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Abstract: Brain connectivity analyses have been widely performed to investigate the organization and
functioning of the brain, or to observe changes in neurological or psychiatric conditions. However, con-
nectivity analysis inevitably introduces the problem of mass-univariate hypothesis testing. Although,
several cluster-wise correction methods have been suggested to address this problem and shown to
provide high sensitivity, these approaches fundamentally have two drawbacks: the lack of spatial spe-
cificity (localization power) and the arbitrariness of an initial cluster-forming threshold. In this study,
we propose a novel method, degree-based statistic (DBS), performing cluster-wise inference. DBS is
designed to overcome the above-mentioned two shortcomings. From a network perspective, a few
brain regions are of critical importance and considered to play pivotal roles in network integration.
Regarding this notion, DBS defines a cluster as a set of edges of which one ending node is shared.
This definition enables the efficient detection of clusters and their center nodes. Furthermore, a new
measure of a cluster, center persistency (CP) was introduced. The efficiency of DBS with a known
“ground truth” simulation was demonstrated. Then they applied DBS to two experimental datasets
and showed that DBS successfully detects the persistent clusters. In conclusion, by adopting a graph
theoretical concept of degrees and borrowing the concept of persistence from algebraic topology, DBS
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could sensitively identify clusters with centric nodes that would play pivotal roles in an effect of inter-
est. DBS is potentially widely applicable to variable cognitive or clinical situations and allows us to

obtain statistically reliable and easily interpretable results. Hum Brain Mapp 38:165-181, 2017.
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INTRODUCTION

Over the last decade, a systemic approach has led to a
magnificent improvement in our understanding of the
organization and functioning of the brain. For example,
the application of graph theory has revealed conspicuous
network characteristics of the brain, such as the small-
world properties, modular structure, hierarchical organiza-
tion, and rich-club organization [Bullmore and Sporns,
2009, 2012]. The functional and structural networks of the
brain are associated with intellectual performance [Van
den Heuvel et al, 2009] and development [Dosenbach
et al., 2010; Supekar et al., 2009]. Furthermore, brain net-
works are altered by various disorders [Bassett and Bull-
more, 2009; Buckner et al., 2008]. Within the brain
network, there are a few highly connected nodes, known
as hubs [Achard et al., 2006; Tomasi and Volkow, 2011;
Van den Heuvel and Sporns, 2011]. The importance of a
hub in a network is strongly supported by recent studies.
In the brain network, a hub region is thought to improve
brain function by interacting with many other regions to
integrate the associated information [Sridharan et al., 2008;
Van den Heuvel et al., 2012]. Recent studies have reported
characteristics of hub regions such as high cerebral blood
flow [Liang et al., 2012], high metabolism [Buckner et al.,
2009; Drzezga et al., 2011], intensive accumulation of amy-
loid proteins [Buckner et al., 2009; Jagust and Mormino,
2011], and a significant association with pathophysiological
mechanisms [Buckner et al., 2009].

In addition to the network approach, the localized con-
nectivity analysis of networks has also been of interest.
Connectivity analysis involves the construction of a con-
nectivity matrix and a statistical analysis without a priori
selection of specific brain regions of interest. The connec-
tivity matrix of the brain contains a huge number of ele-
ments, that is, individual connections (links or edges) of a
network (a graph). For an undirected network of N nodes,
the number of edge elements in the connectivity matrix is
N(N — 1)/2. Consequentially, an investigation of group dif-
ferences or correlates of cognitive function or behavioral
performance using the connectivity matrix requires a very
large number of univariate hypothesis tests. The use of a
simple P-value such as 0.05 for multiple testing, in turn,
induces the critical multiple testing problem (MTP) lead-
ing to a large number of false positives (type I error).
Therefore, correction for this MTP is necessary.

Conventional analysis of functional brain imaging data
is also associated with mass-univariate hypothesis testing.
For example, analysis of functional activation associated
with a certain context or task has also been performed
using voxel-by-voxel comparisons [Kennedy et al., 2015].
In this situation, a large number of voxels are simulta-
neously compared, which inevitably leads to the MTP.
Many methods have been employed to resolve this prob-
lem, including common multiple comparison correction
procedures, such as the Bonferroni correction, which
control the family-wise error rate (FWER), false discovery rate
(FDR) control procedures, and nonparametric permutation-
based correction (marginal statistic). Other methods have been
specifically designed for brain imaging analysis, such as
random field theory-based inference controlling the FWER
[Worsley et al., 1992] and Monte-Carlo simulation [Forman
et al., 1995], implemented in AFNI AlphaSim (http://afni.
nimh.nih.gov/afni/doc/manual/AlphaSim). These methods
can be subdivided further based on the level of inference, that
is, voxel-level or cluster-level [Nichols, 2012]. Voxel-wise infer-
ence retains voxels above a certain threshold, whereas cluster-
wise inference includes clusters of voxels larger than a certain
cluster-level threshold. Cluster-wise inference has become par-
ticularly popular, since it provides more power owing to its
higher sensitivity (higher true positive rate [TTR]) than voxel-
wise inference, which has less power although with higher
spatial specificity.

In connectivity analysis, the number of false positive
errors can be reduced by employing common correction
methods, such as the Bonferroni correction, FDR control
procedures, or permutation-based correction. As men-
tioned, these voxel-wise inference methods are, however,
very stringent and conservative; thus, they reveal results
with somewhat low sensitivity. Furthermore, in contrast to
traditional brain imaging analysis, few MTP-correction
methods have been specifically proposed for connectivity
analysis. They are all based on the principle of convention-
al cluster-wise statistics, which has been applied to tradi-
tional MRI analysis [Han et al., 2013; Hipp et al., 2011; Ing
and Schwarzbauer, 2014; Zalesky et al., 2010, 2012b]. The
main difference among these studies is the definition of a
cluster (Table I). Thus, these methods differ with respect to
the estimation of cluster size. The definition of a cluster in
cluster-wise statistics depends on the underlying assump-
tion that a specific type of cluster is significantly associated
with an effect of interest (a hypothesis). Network-based
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TABLE I. Comparison of cluster-wise correction methods in connectivity analysis

NBS, CBS SPC

CMS, CSS DBS (Current study)

A set of connected
edges

Cluster Definition

Proper node Voxel (small) or
region (large)

Network module Yes No

Localization No Yes (semi)

Initial threshold Arbitrary selection

Voxel (small)

A pair of two spatially
distinct areas containing
contiguous voxels

Arbitrary selection

A set of spatially
contiguous voxels
having connection
with other voxels

Voxel (small)

A set of edges connected
through a centric node

Region (large or small)

