central mean edge weight as a sig-
nificant partial mediator (CI not containing zero; 20.363 to
20.055). For non-central mean edge weight (Fig. 2C), the
reduction in magnitude was 46.62% (b 5 20.474 to
b 5 20.253) identifying also non-central mean edge weight
as a significant partial mediator (CI 20.673 to 20.050). The
model was corrected for age and population stratification
components. Additionally, Table V shows the mediation
results for the metrics of the average network.

TABLE III. Correlation matrix for IQ and connectivity

metrics for the average network

Metric R PFDR

Mean edge weight 0.343 0.016

Density 0.284 0.045

Strength 0.471 0.004

Global efficiency 0.394 0.007

Clustering coefficient 0.434 0.004

Bold type indicates significant associations (PFDR< 0.05).

TABLE IV. Correlation matrix for PANSS and connectivity

metrics for central (>75% of centrality values), non-central,

and average networks

Metric Positive Negative Total

Central mean edge weight 20.282 20.184 20.348
Non-central mean edge weight 20.206 20.163 20.268

Average Mean edge weight 20.101 20.118 20.178
Density 20.195 20.041 20.092
Strength 20.201 20.114 20.193
Global efficiency 20.132 20.133 20.195
Clustering coefficient 20.114 20.119 20.178

This table shows the associations between symptoms and metrics
using CPZ as a covariate.
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Additional Analyses: Network Density

Using network density as a covariate did not signifi-
cantly affect the results of any of the regression models
described above.

Additional Analyses: Thresholds

Results for the different thresholds of centrality (25%
and 50%) showed that associations between intelligence,
symptoms, and mean edge weight were comparable across
thresholds (data not shown).

Additional Analyses: Destrieux Atlas

Group differences using the Destrieux atlas (165 regions)
as a parcellation scheme showed no significant differences
between patients and controls for mean edge weight for
both central and non-central mean edge weight (p> 0.05).
Graph theory metric results from the average network

showed larger differences between groups and stronger
associations with intelligence. Results were in the expected
direction. Nevertheless, analyses showed comparable
results across both atlases for central and non-central
mean edge weight and metrics from the average network
(data not shown).

DISCUSSION

This study was set out to assess the ability of graph the-
ory metrics in schizophrenia to build a coherent model
from brain structure, cognition, and genetics. This is, to our
knowledge, the first study reporting results for both high
and low centrality networks in schizophrenia, and provides
much-needed structural MRI perspective on links between
brain connectivity and intelligence in this population. We
sought to investigate the evolving hypothesis that schizo-
phrenia is a hub disease in which central connections are
more severely affected in contrast to non-central connec-
tions. Our data indicate that this may not be the case.

Figure 2.

(A) Schematic representation of relationships where an indepen-

dent variable (X) and an outcome (Y) are hypothesized to be

explained by a mediator (M). The direct effect of X on M is a,

the effect of M on Y is b, and the effect of X on Y is c. c0

denotes the effect of X on Y when M is taking into account in

the model. (B) Representation of the variables analyzed in this

study, where X 5 polygenic risk score for schizophrenia (PGRS

at P� 0.5), Y 5 IQ and M 5 mean edge weight (central). (C)

X 5 polygenic risk score for schizophrenia (PGRS at P� 0.5),

Y 5 IQ and M 5 mean edge weight (non-central). Asterisks rep-

resent statistically significant partial correlations.

TABLE V. Mediation analysis for the average network

b
%

Mediation model

X Y M c c0 Attenuation F(df) Lower CI Upper CI

PGRS IQ Mean edge weight 20.474 20.253 46.62 8.20 (2, 43) 20.657 20.048

PGRS IQ Density 20.527 20.168 62.76 4.63 (2, 43) 20.431 20.002

PGRS IQ Strength 20.288 20.439 252.43 14.20 (2, 43) 20.893 20.142

PGRS IQ Global efficiency 20.376 20.348 7.44 9.85 (2, 43) 20.765 20.117

PGRS IQ Clustering coefficient 20.405 20.326 19.50 10.66 (2, 43) 20.705 20.090

X: independent variable; Y: outcome variable; M: mediator; c: path from X to Y; c0: path from X to Y accounting for M.
Bold type face indicates significant mediation effect (confidence intervals do not include 0; Preacher and Hayes, 2008) and after FDR
correction (PFDR< 0.05).
All tests of mediation are one-tailed and bias-corrected.
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Instead, schizophrenia may be a disorder characterized by
the disruption of distributed brain regions affecting the
whole brain, rather than exclusively affecting hubs. Our
study supports the conceptualization of schizophrenia as a
disorder characterized by impaired integration between
brain regions rather than local brain abnormalities.

The network analysis reported here shows that struc-
tural connectivity abnormalities are present in the schizo-
phrenia patient group. Specifically, most graph theory
metrics from the average network were significantly
reduced in the patient sample compared with healthy con-
trols. These results are consistent with previous findings
(van den Heuvel and Fornito, 2014), in particular, density,
strength, global efficiency, and clustering coefficient were
significantly reduced in the patient group compared with
controls. The central subnetwork was principally com-
posed of subcortical areas and regions located in the fron-
tal and parietal lobes. Mean edge weight (FA) for central
and non-central subnetworks, was not significantly differ-
ent between patients and healthy controls. Taken together,
these results suggest that in schizophrenia, the structural
connectome is characterized by weaker connections being
less segregated and less integrated compared with healthy
controls. Thus, here we have shown that differences
between patients and controls can be found in the average
network, suggesting the presence of more extensive
impairments that are seemingly not limited to central
connections.

