
Cortical Connectivity Modulation During Sleep
Onset: A Study via Graph Theory on EEG Data

Fabrizio Vecchio ,1* Francesca Miraglia,1,5 Maurizio Gorgoni,2

Michele Ferrara,3 Francesco Iberite,1 Placido Bramanti,4

Luigi De Gennaro,1,2 and Paolo Maria Rossini1,5

1Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
2Department of Psychology, “Sapienza” University of Rome, Rome, Italy

3Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila,
Coppito, L’Aquila, Italy

4IRCCS Centro Neurolesi Bonino-Pulejo, Messina, Italy
5Institute of Neurology, Dept. Geriatrics, Neuroscience & Orthopedics, Catholic University,

A. Gemelli Foundation, Rome, Italy

r r

Abstract: Sleep onset is characterized by a specific and orchestrated pattern of frequency and topo-
graphical EEG changes. Conventional power analyses of electroencephalographic (EEG) and computa-
tional assessments of network dynamics have described an earlier synchronization of the centrofrontal
areas rhythms and a spread of synchronizing signals from associative prefrontal to posterior areas.
Here, we assess how “small world” characteristics of the brain networks, as reflected in the EEG
rhythms, are modified in the wakefulness–sleep transition comparing the pre- and post-sleep onset
epochs. The results show that sleep onset is characterized by a less ordered brain network (as reflected
by the higher value of small world) in the sigma band for the frontal lobes indicating stronger connec-
tivity, and a more ordered brain network in the low frequency delta and theta bands indicating discon-
nection on the remaining brain areas. Our results depict the timing and topography of the specific
mechanisms for the maintenance of functional connectivity of frontal brain regions at the sleep onset,
also providing a possible explanation for the prevalence of the frontal-to-posterior information flow
directionality previously observed after sleep onset. Hum Brain Mapp 38:5456–5464, 2017. VC 2017 Wiley

Periodicals, Inc.
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INTRODUCTION

Sleep is a complex physiological process, linked with
the function of every bodily organ, and its dysregulation
has negative impacts for well-being and health. Despite its
importance, after decades of research, much uncertainty
remains with respect to brain functional changes occurring
when we fall asleep. The known point is that there are
remarkable changes between full awake and sleep condi-
tions and that the variety of human states of consciousness
and the wakefulness–sleep (W–S) transition are based on
the dynamic connectivity of brain regions that continu-
ously interact through complex neural networks with
time- and task-varying architecture.

Following this idea, a specific pattern of frequency and
topographical electroencephalographic (EEG) changes has
been observed at sleep onset [De Gennaro et al., 2001]. In
the 5 min interval preceding the appearance of EEG pat-
terns which characterize sleep onset—namely, a sleep
spindle or a K-complex—the slow rhythms are more
prominent in power at the more anterior scalp locations
(central, frontal, and frontopolar), and at the parietal scalp
location when compared with the occipital ones. These
findings supported the notion that a spread of synchroniz-
ing signals from associative prefrontal to posterior areas
has an important role in the wakefulness–sleep transition
[De Gennaro et al. 2004;De Gennaro et al. 2005;Marzano
et al. 2013]. More recently, Marzano et al. [2013] confirmed
that the centrofrontal areas show an earlier synchroniza-
tion (i.e., they fall asleep first) suggesting the coexistence
of wake-like and sleep-like electrical brain activity in dif-
ferent cortical areas during the initial sleep stage. In such
way, the progressive brain disconnection from the external
world as we fall asleep does not necessarily affect primary
and higher order cortices at the same time. More in gen-
eral, these findings strengthen the view of sleep as a local
process, with frontal areas crucially involved in sleep
homeostasis [Ferrara & De Gennaro, 2011]. According to
the local use-dependent theory, this would derive from a
higher sleep need of the frontal cortex, which in turn is
due to its higher levels of activity during wakefulness. The
fact that different brain regions can simultaneously exhibit
different sleep intensities indicates that sleep is not a spa-
tially global and uniform state, as hypothesized in the
theory.