No Yes
Yes (semi) Yes (semi)
Arbitrary selection Independent
(Center Persistency)

statistic (NBS) uses the term “network” to consider con-
nected components in a graph as a cluster. NBS is used to
detect the connected set of edges associated with an effect
of interest [Han et al., 2013; Zalesky et al., 2010]. NBS con-
trols for the FWE by comparing the observed size of a con-
nected component with the empirical null distribution of
the maximum size of connected component obtained by
permutations. Spatial pairwise clustering (SPC) uses a deli-
cate definition of a cluster [Hipp et al., 2011; Zalesky et al.,
2012b]. It defines two clusters in a pairwise manner. In
SPC, pairs of voxels ({uy, v1}, ..., {u;, v;i}) form a pair of
spatially distinct nodes (1 and m, a pair of two clusters).
Each pair of voxels, u and v (belong to the nodes n and m,
respectively), has a connection (edge {u, v}) between them.
Thus, these two nodes n and m are considered to have a
significant association by having a set of inter-node voxel-
wise connections ({{u;, v}, ..., {u;, vi}}). Recently, one
study suggested two methods, cluster mass statistic (CMS)
and cluster size statistic (CSS), defining cluster mass, and
cluster size, respectively [Ing and Schwarzbauer, 2014].
CMS considers the total number of connections of a spa-
tially continuous voxel cluster with the rest of the brain,
whereas CSS considers the spatial extent of this cluster.
All of these methods are based on the concept of cluster-
extent-based correction. However, only NBS defines a clus-
ter as a connected set of edges among spatially distinct
regions, whereas other methods treat it as a mass of spa-
tially continuous voxels or parallel connections.

Although cluster-wise inference was shown to work suc-
cessfully with higher sensitivity, this approach suffers
from two innate common drawbacks: the lack of spatial
specificity (localization power) and the arbitrariness of an
initial cluster-forming threshold. First, a result from
cluster-wise inference cannot be used to infer and compare
the significance of smaller elements such as nodes and
edges in a cluster. Cluster-wise inference only enables us
to make a statement about a cluster itself, rather than
about one specific element in the cluster [Nichols, 2012;
Poldrack et al., 2011]. This would not be problematic for
small-sized clusters. However, when a widely extended
cluster presents itself, it is an important matter. The only
way to address the problem is to raise the initial cluster-

forming threshold to obtain a smaller cluster. Raising the
initial threshold is directly related to the second drawback,
namely that cluster-wise inference requires an initial
cluster-forming threshold, which is needed to define the
cluster in the first place. In both MRI and connectivity
analysis, an initial cluster-forming threshold is chosen and
applied to acquire a set of suprathreshold elements (voxels
in MRI and edges in a connectivity matrix). The selection
of the threshold depends on researchers’ arbitrary decision
and there is no widely accepted criterion [Woo et al., 2014;
Zalesky et al., 2012a]. This arbitrary threshold problem
also occurs during network construction in network analy-
sis. Construction of a sparse network requires us to apply
a certain threshold and to use only the set of edges
exceeding this threshold. Researchers have addressed this
problem by constructing networks across various thresh-
olds, a technique known as “multithresholding.” The net-
work characteristics for two or more groups, for example,
were compared for a range of these threshold values
[Sanz-Arigita et al., 2010; Stam et al., 2007; Supekar et al.,
2008]. Recently, graph filtration and persistent homology
concepts have been applied to brain network analysis [Lee
et al.,, 2011a,b]. In these studies, a multi-scale framework
was proposed to investigate the topological changes of
brain networks for every possible threshold, instead of
determining one proper threshold that might not be opti-
mal for different cognitive and/or clinical conditions.
Within this framework, they could identify the persistent
topological features of the brain networks over various
thresholds [Lee et al., 2012]. A method, named threshold-
free cluster enhancement (TFCE), was introduced to
address the above-mentioned two problems in MR analy-
sis [Smith and Nichols, 2009]; however, no method has yet
been proposed for connectivity analysis.

In this study, we propose a novel MTP correction meth-
od for connectivity analysis, named degree-based statistic
(DBS). This method takes advantage of cluster-wise statis-
tics, an approach that is less conservative and more sensi-
tive. In DBS, a cluster is defined as a set of edges
connected through one single node. This is beneficial for
detecting a center node which is a potential hub. In addi-
tion, we adopted the concept of “persistence” (the multi-
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scale invariant) from algebraic topology [Horak et al.,
2009; Zomorodian and Carlsson, 2005] to overcome (or at
least minimize) the arbitrariness in an initial cluster-
forming threshold. Hence, DBS identifies persistent clus-
ters associated with an effect of interest. We tested DBS in
many different simulation settings. Finally, we applied
DBS to two real cases of connectivity analysis: two imag-
ing modalities (resting fMRI and DTI) and two neurode-
generative diseases (Alzheimer’s disease and Parkinson’s
disease). We demonstrated that DBS is a powerful MTP
correction method. DBS is expected to be sensitive and
further to provide reliable and easily interpretable statisti-
cal results of connectivity analyses in variable conditions.

METHODS
Overview

In statistical analysis, controlling the FWER is of critical
importance. Connectivity analysis of the human brain
entails mass-univariate hypothesis testing and, therefore,
MTP inevitably occurs. The proposed DBS is designed to
mitigate the increased risk of false positive errors from
MTP in the connectivity analysis by using the idea of
cluster-wise correction in functional brain imaging analysis.
In this method, a cluster is defined as a set of edges con-
nected through one node (i.e., a one-node-centered cluster).
Defining a cluster in this way allows DBS to detect clusters
and their center nodes that are associated with an effect of
particular interest. DBS uses one of two measures to esti-
mate the significance of clusters: the first is based on the
binary degree (representation of cluster-size) and the other
is based on the weighted degree (representation of cluster-
mass) which could be considered as a generalization of the
binary degree. In addition, to resolve, at least partially, the
arbitrariness of an initial cluster-forming threshold, we pro-
pose two strategies. First, DBS is performed repeatedly
across multiple initial cluster-forming thresholds. This ena-
bles us to represent clusters of edges that are considered
significantly associated with an effect of interest over suc-
cessive initial cluster-forming thresholds. Second, a new
measure of clusters, center persistency (CP) is introduced.
The CP score represents the extent to which cluster centers
are persistently associated with an effect of interest inde-
pendent of an initial cluster-forming threshold. As a result,
DBS provides two measures of clusters for significance test-
ing, “degree” and “CP” score. The significance of the
degree is estimated for multiple thresholds and reported for
each threshold, whereas the persistency score and its signif-
icance is estimated independent of the thresholds as an
inclusive measure.

Principle and Underlying Assumptions

DBS is based on two assumptions: (1) a cluster of con-
nections serves a certain brain function and (2) a node that

s,,=0.9

$,,=0.1

E (s=0.15)={e,, e,, €,, e, €,}

Binary degree: 5
Weighted degree: 2.05

Figure I.
lllustration of a cluster in degree-based statistic (DBS). A cluster
is defined as a set of edges connected through one node where
the edge weights are above a threshold (here, the threshold s is
0.15). In other words, this set of edges forms a one-node-
centered cluster.

mediates this function exists in the center of the cluster. In
other words, a node is centric and interacts with all
regions of the cluster to process and integrate information.
Based on these assumptions, DBS defines a cluster as a set
of edges connected through one single node, where the
weights of the edges are above a certain threshold (Fig. 1).
In hypothesis testing, a cluster E,,(s) is an edge set of a
node v; with an initial threshold s such that

Ey,(s)={e={vj,a} | se > s,
for any node 4 in a connectivity matrix},

where s, is the weight (a statistical value from the tested
hypothesis) of edge e.