We also found that every graph theory metric across the
different networks was significantly associated with IQ.
These results are likely to reflect the integrative nature of
intelligence, involving distributed brain networks that
comprise a wide variety of cognitive functions (Colom
et al., 2010). The absence of an interaction between graph
theory metrics and group indicates that the same effect
occurs in healthy participants and schizophrenia patients.
These results are consistent with those of Li et al. (2009)
who reported that IQ was positively correlated with global
efficiency and negatively with path length. Central and
non-central mean edge weight (FA) were positively associ-
ated with IQ, this is in accordance with numerous investi-
gations assessing, for instance, relationships between
intelligence and general factors of FA (Alloza et al., 2016;
Chiang et al., 2009; Deary et al., 2006; Penke et al., 2010;
Yu et al., 2008). Thus, in this study, we have been able to
establish robust associations between intelligence and the
structural connectome in schizophrenia.

The dysconnection hypothesis proposes that altered
topological connectivity and abnormal integration between
distinct brain regions may underlie the symptomatology
found in the disorder (Stephan et al., 2006, 2009). In this
study, none of the graph metrics were significantly associ-
ated with positive, negative, or total symptoms. These
results suggest that symptoms may be specifically based
on deficiencies in distinctive networks. For instance, posi-
tive symptoms include hallucinations, delusions, and

thought disorders, while negative symptoms comprise
blunted affect, alogia, anhedonia, asociality, and avolition.
These processes are likely to comprise distant and unique
regions (i.e., visual hallucinations could be associated with
visual processing) and therefore, may not be captured by
an average network or by networks based on centrality.
Thus far, a number of functional studies have investigated
the effects of graph theory metrics on symptomatology
(Bassett et al., 2012; Skudlarski et al., 2010). One study
reported that higher levels of positive and negative symp-
toms were associated with reduced clustering coefficient
and increased path lengths (Shim et al., 2014). A further
study found that local connectome organization relates to
longitudinal increases in overall PANSS, in particular, these
associations were driven by clustering coefficient (Collin
et al., 2016). Previous studies have found negative correla-
tions between FA (using DT-MRI) and positive, negative,
and total PANSS score (Michael et al., 2008; Skelly et al.,
2008). For instance, negative correlations between FA and
negative symptoms in specific white matter tracts, such as
the corpus callosum, have been reported (Nakamura et al.,
2012). However, the inconsistency of the findings may be
the result of different methodological techniques, use of
medication, and heterogeneity of the disease.

In the central and non-central subnetworks, comparable
associations were found between intelligence and mean
edge weights across all thresholds. Stronger associations
were found for symptoms with non-central mean edge
weight when considering the top 75% of network connec-
tions based on their centrality. A lower centrality threshold
(25%–50% central connections) showed weaker correla-
tions, probably because of a reduced specificity of the sub-
network and exclusion of some important connections.

There is an overlap between the genetic risk factor for
schizophrenia and intelligence (Glahn et al., 2007; McIn-
tosh et al., 2013; Toulopoulou et al., 2007) and thus, brain
structure may be an intermediate phenotype between
genetics and intelligence. In this study we have shown
that central and non-central mean edge weight signifi-
cantly mediated the relationship between genetics and
intelligence between 30% and 47%, respectively. Moreover,
every graph theory metric from the average network sig-
nificantly mediated this relationship. Thus, we propose
that structural brain topology measures are potential inter-
mediate phenotypes in this model. Although metrics were
not significantly associated with PGRS, statistical signifi-
cance of all paths is not a prerequisite to determining a
mediation model (Hayes and Rockwood, 2016). The
approach taken here detected moderate effect sizes and
had the ability to formally quantify the degree and signifi-
cance of the mediation. However, better-powered studies
are needed to confirm this.

These findings suggest that prominent associations and
disruptions occur also in average and non-central net-
works, which are not driven by medication effects and are
present across different brain parcellation schemes. We
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hypothesize that the construction of subnetworks in
schizophrenia may be affected by its inherent reduced cen-
trality and thus, central networks may include less central
connections. This is in line with a recent publication where
the authors propose that schizophrenia may not be
entirely, nor specifically, a hub disease (Griffa et al., 2015).
Based on previous literature and the limitation of our own
study, we propose that schizophrenia is a disorder charac-
terized by the disruption of distributed brain regions
affecting the whole brain rather than hubs exclusively.
Our study therefore supports the conceptualization of
schizophrenia as a disorder characterized by impaired
integration between brain regions rather than local brain
abnormalities.

LIMITATIONS

Our findings are limited by the intrinsic nature of the
methodology implemented. For example, limitations associ-
ated with DT-MRI—a technique that relies on water diffu-
sion as an indirect marker for white matter microstructure
which has not yet been able to resolve complex fiber archi-
tecture (Jones et al., 2013)—need to be acknowledged.

Other limitations include the fact that most of the
patients in this study used antipsychotic medication,
which may affect structural brain connectivity (Szeszko
et al., 2014). Nonetheless, it should be noted that impaired
white matter connectivity has also been shown in never-
medicated patients (Cheung et al., 2008; Mandl et al.,
2013). Additionally, the patients were recruited from out-
patient clinics, thus generalizability of the results may be
less applicable to more severely affected populations.
Moreover, the sample size used is small by contemporary
standards raising the possibility of Type II errors. Thus
interpretations of our novel but preliminary results should
be taken cautiously. To further validate the results pre-
sented here, replication of this study using larger datasets
is needed.
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