Here, the challenge was to understand how the function-
ally specialized brain areas interact within the frame of
dynamic networks during sleep and in particular wakeful-
ness–sleep (W–S) transition. This is particularly interesting
when dealing with dynamic interactions among neural
assemblies, which change in a time frame in the order of
few tens of milliseconds. In fact, the human brain consists
of complex inhibitory and excitatory circuits which connect
functionally specialized areas with a continuous and time-
varying interplay for processing, integrating and sharing
information. The white-matter (axonal) fibers provide ana-
tomical basis for signal transfer and communication; the

whole architecture is not random, but is organized in a so-
called “small-world” network topology characterized by the
combination of a high degree of local clustering (segrega-
tion) and of long-distance connections (integration) [Watts
& Strogatz, 1998].

An important technique recently applied to study this
small world characteristics and to extract network dynam-
ics from noninvasive measures is based on network analy-
sis drawn from the field of graph theory. Watts and
Strogatz [1998] introduced this concept of small-world net-
works organization, focusing on an optimal balance
between local specialization (segregation) and global inte-
gration. This approach is a promising way to characterize
brain functional organization [Bassett and Bullmore, 2006]
and correlate it with behavior or task-related performan-
ces. For instance, it evaluates whether the functional con-
nectivity patterns among brain areas reproduce the
organization of more or less strongly bound networks
based on strength the level of synchronization in time-
varying oscillatory neuronal firing of different brain
regions as reflected by oscillating EEG rhythms at the
recording scalp electrodes overlying them [Vecchio et al.
2014a,b,c; Vecchio et al. 2015a].

Small-world network architecture might be of paramount
importance for cortical dynamics because it represents a
balance between local information processing (requiring
local connectivity and segregation) and rapid sharing of
this information to other regions (requiring longer distance
connectivity and integration). Most utilized parameters to
describe these graphs are the clustering coefficient (for the
segregation) and the path length (for the integration). Previ-
ous studies [Ponten et al., 2007; Sporns and Zwi, 2004; Bas-
sett and Bullmore, 2006; Stam, 2004; de Haan et al., 2009]
demonstrated that healthy functional and structural brain
networks have small-world properties.

Small-world parameters during sleep can be, for exam-
ple, extracted from routine EEG data. Ferri et al. [2007,
2008] preliminarily studied the functional connectivity pat-
terns during wake, NREM and REM sleep showing that
the clustering coefficient increased during NREM sleep in
frequencies below 15 Hz.

The aim of this study was to determine how small-
world characteristics of the brain networks, as reflected in
the EEG rhythms, are modified in the wakefulness–sleep
transition comparing the pre and postsleep onset epochs.

SUBJECTS AND METHODS

Participants

A dataset of 40 right-handed healthy subjects (20 males
and 20 females; age range 5 18–29, mean age 5 23.8 6 2.88
years) was analyzed. For more procedural details, see Mar-
zano et al. [2013]. All subjects were right-handed at Hand-
edness Questionnaire [Salmaso and Longoni, 1985] and
gave an informed consent after approval of the study
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protocol by the local Ethical Committee. Experimental pro-
cedures were conformed to the Declaration of Helsinski
and national guidelines.

Procedure

Sleep recordings have been carried out in a sound-
proof, temperature-controlled room. The subjects’ sleep
was undisturbed, started at midnight, and ended after 7.5
hours of accumulated sleep (as visually checked online by
expert sleep researchers).

EEG signals were recorded from 19 unipolar derivations
of the 10–20 system from scalp electrodes with averaged
mastoid reference and were analogically filtered [high-pass
filter at 0.50 Hz and antialiasing low-pass at 30 Hz (230
dB/octave) Esaote Biomedica VEGA 24 polygraph].

For sleep scoring, the submental EMG was recorded
with a time constant of 0.03 s while bipolar horizontal eye
movements (EOG) were acquired from electrodes placed
about 1 cm from the medial and lateral canthi of the domi-
nant eye with a time constant of 1 s. Impedance of these
electrodes was kept below 5 kX.