Consequently, every edge in the cluster E,(s) is an edge
of this centric node v;; thus, the size and mass of a cluster
is equal to the binary and weighted degree of the centric
node, respectively. Hence, in the proposed DBS, the
degree of the centric node is used to determine the signifi-
cance of the association between the cluster and an effect
of interest.

Construction of a Connectivity Matrix

A graph or network consists of nodes and edges with a
connectivity matrix forming the basis of the graph. Con-
struction of a connectivity matrix first requires the defini-
tion of a set of nodes and edges. Nodes and edges are
subjective and therefore vary across studies. In the net-
work analysis of MR-based brain imaging data, there have
been many suggestions regarding node selection. First,
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every voxel in a brain image can be defined as a node, yet
this approach results in a very large number of nodes.
These voxel nodes themselves are not related to brain
functions or anatomical brain regions and computational
cost is high. To overcome these shortcomings, several par-
cellation schemes have been suggested, such as Brodmann
areas [Brodmann, 1909], cytoarchitectonics [Schleicher and
Zilles, 1990], Talairach atlas [Lancaster et al., 2000], auto-
mated anatomical labeling [Tzourio-Mazoyer et al., 2002],
Harvard-Oxford atlas distributed with FSL (http://www.
fmrib.ox.ac.uk/fsl/), or data-driven methods [Blumensath
et al.,, 2013; Tononi et al., 1998, Zhu et al.,, 2012]. These
approaches divide the brain into dozens to thousands of
small regions. This set of regions can be used as nodes.

After determining the nodes, edges representing pair-
wise interactions among the nodes should be defined.
Edges can represent structural or functional associations
[Papo et al., 2014]. In the case of white matter structures,
diffusion tensor imaging measures the structural connec-
tivity, whereas magnetoencephalography (MEG), electro-
encephalography (EEG), and fMRI can be used to measure
functional synchronization indicating functional connectiv-
ity. Many concepts and mathematical methods have been
developed and applied to estimate functional connectivity
[Bowman, 2014; Sakkalis, 2011]. For example, the Pearson
product-moment correlation coefficient and coherence esti-
mate linear relationships, whereas rank correlation coeffi-
cients and mutual information describe nonlinear
interactions. Pairwise connectivity among nodes are ele-
ments of the connectivity matrix. If the number of nodes is
N and a graph is undirected, N(N — 1)/2 elements should
be measured. A connectivity matrix can be weighted or
binary. Hypothesis testing typically involves a comparison
among groups or a correlation between connectivity and a
particular brain function. In either case, a weighted matrix
is generally assumed to be appropriate.

Mass-Univariate Hypothesis Testing of the
Connectivity Matrix: Suprathreshold Edges with
Multiple Initial Cluster-Forming Thresholds

Hypothesis testing of the connectivity matrix is per-
formed to estimate a set of statistical values for every ele-
ment in the connectivity matrix with an effect of interest. In
general, an initial cluster-forming threshold is then applied
to define a matrix of suprathreshold edges. In DBS, multi-
ple thresholds with a narrow step size are repeatedly
applied to avoid arbitrary selection of the threshold (Fig. 2).
For one initial cluster-forming threshold s, sets of supra-
threshold edges with higher statistics than the threshold s
are obtained and used to define clusters E,(s). Then, when
the cluster size is chosen to determine the significance of
clusters, the binary degrees, d,(s), of the centric nodes in
each cluster are measured. Here, di(s) is the number of
edges in edge set Ey,(s). When the cluster mass is chosen,
the weighted degree w,,(s) is calculated instead of d(s).

Relabelled

(4) Permutate
conectivity matrices

matrices

Subject 1
Subject 2
) .
Subject M-1
Subject M
‘ (2) Test a hypothesis

(1) Connectivity matrices

Subject 1'
Subject 2'

=

(5) Test the same

-]

\

t-test for group comparison or hypothesis
correlation analysis
Matrix with Matrix with

suprathreshold
statistical values

(3) Estimate degree
for every node

di, ¥i € {every node in a network}

¥

One-node-centerd clusters
(p<0.05, FWE corrected using DBS)

<+

Significant clusters across
multiple successive initial thresholds

suprathreshold
statistical values

(6) Estimate the
maximum degree

-

dmax, j for the j th permutation

(7) Repeat (4)-(6)
n times permutation
for the FWE correction

(8) Compare di s with the 95
percentile of the distribution

-

(9) Repeat (2)-(8) with gradually
increasing a threshold
in hypothesis testing (2) & (5)

-

The empirical null
distribution of dmax

Figure 2.
Procedure of degree-based statistic (DBS). The observed real
data and the permuted data are tested for the same hypothesis
(using an equal threshold). In DBS, a cluster is defined as a set of
edges connected through one node. Hence, the size of a cluster
equals the degree of the centric node in the cluster. The maxi-
mum degree is measured for each permuted set and a number of
permutations are used to estimate an empirical null distribution
of the maximum degree. In real data, several clusters can be
obtained from the hypothesis testing. The significance of each
cluster is estimated by comparing its size with the 95th percentile
of the null distribution of the maximum degree (cluster-wise cor-
rected P-value of 0.05). Finally, one-node-centered clusters that
are significantly associated with an effect of interest are obtained.

The weighted degree w,;(s) of the node v; for a threshold s
is the sum of the h,, intensity of suprathreshold edges,
which is defined by “s. —s,” of the node v;:

Wy, (S) - ZeeEvi (s)he (S) ’

where /1.(s) = s. — s.

As described above, to avoid arbitrariness in initial thresh-
olding, DBS calculates d,;(s) or wyi(s) across multiple initial
cluster-forming thresholds increasing gradually in narrow
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Figure 3.
Example of an empirical null distribution of the maximum weighted
degree from permutations. These density and cumulative probabili-
ty distributions are empirically acquired from 5,000 permutations.
The value of the 95th percentile (gray dashed line) in a distribution
would be used for the DBS corrected P-value of 0.05.

increments: the initial cluster-forming threshold s is raised
from the statistical value at P =0.05 for the tested hypothe-
sis, which is the conventional threshold value in one univari-
ate hypothesis test. This is to provide a resulting set of
significant clusters capable of surviving over multiple succes-
sive thresholds. As a cluster is a set of edges connected
through one node, we can easily use the centric node of this
cluster to detect the same cluster from different thresholds.

The significance of the degree, d,i(s) or wyi(s) is estimat-
ed by comparing these values with a null distribution of
the maximum degree, which is acquired empirically in the
following step (Fig. 3, as an example). The comparison
process is explained in the next section “Degree-based sta-
tistic (DBS): a correction procedure.”