Data Preprocessing

Central EEG derivation (Cz), EMG, and EOG were used
to visually score sleep stages in 12 s epochs, according to
the standard criteria [Rechtschaffen, 1968]. The poly-
graphic signals (19 EEG channels, EOG, and EMG) were
A/D converted online with a sampling rate of 128 Hz and
stored on the disk of a personal computer. Ocular and
muscle artifacts were excluded offline by visual inspection.

Data were then analyzed by Matlab R2011b software
(MathWorks), using scripts based on EEGLAB 11.0.5.4b
toolbox (http://www.sccn.ucsd.edu/eeglab). Recordings
were band-pass filtered (0.5–30 Hz). EEG data were then
fragmented in 2 s epochs, cleaning artifacts (i.e., eye move-
ments, EKG activity, and muscle contraction) using an
independent component analysis (ICA) procedure per-
formed in EEGLAB Infomax ICA algorithm [Bell and Sej-
nowski, 1995; Iriarte et al., 2003; Jung et al., 2000].

Functional Connectivity Analysis

EEG functional connectivity analysis has been per-
formed using the eLORETA exact low resolution electro-
magnetic tomography [Vecchio et al., 2014a,b,c] software
(freely available at http://www.uzh.ch/keyinst/NewLOR-
ETA/LORETA01.htm). The eLORETA algorithm is a linear
inverse solution for EEG signals that has no localization
error to point sources under ideal (noise-free) conditions
[Pascual-Marqui, 2002].

Based on the scalp-recorded electric potential distribu-
tion, the exact low-resolution brain electromagnetic tomog-
raphy (eLORETA) software was used to compute the
cortical three-dimensional distribution of current density.

The description of the method and the proof of its exact
zero-error localization property are described in Pascual-
Marqui [2009].

In the current implementation of eLORETA, computa-
tions were made in a realistic head model [Fuchs et al.,
2002] using the MNI152 template [Mazziotta et al., 2001],
with the three-dimensional solution space restricted to cor-
tical gray matter, as determined by the probabilistic Talair-
ach atlas [Lancaster et al., 2000]. The standard electrode
positions on the MNI152 scalp were taken from Jurcak
et al. [2007]. The intracerebral volume is partitioned in
6,239 voxels at a 5 mm spatial resolution. Thus, eLORETA
images represent the electric activity at each voxel in the
neuroanatomic Montreal Neurological Institute (MNI) space
as the exact magnitude of the estimated current density.
Anatomical labels as Brodmann areas are also reported
using MNI space, with correction to Talairach space [Brett
et al., 2002].

To obtain a topographic view of the whole brain, brain
connectivity was computed with sLORETA/eLORETA
software in 84 regions positioning the center in the avail-
able 42 Brodmann Areas (BAs: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47) in left
and right hemispheres.

Regions of interest (ROIs) are needed for the estimation
of electric neuronal activity that is used to analyze brain
functional connectivity. The signal at each cortical ROI
consisted of the average electric EEG activities of all voxels
belonging to that ROI, as computed with eLORETA.

Among the eLORETA current density time series of the
84 ROIs, intracortical Lagged Linear Coherence, extracted
using an all nearest voxel procedure [Pascual-Marqui,
2007b], was computed between all possible pairs of the
ROIs for each of the five independent EEG frequency
bands of delta (0.5–4.5 Hz), theta (5–7.5 Hz), alpha (8–11.5
Hz), sigma (12–15.5Hz), and beta (16–24.5 Hz) for each
subject.

Starting with the definition of the complex valued coher-
ence between time series x and y in the frequency band
x—which is based on the cross-spectrum given by the
covariance and variances of the signals—the lagged linear
coherence in the frequency band x is reported in acord-
ance with the following equation [Pascual-Marqui, 2007b]:

LagR2
xyw5

ImCov x; yð Þ½ �2

Var xð Þ3Var yð Þ2 ReCov x; yð Þ½ �2

where Var is the variance of the signals, and Cov is the
complex valued of covariance, with real and imaginary
parts denoted as Re(Cov) and Im(Cov) (Pascual-Marqui
2007a).

This lagged linear coherence was developed as a mea-
sure of the true physiological connectivity not affected by
volume conduction and low spatial resolution [Pascual-
Marqui, 2007b]. The values of lagged linear connectivity
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computing between all pairs of ROIs for each frequency
band were used as weights of the networks built in the
graph analysis.

Graph Analysis

A network is a mathematical representation of a com-
plex system. It is defined by a collection of nodes (vertices)
and links (edges) between pairs of nodes. In brain net-
works, nodes usually represent neuronal assemblies in dis-
crete brain regions, while links represent anatomical,
functional or effective connections [Friston, 1994], depend-
ing on the dataset. Anatomical connections typically corre-
spond to white matter fiber tracts between pairs of grey
matter brain regions (cortical areas or subcortical relays).
Functional connections correspond to magnitudes of tem-
poral correlations in activity and may occur between pairs
of anatomically unconnected (but functionally cooperating
via indirect connections) regions.

In this study, weighted (no thresholded) and undirected
networks were built. The vertices of the network are the
estimated cortical sources in the BAs, and the edges are
weighted by the Lagged Linear value within each pair of
vertices. The software instrument used here for the graph
analysis was the Brain Connectivity Toolbox (BCT, http://
www.brain-connectivity-toolbox.net/), adapted with our
own Matlab scripts.

The small world index Sw that describes the balance
between local connectedness and global integration of a
network was evaluated on the functional weighted brain
networks considering that when Sw> 1, a network had
small-world properties. Small-world organization is inter-
mediate between that of random networks, the short over-
all path length of which is associated with a low level of
local clustering, and that of regular networks or lattices,
and the high level of clustering of which is accompanied
by a long path length [Vecchio et al., 2014b]. This means
that nodes are linked through relatively few intermediate
steps, and most nodes maintain few direct connections
[Miraglia et al., 2016]. Small-worldness (Sw) parameter is
defined as the ratio between normalized weighted cluster-
ing coefficient (Cw) and normalized weighted characteristic
path length (Lw) with respect to the frequency bands. To
obtain individual normalized relative measures, the values
of characteristic path length and of clustering coefficient
were divided by the mean values obtained by the average
of themselves in all bands of each subjects.

The clustering (C) is the ratio of all existing connections
between the “neighbors” of a node (nodes that are one
step away) and the maximum possible number of edges
between the neighbors. C around a vertex i is quantified
by the number of triangles in which vertex i participates,
normalized by the maximum possible number of such tri-
angles [Onnela et al., 2005; Rubinov and Sporns, 2010].

As triangles are one type of subgraph, the definition of
C may be used to yield the weighted clustering coefficient

Cw by replacing the number of triangles with the sum of
triangle intensities as follows [Onnela et al., 2005; Rubinov
and Sporns, 2010]:

CW5
1
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X
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2ti
W

ki ki2 1ð Þ

where
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is the geometric mean of triangles around i, while wij are
connection weights associated to links (i,j), assuming that
weights are normalized such that 0�wij� 1 for all i and j.
Of note, in this study the weights come from the lagged
linear analysis. Finally, the mean clustering coefficient is
computed for all nodes of the graph and then averaged. It
is a measure for the tendency of network elements to form
local clusters [de Haan et al., 2009].

Lw is defined as follows [Onnela et al., 2005; Rubinov
and Sporns, 2010]:

LW5
1

n

X

i2N

P
j2N;j6¼i dW

ij

n21

with

dw
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auv 2 gw
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that represents the shortest weighted path length between
i and j. f is a map (e.g., an inverse) from weight to length
and gw

i $j is the shortest weighted path between i and j.
To obtain individual normalized relative measures, the
values of characteristic path length and of clustering coeffi-
cient were divided by the mean values obtained by the
average of themselves in all bands of each subjects.

Small-worldness (Sw) parameter—obtained as the ratio
between normalized Cw and Lw—was evaluated in all sub-
jects in pre- and postsleep onset condition.

Statistical Evaluation

eLORETA statistical evaluation was made on a graph
analysis pattern extracted with sLORETA/eLORETA from
the brain network (including 84 ROI, 42 ROIs of the left
and 42 ROIs of the right hemisphere). The normality of
the data was tested using the Kolmogorov–Smirnov test,
and the hypothesis of Gaussianity could not be rejected. In
line with the aim of the study, an ANOVA design (Statis-
tica 8.0) was carried out for the small world with the fac-
tors time (pre- and postsleep onset) and band (delta, theta,
alpha, sigma, beta).