DBS: A Correction Procedure

The main step to control the FWER is permutation-
based cluster-wise inference. We performed cluster-wise

inference by employing permutation testing, which has
often been used in previous studies [Han et al., 2013;
Zalesky et al., 2010]. Permutation testing consists of ran-
dom labeling of data and hypothesis testing, repeated
many times. We performed 5,000 permutations in Simula-
tion and Applications of this study. For each permutation,
we measure the maximum binary degree (for a cluster
size), dmaxj, where j indicates the jth permutation. This
dmax,j is the maximum size of the one-node-centered clus-
ter in the jth permutation. From all permutations, an
empirical null distribution of dnax is acquired. In the pre-
vious step, degrees, d,; s, were measured from the
observed data. A comparison of d; with the 95th percentile
of the empirical null distribution of dp.x enables estima-
tion of the significance of observed clusters (cluster-wise
corrected P <0.05). When the weighted degree is used (as
a cluster mass), the same procedure is followed to deter-
mine Wmax and wy;. The empirical maximum distribution
is acquired for each of multiple initial cluster-forming
thresholds with a narrow increment as in section 2.4.
Thus, DBS obtains the empirical null distribution of d,,(s)
Or Wmax(s) and the observed di(s) or wy(s) is compared
with the 95th percentile of the empirical null distribution
of dimax(S) OF Wmax(s) for each threshold s (Fig. 2).

Center Persistency (CP)

Above, we described how DBS functions across initial
cluster-forming thresholds. Although this approach was
intended to avoid selecting one arbitrary threshold, the
result still depends on a specific range of thresholds. This
prompted us to define a new measure, center persistency
(CP), by borrowing the concept of persistence from alge-
braic topology [Horak et al, 2009; Zomorodian and
Carlsson, 2005]. This CP score represents the persistent
and significant association of a cluster center with an effect
of interest in a wide possible range of initial cluster-
forming thresholds. This persistency score is estimated for
each cluster. The CP is calculated by obtaining the sum of
the weighted degrees for the entire possible range of
thresholds.

CP,,= J Wy, (s)ds = anvi (s)As

The threshold range is determined in a data-driven way.
At first, the lower boundary of the threshold is set to the
statistical value at a P-value of 0.05 (P =0.05 for the tested
hypothesis is the conventional threshold value in univari-
ate hypothesis testing). Then, the initial threshold is gradu-
ally raised to the value before the binary degree threshold
becomes 2, which was acquired in the previous permuta-
tion step for the cluster-wise inference in section “Degree-
based statistic (DBS): a correction procedure.” The reason
for this range is that (1) the P-value of 0.05 for the lower
boundary is a commonly selected statistical threshold in
one univariate hypothesis testing and (2) the higher
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boundary guarantees the minimum possibility of a cluster
formation having three edges. Then, the CP score of the v;
node-centered cluster, CP,;, is measured for this range.

The significance of CP,; is estimated by comparison
with a null distribution of the maximum persistency score,
CPpax- The null distribution is acquired empirically from
permutation similar to the degree described in section
“Degree-based statistic (DBS): a correction procedure.” We
measure CPp, from the same permutation set (e.g.,
CPraxj is for the jth permutation). Then, the observed CPy;
is compared with the 95th percentile of the empirical null
distribution of CPpax. Clusters with CP scores higher the
95th percentile are persistent clusters with a corrected sig-
nificance of P <0.05. In other words, the CP score repre-
sents the extent to which the persistent association of a
cluster center with an effect of particular interest is signifi-
cant, independent of the initial threshold selection. In
addition, the normalized CP can be used for further com-
parison among clusters.

normalized CPy,=CPy,/{the 95 percentile of CPmax}

We suggest the use of a normalized CP to compare clus-
ters among studies based on different imaging modalities
(such as DTT and fMRI) or connectivity measures (such as
mean FA and fiber number for DTI, and different correla-
tions and coherences for fMRI). Because the weighted
degree value, even its order of magnitude, could be differ-
ent across studies, the original CP scores of clusters were
not easily compatible. However, as shown in the above
equation, this normalized CP is estimated by the ratio of
the CP score of a cluster to the threshold selected for the
significance. Thus, the above equation would enable us to
determine which of the clusters (estimated from different
imaging modalities and connectivity measures) is more
persistent for the effect of interest with a fixed threshold.

SIMULATION

This section describes the performance evaluation of
DBS to detect a known “ground truth” contrast from simu-
lations. The simulated data comprising “signal contras-
t + noise” were used to test the gain in power and efficacy
of the DBS in a situation which is suited to the DBS. The
contrast was defined by a set of edges sharing one single
node as represented in Figure 1. Receiver operator charac-
teristic (ROC) curves were constructed from simulated
data and presented to validate the specificity and sensitivi-
ty of the DBS. In this simulation, we tested DBS with the
weighted degree (DBSwd) and CP score.

Data Simulation

We simulated “known” differences between two groups
of undirected connectivity matrices. Each of the two
groups consisted of 20 subjects and the number of nodes
was 100. First, one connectivity matrix was constructed by

sampling from a normal distribution of zero mean and 0.3
standard deviation, N(0O, 0.32), and assigned as the first
subject of the group A. Then, the other 19 subjects in
group A were constructed by adding noise N(0, 0.1% to
each of the edges of the first connectivity matrix to perturb
them. For group B, we defined a contrast, which is a set of
edges sharing one single node. One centric node was first
determined and then a set of edges with this centric node
was randomly selected. Then, for every other edge without
contrast, noise N(0, 0.1%) was added to the edges of the
first connectivity matrix by using the same procedure as
for the creation of group A. However, for the contrast
edges, a signal contrast with noise N(c, 0.12) was added. In
this step, the same signal contrast ¢ across the edges and
subjects was used. We tested our method under different
conditions with a varying cluster size (the number of
edges comprising a contrast) and varying contrast to noise
ratio (CNR, the ratio of ¢ to 0.1). All the CNRs we tested
were relatively low in agreement with the purpose of
cluster-wise correction. We tested CNRs of 0.75, 1, 1.25,
and 1.5 and cluster sizes of 5, 10, 20, and 30. As a result,
we simulated and tested our method for a total of 4 X
4 =16 conditions. The same process of a simulation was
repeated by changing the number of nodes within a net-
work with proportional cluster sizes; (1) 150 nodes: cluster
sizes of 10, 15, 30, and 45 and (2) 50 nodes: cluster sizes of
5, 10, and 15. The same four CNRs were used across the
simulations.