Lagged linear connectivity comparisons were evaluated
using the statistical nonparametric mapping (SnPM) meth-
odology supplied by the LORETA software which is based
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on the Fisher’s permutation test. The empirical probability
distribution of the maximum F statistic was estimated via
randomization, under the null hypothesis of equality
between pre- and postsleep onset Lagged linear connectiv-
ity values, for each discrete EEG frequency band within
the groups. A total of 5000 permutations were used for
each randomization test. Owing to the nonparametric
nature of the method, its validity does not need to rely on
any assumption of Gaussianity [Nichols and Holmes,
2002].

RESULTS

ANOVA (Fig. 1) showed a statistically significant inter-
action (F(4,156) 5 16.232, P< 0.000001) between the factors
Time (Pre, Post sleep onset) and Band [delta (0.5–4.5 Hz),
theta (5–7.5 Hz), alpha (8–11.5 Hz), sigma (12–15.5 Hz),
and beta (16–24.5 Hz)]. Duncan planned post-hoc compari-
sons showed that the small world index was Pre>Post in
the delta (P< 0.006959) and theta (P< 0.000352) frequency
bands and the opposite was found, Pre<Post, in the
sigma band (P< 0.000005).

Figure 2 shows the eLORETA Lagged Linear Connectiv-
ity significant differences maps of the EEG cortical sources
for the W–S transition in the sigma band at 12.5 Hz fre-
quency (i.e., the 0.5 Hz bin centered at 12.5 Hz). The red
lines represent the statistically significant differences
between pre- and post- sleep onset. After sleep onset,

subjects show an increase of brain connectivity—higher
number of connections—in the frontal regions respect to
the interval before sleep onset. The same analyses have
been carried out for the all bins of the sigma frequency
range, without substantial differences.

Just with an illustrative and control aim, Figure 3
reports a square image representation of each band in
both pre and post phases. The figure shows the adjacency
matrices representing connectivity values between each
couple of node (namely each possible couple of Brodmann
areas). The only observable finding is represented by
slightly higher values of connectivity within hemisphere
(light color) respect to between hemispheres. Furthermore,
Figure 4 reports the functional coupling distribution as
revealed by the lagged linear coherence in the bands
showing significant differences.

Control Analyses

To be sure that the present results were not influenced
by the choice of more nodes than the starting 19 scalp elec-
trodes, we performed a control analysis with only 18 nodes,
namely we selected the BAs just under the electrodes (in
both left and right hemisphere BA1,2,3, BA5, BA8, BA10,
BA18, BA39, BA21,42, BA37, BA45, 47). The analysis (F(4,
156) 5 9.7354, P< 0.000001) showed that SW had the
same trend as the main analysis but SW significances
were obtained only in theta (P< 0.000365) and sigma
(P< 0.000013) bands, probably due to a lower spatial reso-
lution of the analysis. Regarding the delta band
(P 5 0.373440), the analysis shows similar changes (decrease
in the post condition) compared to the main analysis, but
without reaching statistically significant levels.

As a further control analysis, in order to understand
which parameter between Cw and Lw was responsible for
the SW modulation, we performed statistical evaluation of
Cw and Lw separately. The analysis showed that, while SW
differences were observed in the delta, theta and sigma
bands, Cw(F(4, 156) 5 20.659, P< 0.000001), Lw (F(4,
156) 5 19.198, P< 0.000001) presented significant increase
only in the sigma band (P< 0.000005 and P< 0.000004,
respectively). The final increase of the SW depends on the
fact that the increase of Cw was a little higher (27.1%) than
that of Lw (24.5%).