Performance Evaluations Using Simulated Data

A ROC curve was used to evaluate the performance of
the DBS. An ROC curve plots the TPR against the false
positive rate (FPR) of contrast detection as the discrimina-
tion threshold varies. Standard ROC was designed for a
single inference. As DBS deals with mass-univariate
hypothesis testing in a cluster-wise way, we employed the
alternative free-response receiver-operator characteristic
(AFROC) curve as in similar previous studies [Ing and
Schwarzbauer, 2014; Smith and Nichols, 2009]. In AFROC,
the TPR is the same as in standard ROC, that is, the pro-
portion of true positives among all positive tests. Howev-
er, in AFROC FPR is defined as the probability of false
positives anywhere in the image (in this study, connectivi-
ty matrix) [Chakraborty and Winter, 1990]. As the purpose
of DBS is to control the FWER, a more stringent AFROC
curve would be more appropriate. ROC curves were con-
structed for a range of FPR from 0.001 to 0.05, since an
FPR exceeding 0.05 is not of interest in a typical analysis.

The complete process to construct ROC curves of 100
nodes is as follows:

1. Connectivity matrices of two groups with the known
ground truth were created. The first connectivity
matrix of 100 nodes of group A was constructed by
sampling from N(, 0.3%. The remaining 19
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connectivity matrices in group A were created by
adding noise N(O, 0.1% to every edge of the first con-
nectivity matrix. A contrast is first defined in group
B. Twenty connectivity matrices were created by add-
ing a signal contrast with noise N(c, 0.1%) for contrast
edges, otherwise only noise N(O, 0.12) was added.
Each group consisted of 20 subjects.

2. The two groups of the connectivity matrix underwent
mass-univariate two-sample hypothesis testing to
obtain the P-value and t-statistics for every edge.

3. DBSwd, CP score, and permutation-based element-
wise marginal statistics were applied for the statisti-
cal matrix results from step 2 above. For w, four dif-
ferent initial thresholds were tested: 0.05, 0.01, and
0.005.

4. TPR was calculated as |Tnh!/ ITI, where T is the
contrast set of edges and h is the set of edges which
form clusters. FPR=1 if |h—TI >1, otherwise
FPR = 0. For the CP score, as CP is assigned to each
node which forms the centric of each cluster, T was
differently defined; T is the centric node of the con-
trast set of edges.

5. Steps 1-4 were repeated 1,000 times and the average
TPR and FPR values over 1,000 simulations were esti-
mated. Then, the ROC curves were constructed using
these TPR and FPR values over the range of the dis-
crimination threshold.

6. Steps 1-5 were performed under different conditions:
four different cluster sizes (4, 10, 20, and 30) and four
different CNR values (0.75, 1, 1.25, and 1.5) were
used. As a result, ROC curves for the CP score,
DBSwd with four different initial thresholds (an ini-
tial cutoff P-value of 0.05, 0.01, and 0.005), and
element-wise correction were constructed for these
4 X 4 =16 different conditions.

Simulation Results

Figure 4 (and Supporting Information Figs. 1 and 2)
illustrate the performances of DBS, CP score, as well as
element-wise correction and NBS from simulations under
the different conditions. Overall, DBS with initial thresh-
olds of P-value 0.01 and 0.005 outperformed the element-
wise correction method as well as the NBS, one of cluster-
wise correction method. However, when the initial thresh-
old of P-value 0.05 was applied in DBS, its performance
was not better than that of element-wise correction, espe-
cially for CNR of 1.25 or higher (Fig. 4, Supporting Infor-
mation Figs. 1 and 2).

The CP score showed the highest power under the most
conditions. When a cluster comprised a large number of
edges (more than 20 edges), the CP was exceptionally
effective even with a very low CNR such as 1.0 or below
(Fig. 4, Supporting Information Fig. 1). However, in the
case of small clusters such as five edges, CP did not

outperform DBS with an initial threshold of 0.01 or 0.005.
Both DBS and the CP score were more effective for larger
cluster sizes in contrast to the element-wise correction of
which the performance was unlikely to be affected by the
cluster size.

APPLICATIONS

For the following two applications, we used the weight-
ed degree and CP score for significance estimation with
correction.

Structural Connectivity Difference in Alzheimer’s
Disease: A DTI Study

Subject recruitment and MR and

preprocessing

acquisition

We applied DBS to analyze the difference in structural
connectivity between patients with Alzheimer’s disease
(AD) and healthy controls. Twenty-seven patients with
probable AD dementia with a Clinical Dementia Rating
score of 1 and 30 age-matched healthy controls were
recruited (Table II). Structural MRI and diffusion-weighted
images were obtained using a 3.0 T MRI scanner (Philips
3.0 T Achieva) at Samsung Medical Center. DTI prepro-
cessing was performed using the diffusion toolbox of the
FSL package (http://www.fmrib.ox.ac.uk/fsl/fdt) and
fiber tracking was performed using the TrackVis [Wang
et al., 2007, http://www.trackvis.org/] following proce-
dures described in a previous study [Kim et al., 2015] with
minor modifications in network edge definition. Briefly,
fiber tracking was terminated when the angle between two
orientation vectors was greater than 45° or the FA of con-
secutive voxels was below 0.15. Additionally, fibers shorter
than 20 mm and longer than 200 mm were disregarded
[Guevara et al., 2011; Kim et al., 2015; Yoo et al., 2015a,b].
Whole-brain white matter fiber tracts were reconstructed
in native diffusion space for each subject via the FACT
algorithm [Mori et al., 1999]. The participants provided
written informed consent to participate in this study. This
study was approved by the Institutional Review Board of
Samsung Medical Center, Seoul, Korea.

Network construction

We employed 90 brain regions of an AAL parcellation
scheme [Tzourio-Mazoyer et al., 2002] as a set of nodes for
the network. Two nodes were considered to be structurally
connected when there are fiber tracts that pass through
these nodes. Both ends of fibers that pass through the
nodes were truncated, whereas fibers between two nodes
were left intact. The edge weights for every pair of 90
regions were calculated. The weight of an edge was
defined as the mean FA of the fiber tracts between two
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Figure 4.

ROC curves constructed from simulations under different condi-
tions in 100 nodes network. The performance of DBS was eval-
uated for the detection of a known ‘“ground truth” contrast
under different conditions. Four CNR values (0.75, |, 1.25, and
1.5) and four cluster sizes (5, 10, 15, and 20) were applied. In

general, DBS and CP worked better with larger cluster size.
However, the performance of element-wise correction was not
different across multiple cluster sizes when CNR is fixed. (The
number following DBS or NBS represents the applied initial
threshold of P-value.).
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TABLE Il. Demographics

HC AD
Subjects (sex) 30 (21F) 27 (17F)
Age 70.9 (+5.5) 70.2 (£8.2)
CDR sum of boxes (SNSB) 0.6 (=0.4) 5.8 (£1.2)*
Mini-mental state examination 28.8 (=1.2) 17.6 (£3.8)*

*Significantly different at P < 0.001.

nodes when tracts existed, and the weight was set to zero
if tracts did not exist between two nodes.