Finally, to understand whether the spectral power in the
different bands might explain the results of connectivity,
we performed a changing covariate analysis including the
power spectrum of each band (delta, theta, sigma, alpha,
beta) as covariate. Hence, we carried out a Time 3 Band
ANCOVA on the values of SW. This new approach fully
confirmed the Time 3 Band interaction of the main princi-
pal analysis (F(4,152) 5 9.55, P< 0.019), and the post-hoc
analyses replicated previous findings in delta (P< 0.0024),
theta (P< 0.00005), and sigma (P< 0.0000045) bands. The
effect of the covariate was not significant (F(4,152) 5 1,56;
P< 0.1900).

Figure 1.

ANOVA significant interaction (F(4,156) 5 16.232,

P< 0.000001) of the small-world index among the factors Time

(pre- and postsleep onset) and Band [delta (0.5–4.5 Hz), theta

(5–7.5 Hz), alpha (8–11.5 Hz), sigma (12–15.5 Hz), and beta

(16–24.5 Hz)]. Duncan planned post-hoc testing showed that

the pattern pre> post was fitted in the delta (P< 0.006959) and

theta (P< 0.000352) band, while the opposite trend pre< post

was found in sigma band (P< 0.000005). [Color figure can be

viewed at wileyonlinelibrary.com]
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DISCUSSION

In this study, we modeled the EEG functional connectiv-
ity in the brain networks during the wake-to-sleep

transition by graph theory application for the evaluation
of small-world characteristics.

The present results show changes in the functional con-
nectivity and small-world characteristics across the W–S

Figure 2.

Results of the eLORETA comparison of EEG-lagged linear connectivity between pre and post-

sleep onset condition in the sigma band at 12.5 Hz frequency. Red lines indicate connections,

which presented increase of coherence after (POST) compared to before (PRE) sleep onset.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 3.

Square image representation of each band in both pre and post.

In the axes, there are reported the single nodes of the network:

BA 1F, 2P, 3F, 4F, 5P, 6F, 7P, 8F, 9F, 10F, 11F, 13F, 17O, 18O, 19O,

20T, 21T, 22T, 23P, 24F, 25F, 27T, 28T, 29T, 30T, 31P, 32F, 33F,

34T, 35T, 36T, 37T, 38T, 39P, 40P, 41T, 42T, 43P, 44F, 45F, 46F,

and 47F first in the left and then in the right hemisphere, where

F, T, O, and P represent frontal, temporal, occipital, and parietal,

respectively. [Color figure can be viewed at wileyonlinelibrary.

com]
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transition. The results suggest that the W–S transition is char-
acterized by a coordinated functional coupling of cortical
rhythms generated by a specific organization of the brain
network. In particular, results of this study suggested that, in
line with previous evidence [Miraglia et al., 2016], processes
of cerebral integration and segregation are in continuous
modulation across different brain states. Small-world (SW)
properties of the network had different patterns with differ-
ent trends in the EEG frequency bands. Delta and theta low-
frequency bands presented lower levels of SW after sleep
onset compared to the previous interval, while the opposite
was found in the sigma bands. Previous studies suggested
that lower values of SW, which represent a more ordered
structure, are related to a functional disconnection. For exam-
ple, a correlation has been reported between gamma Small
World reduction and memory decline, as revealed by spe-
cific memory tests [Vecchio et al., 2015b]. Moreover, signifi-
cant small worldness difference distinguish normal elderly
subjects from AD patients, and a reduction in the hippocam-
pal volume leads to less Small World variability in different
EEG frequency bands including a reduction in delta band
[Vecchio et al., 2016]. Accordingly, it might be speculated
that in delta and theta bands this increased ordered organi-
zation indexed by a decrease of small-world organization,
represents a sort of functional disconnection in the functional
brain states characterized by the build-up of the slow-wave
activity associated to the homeostatic sleep pressure.

According to this interpretation, the increasingly ordered
architecture found in the delta/theta bands in the current
study should be further heightened with increased sleep
pressure, such as following sleep deprivation.