Degree-based statistic (DBS)

We investigated the difference of structural connectivity
between patients with AD and age-matched healthy con-
trols (unpaired two-sample t-test). We re-labeled each of
the 57 connectivity matrices with one of two groups (AD
or HC) and applied DBS with 5,000 permutations. Then,
the weighted degrees and persistency score for each clus-
ter and their significance were estimated (P <0.05 cor-
rected using DBS).

Results

We found two clusters centered on, respectively, the
right middle cingulate gyrus and the left caudate as persis-
tent clusters significantly altered in the AD group (Fig. 5,
corrected P <0.05; normalized CP 1.96 and 1.37, respec-
tively). The cluster of the right middle cingulate gyrus,
especially, was shown to be significant across the entire
range of initial thresholds (corrected P <0.05). In addition,
another cluster of edges centered on the right amygdala
was shown to be significantly altered in the AD group at a
range of initial threshold t-value below 2.2, but it did not
have significant CP.

Comparison with other correction methods

Application of the Bonferroni correction to the hypothe-
sis testing of 4,005 elements from a matrix of 90 nodes
(x=0.05 for a P-value of 0.05/4,005 for each individual
connection), did not reveal any significant changes in con-
nectivity. For the permutation-based marginal statistic, we
estimated the empirical null distribution of the minimum
P-value from 5,000 permutations. Then, we applied thresh-
olds of o« =0.05. After this correction, two connections
were found to be significantly different, one between the
right middle cingulate gyrus and putamen, and the other
between the right middle cingulate gyrus and thalamus.
For NBS, we applied a range of primary cut-off thresholds,
the same as the cut-off used for DBS, and then applied an
NBS threshold of corrected P =0.05 to identify connected
components. For the entire range of initial threshold that
were tested, this method identified one large connected

component including every connection and region identi-

fied by DBS.

Functional Connectivity with Non-Motor
Symptoms in Parkinson’s Disease Regarding
Motor Laterality: A Resting fMRI Study

Subject recruitment and MR and

preprocessing

acquisition

Secondly, we applied DBS to analyze the correlation
between resting state functional connectivity and the
severity of non-motor symptoms in patients with Parkin-
son’s disease (PD). This dataset is the same as in our pre-
vious study [Yoo et al., 2015a,b]. Eighty-seven consecutive
patients with PD were recruited in the Department of
Neurology at Asan Medical Center (AMC) in Seoul, Korea
(Table III). The diagnosis was made based on the United
Kingdom Parkinson’s Disease Society brain bank clinical
diagnostic criteria [Gibb and Lees, 1998]. Structural and
functional MRI data were obtained using a 3T MRI scan-
ner (Philips Healthcare, Best, The Netherlands) at AMC.
Functional MRI preprocessing was performed using Statis-
tical Parametric Mapping 8.0 in MATLAB R2011b (7.13)
(Natick, MA) following procedures described in a previous
study [Yoo et al., 2015a,b]. The participants provided writ-
ten informed consent to participate in this study. This
study was approved by the Institutional Review Board of
AMC, Seoul, Korea. Detailed information is described in
the previous study [Yoo et al., 2015a,b].

Network construction

The procedure that was performed was similar to that
in 4.1.2, with the difference that brain regions were consid-
ered as ipsilateral or contralateral to the body side of dom-
inant motor symptoms for each PD. For example, in the
case of patients who experience several motor symptoms
in the left side of their body, the left and right hemispheric
regions were considered as the ipsilateral and contralateral
brain regions, respectively.

Degree-based statistic (DBS)

We investigated the correlation of resting state function-
al connectivity with the severity of non-motor symptoms
in PD with regards to the motor laterality (correlation
analysis with Pearson product-moment correlation). We
re-labeled each of the 81 connectivity matrices with one of
their severity scores and applied DBS with 5,000 permuta-
tions. Then, the weighted degrees and persistency score
for each cluster and their significance were estimated
(P <0.05 corrected using DBS).
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Figure 5.

Clusters of edges significantly different in patients with Alz-
heimer’s disease. Three clusters of edges are significantly dif-
ferent in patients with Alzheimer’s disease compared with
healthy controls over a range, at least a restricted range, of
initial cluster-forming thresholds. Only two clusters centered
on the right middle cingulate gyrus (A, D, and F) and the left
caudate (B and E) were shown as persistent clusters

(significant CP score). A cluster of edges centered on the
right amygdala was not a persistent cluster, but detected sig-
nificantly different at a liberal initial threshold (C). The white
area (contrasting the gray area) above the dashed line repre-
sents a significant result (P<0.05 FWE corrected using
DBS). Clusters overlaid with the brain are illustrated using
BrainNet Viewer [Xia et al., 2013].
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TABLE Ill. Demographics

Left-more-
affected LPD

Right-more-
affected PD

Subjects (sex) 44 (27F) 37 (23F)
Age 64.4(+9.3) 62.2 (£12.7)
Part I 5.6 (+4.8) 6.0 (+4.3)
MDS-UPDRS Part IIT 29.6 (+11.9) 29.6 (+11.9)
Total 46.9 (£18.5) 482 (+20.0)
S&E ADL 79.8 (+6.2) 79.1 (£9.9)
H&Y stages 2.1 (*0.6) 2.1(x0.7)
Motor laterality 6.5 (£3.5) 7.5 (£3.5)

Results

We found a cluster of a centric node, the ipsilateral infe-
rior orbitofrontal area, to be a persistent cluster significant-
ly correlated with the severity of non-motor symptoms of
PD (Fig. 6, corrected P <0.05; normalized CP 1.05).
Regarding the specific range of the initial thresholds, this
cluster was shown to be significant in a lower threshold
range (corrected P < 0.05).

Comparison with other correction methods

Application of the Bonferroni correction to the hypothe-
sis testing of 6,670 elements from a matrix of 116 nodes
(x=0.05 for a P-value of 0.05/6,670 for each individual
connection) did not reveal any significant changes in con-
nectivity. For the permutation-based marginal statistic, we
estimated the empirical null distribution of the minimum
P-value from 5,000 permutations. Then, we applied thresh-
olds by using « =0.05. Again, this correction did not lead
to any significant changes in connectivity. For CBS, we
applied a range of primary cut-off thresholds, the same as
the cut-off used for DBS, and then applied a CBS thresh-
old of corrected P=0.05 to identify connected compo-
nents. For the entire range of initial thresholds that were
tested, this method could not identify any connected
component.

DISCUSSION

The accurate analysis of brain connectivity requires
accurate statistical approaches. Connectivity analysis
involves the examination of a massive number of edge ele-
ments, which is an MTP. Therefore, it is necessary to con-
trol the false positive error rate appropriately and
carefully. This led us to propose a novel method, DBS, to
control the FWER by adapting the principles of cluster-
wise correction and the graph theoretical concept of
“degree.” DBS, which uses -cluster-wise inference, is
designed to overcome two innate drawbacks of cluster-
wise inference.

The unsuitability of element-wise corrections, such as
the Bonferroni correction, permutation-based marginal

statistic, and other FDR control procedures, has resulted in
the introduction of cluster-wise approaches, because the
element-wise methods are too stringent for the analysis of
MR data with low signal-to-noise ratios. Since then, many
cluster-wise correction methods have been developed and
have become the preferred approach [Woo et al., 2014].
The use of cluster-wise statistics to make inferences first
requires a cluster to be defined. In traditional MR imaging
analysis, a cluster comprises a set of neighboring voxels
that clump together to form a spatially continuous mass in
a physical sense. However, it is not easy to apply cluster-
wise statistics to a connectivity analysis because the defini-
tion of a cluster is not as obvious. In the case of voxel ele-
ments in an MR image, voxels within a specified
proximity could simply be considered to be neighboring,
for the purposes of defining a cluster. However, the situa-
tion is somewhat different for edge elements in a connec-
tivity matrix. Two neighboring edge elements in the
connectivity matrix are connected; thus, they could be
assumed to form a cluster. In addition, edge elements that
are not neighboring in the matrix could be connected
when they share a common node. This is the case for NBS
[Zalesky et al., 2010]. In these methods, a cluster is defined
as a connected component and the size of a cluster is con-
sidered to be the number of connections in the component.
Another method, named SPC, defines a cluster as a set of
edges for which ending points, that is, two nodes, adjoin
each other [Hipp et al., 2011; Zalesky et al., 2012b]. In SPC,
edges are not required to share a common node; instead,
nodes are required to be located nearby. In another study
that introduced two methods, CSS and CMS, a cluster was
defined as a set of spatially continuous voxels having con-
nections with other voxels [Ing and Schwarzbauer, 2014].
The last two methods, SPC and CSS/CMS, might be more
suitable for connectivity matrices of networks consisting of
a large number of small-sized nodes, such as voxels them-
selves, whereas NBS would be appropriate for a connectiv-
ity matrix with relatively large-sized nodes. In addition,
only NBS defines a cluster as a connected set of edges, lit-
erally, among spatially distinct regions, whereas the other
methods consider a mass of spatially continuous voxels as
a cluster.

In this study, we defined a cluster as a set of edges con-
nected through one node, that is, a one-node-centered
cluster. The underlying assumption for this definition is
the existence of a pivotal node playing the main role in
mediating brain function by interacting with every other
region to integrate information in the center of the module.
Based on this definition and set of assumptions, we were
able to estimate the size of every suppositional cluster by
calculating the degree of every node. In other words, the
size of a one-node-centered cluster is simply the degree of
the centric node of the cluster. We tested the significance
of a cluster using the graph theoretical concept of degree;
therefore, we named our method DBS. The definition of a
cluster in DBS naturally provides several advantages.
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Figure 6.

Cluster of edges significantly correlated with the severity of
non-motor symptoms in Parkinson’s disease. One cluster of
edges centered on the ipsilateral inferior orbitofrontal area
was shown as a persistent cluster (significant CP score). The
white area (contrasting the grey area) above the dashed line

Cluster-wise inference involves low spatial specificity.
Although the edges in a DBS cluster are of interest, it is
possible to point out the centric node of the cluster similar
to local peaks of a cluster in MRI analysis. Another point
is that we might consider the centric node to play a pivot-
al role as a hub of the cluster for the brain function of
interest. In graph theory, hubs are nodes with high degree
or high centrality [Bullmore and Sporns, 2009]. The centric
node of a cluster in DBS might be considered as a hub
region for a specific brain function of interest for the pur-
pose of being tested with many significantly associated
edges. Finally, our definition of a cluster facilitates location

represents a significant result (P <0.05 FWE corrected using
DBS). Cluster overlaid with the brain is illustrated using
BrainNet Viewer [Xia et al, 2013]. [Color figure can be
viewed at wileyonlinelibrary.com.]

of the same cluster over multiple initial cluster-forming
thresholds. DBS extends over a range of initial cluster-
forming thresholds. Identification of a persistent cluster
requires confirmation that two clusters defined by differ-
ent thresholds are in fact the same cluster. In DBS, every
cluster has its own unique centric node, thus it is very the
way the cluster is defined does not prevent the same clus-
ter from being found across the different thresholds.

One major limitation of cluster-wise inference is the
arbitrary decision regarding the primary threshold to
acquire a set of suprathreshold edges. Cluster-wise infer-
ence requires the use of an initial cluster-forming
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threshold to define a cluster. As of yet, there is no solution
for this arbitrariness issue. There has been growing con-
sensus that too liberal a threshold should be avoided. In
the case of fMRI activation, one study has suggested that a
primary P-value of 0.001 yields a reliable result [Woo
et al., 2014]. Applying a similar primary threshold might
be appropriate in connectivity analysis. However, there is
no guarantee that the same result will be obtained for dif-
ferent initial thresholds, as is the case with MRI analysis.
We resolved this uncertainty by borrowing the concept of
persistence from algebraic topology and suggested a new
measure, center persistency (CP) [Horak et al, 2009;
Zomorodian and Carlsson, 2005]. This score is estimated
collectively from an entire possible range of initial thresh-
olds. The concept of persistent homology has been previ-
ously applied in medical imaging and brain network
analysis [Chung et al., 2009; Lee et al., 2011a,b; Pachauri
et al., 2011; Singh et al., 2008]. This approach in network
analysis was essentially implemented to avoid having to
test every possible threshold or having to determine the
optimal threshold in network construction or modeling.
Adaptation of this concept enabled us to further improve
DBS to reveal persistent clusters associated with an effect
of interest. As a result, it was possible to identify the cen-
ters of persistent threshold-independent clusters. The for-
mula for CP is quite similar to that of TFCE, which is
implemented in the FMRIB software library [Smith and
Nichols, 2009]. Similar to the CP in DBS, TFCE is intended
to avoid arbitrary primary thresholding in MR analysis.
However, the difference between CP in DBS and TFCE,
besides CP being proposed for connectivity analysis and
TFCE being used for the analysis of MRI, is that CP in
DBS is calculated for each cluster, whereas TFCE is esti-
mated for each element (voxel). In other words, CP is a
cluster-wise method, whereas TFCE is a cluster-like ele-
ment-wise method. The formula of the CP score could be
modified should it be necessary to assign a higher weight-
ing to the higher initial thresholds. For example, the
weighted degree could be multiplied by the initial thresh-
old on which the weighted degree is estimated before the
CP score is calculated:

CP;= [s * wi(s)ds ~ ZHS * Wi (s)As

This would provide higher sensitivity for revealing a clus-
ter with a small number of edges, but which has a very
significant association with an effect of interest. However,
this arbitrary weighting may not be desirable in every
case. A further improvement could be achieved by raising
the initial threshold s and the weighted degree w; to a cer-
tain power:

CP;i= Jsa s« wy(s)°ds ~ Znsa « w;(s)°As,

where a and b should be defined.