Few studies have carried out functional coupling analy-
sis in an early phase of the W–S transition. Previous analy-
ses of changes in delta and theta frequencies pointed to a
decreased coherence parallel to the increase in power
[Morikawa et al., 1993], reaching a maximum in delta/
theta coherence in stage 1 followed by a subsequent
decline after stage 2 onset [Morikawa et al., 1997]. Simi-
larly, stage 2 onset yielded lower delta/theta coherence
values than the sleep stage 1 [Tanaka et al., 2000]. More-
over, the asynchronous onset of sleep in different cortical
sites found in a previous study [De Gennaro et al., 2001]
yields a decreased delta/theta band coherence parallel to
the increased power in the W–S transition [De Gennaro
et al., 2004, 2005].

The transition from wakefulness to sleep is characterized
by specific spatial and temporal EEG changes evolving
over the first minutes subsequent to sleep onset [Marzano
et al., 2013]. The frontalization of slow-wave activity
(SWA) is associated with a faster buildup of homeostatic
sleep pressure, as expressed by the rising rate of SWA
during sleep onset. The theta activity mostly shares a simi-
lar temporal and spatial pattern with SWA [Marzano
et al., 2013]. Therefore, the whole pattern of covarying

Figure 4.

Functional coupling in the two conditions in the EEG frequency bands showing significant differ-

ences in the main analysis: delta, theta, and sigma. Arbitrary thresholds were used to illustrate

these patterns.
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changes of slow-frequency EEG activity at sleep onset of
frontal areas points to (A) a higher and earlier EEG syn-
chronization [Marzano et al., 2013], (B) an inversion of
directionality from an occipital-to-frontal information flow
during the presleep period toward a frontal-to-parieto-
occipital information flow after sleep onset [De Gennaro
et al., 2004, 2005]; (C) a decreased slow-frequency EEG
coherence [De Gennaro et al., 2004, 2005], and (D) a more
ordered structure as expressed by the current lower values
of small world in slow-frequency bands.

With respect to the sigma activity, we previously
described that functional coupling between anterior and
posterior midline cortical areas during the sleep onset was
characterized by a significant prevalence of the frontal-to-
parieto/occipital direction after sleep onset [De Gennaro
et al., 2004, 2005]. In this sleep period, spindle frequency is
higher and slow wave activity (SWA) is lower than in sub-
sequent intervals [Andrillon et al., 2011]. The maxima of
sigma frequency and sigma oscillations are, in fact,
detected around the 13–Hz frequency [Marzano et al.,
2013]. Here, we show higher functional coupling in frontal
regions after sleep onset compared to the waking state;
such an increased coupling could justify the prevalence of
the frontal-to-posterior information flow directionality
after sleep onset. This prevalence is maximal at 12.5 Hz
(Fig. 2), although it is widespread across the whole fre-
quency band.

More in general, our results resemble the breakdown in
cortical effective connectivity both across the central sulcus
and the corpus callosum previously showed by using
transcranial magnetic stimulation (TMS) together with
high density EEG (hdEEG) during NREM sleep of the
early part of the night [Massimini et al., 2005]. In that
study, the authors measured how the activation of the pre-
motor area is transmitted to the rest of the brain. Keeping
in mind that in that study during NREM sleep, the EEG
response was stronger but did not propagate beyond the
stimulation site [Massimini et al., 2005], it might be specu-
lated that the increased sigma frontal coupling reflect
increased local interconnectedness leading both to rein-
forcement of frontal lobes linkage at the expense of their
isolation from the rest of the brain.

As sleep deprivation most strongly affects the functional
connectivity of prefrontal cortical areas and the restorative
effect of sleep is especially relevant for the maintenance of
functional connectivity of prefrontal brain regions [Verweij
et al., 2014], our results depict the timing and topography
of such specific mechanism at sleep onset. It will be very
interesting to compare sleep after a normal 16 h of diurnal
wakefulness versus after 40 h of extended wakefulness
(i.e., comparing baseline vs postdeprivation sleep onset).

CONCLUSIONS

The present results show that sleep onset is character-
ized by a less ordered brain network (as reflected by the

higher value of small world) in the sigma band for the
frontal lobes indicating stronger connectivity, and a more
ordered brain network in the low-frequency delta and
theta bands indicating disconnection on the remaining
brain areas. This study opens interesting avenues for
future researches investigating eventual modifications of
brain connectivity and network organization in the evolu-
tion of sleep stages
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