In the case of TFCE, the authors raised the cluster extent
and initial threshold to a certain power in the TFCE esti-
mation, although TFCE is calculated using the cluster
extent, which is analogous to the binary degree, rather
than the weighted degree in DBS. They determined the
powers of an initial threshold and cluster extent from
many simulations and tests to ensure an acceptable level
of sensitivity. However, the result obtained by using these
powers would still depend on the specific case.

We validated the power of our method, DBS, over
element-wise correction or NBS under the assumed cir-
cumstances using simulations with a known ground truth
contrast. We simulated various conditions with different
CNRs and cluster sizes as well as the different sizes of a
network (Fig. 4 and Supporting Information Figs. 1 and 2).
The performances of DBS and CP were better for higher
CNR and/or larger cluster size. In contrast, the perfor-
mance of element-wise correction remained unchanged
when the cluster size was varied for the same CNR, as
expected. Under the most circumstances, DBS with rela-
tively conservative initial threshold (a cut-off P-value of
0.01 or 0.005) was more powerful than element-wise cor-
rection. In addition, CP scores in DBS showed the highest
power for detecting high-degree nodes. Given low signal-
to-noise ratio of resting fMRIs and their connectivity [Fox
and Grecius, 2010], better performance of DBS compared
with the element-wise method is pertinent.

We want to mention that DBS with an initial threshold
of P-value 0.05 showed poor performance in the most
cases (Fig. 4, Supporting Information Figs. 1 and 2). This
finding can be attributed to the too liberal initial threshold
leading accidental survival of non-contrast edges. These
edges were revealed by DBS even when the cluster-wise
threshold was stringent. In contrast, DBS with an initial
threshold of P-value 0.01 or 0.005 was shown to reach sat-
urated TPR before FPR becomes 0.05. Our results accord
with the emerging consensus about the avoidance of too
liberal initial threshold in cluster-wise inference [Woo
et al., 2014]. Out of initial thresholds of 0.01 and 0.005, P-
value 0.01 showed higher TPR at FPR 0.05. This finding is
attributed to preventing the survival of contrast edges hav-
ing low signals by more conservative threshold. However,
it is worthnoting that the differences between the saturat-
ed TPRs of initial threshold 0.01 and 0.005 were decreased
as CNR increases from 1.0 to 1.5 (Fig. 4, Supporting Infor-
mation Figs. 1 and 2). One can expect that when higher
CNRs are tested, the performance of DBS with an initial
threshold P-value 0.005 would be better than that of initial
threshold 0.01. Thus, it would be beneficial if one uses
more conservative initial threshold when higher CNR is
ensured. However, it would not be possible to know CNR
before analysis in real situations

We also applied DBS to two real datasets with different
imaging modalities, resting fMRI and DTI, to demonstrate
the effectiveness of DBS in real variable situations. The
first analysis was intended to determine the alteration of
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structural connectivity by Alzheimer’s disease using DTI.
We found that two clusters of edges centered on the right
middle cingulate gyrus and left caudate, respectively, are
persistent clusters that are significantly different in AD
compared with healthy controls. The disruption or alter-
ation of the middle of the cingulate gyrus is evident. One
study reported hypoperfusion in the right middle cingu-
late gyrus in subjects who converted to dementia com-
pared with non-converters [Chao et al.,, 2010]. Another
study analyzing DTI data showed that the bilateral cingu-
lum has reduced FA in patients with AD compared with
healthy controls or patients with mild cognitive impair-
ment [Liu et al., 2009]. In addition, other studies have
shown that disruption (hypometabolism and reduced FA)
of the middle cingulate gyrus is correlated with hippocam-
pal atrophy in AD [Canu et al., 2013; Villain et al., 2008].
One network analysis study using a structural cortical net-
work and graph theoretical approach found changes in the
interregional correlation of the right middle cingulate
gyrus with other areas in AD [Yao et al., 2010]. Alteration
of the left caudate in AD has also been reported. One
study found the volume of the left caudate to be signifi-
cantly reduced in AD compared with controls [Barber
et al., 2001]. A recent study reported a volume reduction
in the bilateral caudate even at the presymptomatic stage,
with increased fractional anisotropy of the left caudate
[Ryan et al., 2013]. The second dataset to which we
applied DBS contained the resting fMRI results of subjects
with Parkinson’s disease with the aim of performing a cor-
relation analysis between functional connectivity and the
severity of symptoms. We showed that, in patients with
PD, a cluster of edges of the ipsilateral inferior orbitofron-
tal area was significantly correlated with the severity of
non-motor symptoms (corrected P < 0.05). We reported in
our previous study that a set of connectivity of this area
was significantly correlated with the severity of non-motor
symptoms [Yoo et al.,, 2015a,b]. In this previous study, we
performed a correlation analysis for one specific threshold
of P=0.001 and reported the uncorrected results. In our
current study, by applying DBS, we improved the accura-
cy of the results by using DBS for correction and further
demonstrated that this is independent of the initial thresh-
old selection. Thus, whereas the results of traditional brain
connectivity analyses are affected by statistical issues, such
as MTP or the arbitrariness of the initial threshold, and
would not be easily interpretable [Fornito and Bullmore,
2010], DBS can provide a relatively straightforward result
in respect to a hub-like node with resolving, at least par-
tially, the previously mentioned statistical problems.
Nevertheless, some points need to be addressed. First,
the underlying assumptions may not be applicable to cer-
tain situations. Because DBS is targeted at and optimized
to discover a cluster of edges connected through one node,
it cannot be used to detect a cluster that does not contain
a centric hub-like node. If any particular node of a cluster,
for example, does not have many edges and if every node

of a cluster is evenly connected, DBS would be unable to
identify it as a cluster. This indicates that DBS is not a
replacement for other cluster-wise correction methods, but
should be considered a complementary method. Second,
DBS does not account for the smoothness of fMRI data.
The application of cluster-wise correction methods to the
analysis of MRI data, such as fMRI with task-activation,
entails the use of image smoothness to estimate the signifi-
cance of a cluster [e.g., random field theory, Worsley et al.,
1992]. In DBS, the use of nodes with an insufficient size
would be inappropriate. Because of the smoothness in
functional imaging, neighboring voxels and/or areas have
similar patterns of temporal signals and would be estimat-
ed being synchronized and connected. Hence, nodes that
are defined to have a small size would produce a result
that would be incorrectly affected by connections among
spatially connected nodes.

CONCLUSION

In this article, we present a novel method, DBS, to con-
trol the FWER in connectivity analysis. DBS can be used to
identify a set of edges connected through a single hub-like
node. The application of DBS enabled us to detect one-
node-centered clusters that are significantly associated
with an effect of particular interest. Furthermore, we sug-
gested a new cluster measure to overcome the arbitrary
selection of an initial cluster-forming threshold and the
lack of spatial specificity. We demonstrated the effective-
ness of DBS in diverse situations with multiple imaging
modalities, for patients affected by different neurodegener-
ative disorders. We believe that DBS is widely applicable
to cognitive or clinical studies and yields statistically
robust and easily interpretable results.
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