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Abstract: Response inhibition mechanisms are mediated via cortical and subcortical networks. At the cortical
level, the superior frontal gyrus, including the supplementary motor area (SMA) and inferior frontal areas, is
important. There is an ongoing debate about the functional roles of these structures during response inhibition
as it is unclear whether these structures process different codes or contents of information during response
inhibition. In the current study, we examined this question with a focus on theta frequency oscillations during
response inhibition processes. We used a standard Go/Nogo task in a sample of human participants and com-
bined different EEG signal decomposition methods with EEG beamforming approaches. The results suggest
that stimulus coding during inhibitory control is attained by oscillations in the upper theta frequency band (�7
Hz). In contrast, response selection codes during inhibitory control appear to be attained by the lower theta fre-
quency band (�4 Hz). Importantly, these different codes seem to be processed in distinct functional neuroana-
tomical structures. Although the SMA may process stimulus codes and response selection codes, the inferior
frontal cortex may selectively process response selection codes during inhibitory control. Taken together, the
results suggest that different entities within the functional neuroanatomical network associated with
response inhibition mechanisms process different kinds of codes during inhibitory control. These codes
seem to be reflected by different oscillations within the theta frequency band. Hum Brain Mapp 38:5681–5690,
2017. VC 2017 Wiley Periodicals, Inc.

Key words: inhibitory control; EEG; neural oscillations; signal decomposition; beamforming; supple-
mentary motor area; inferior frontal cortex

r r

INTRODUCTION

Executive functions comprise a set of processes that are
particularly important for overcoming automated response
tendencies [Diamond, 2013]. Response inhibition mecha-
nisms, which are employed to overcome automated
response tendencies, are mediated by a network that is
constituted of areas in the superior frontal gyrus (SFG),
including the supplementary motor area (SMA), inferior
frontal areas as well as subcortical structures [Bari and
Robbins, 2013]. Currently, the role of these response net-
work entities during inhibitory control is under debate
[Aron et al., 2015; Hampshire and Sharp, 2015]. For
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example, several lines of evidence have suggested a spe-
cific “braking” function of the inferior prefrontal cortex
[Aron et al., 2015]. Yet, the role of the SMA during inhibi-
tory control is less clear and it has been suggested that
“braking” in the context of inhibitory control is only one
of several control processes that are supported by the infe-
rior frontal cortex [Duncan, 2010; Hampshire and Sharp,
2015]. Generally speaking, it is unclear whether distinct
functional neuroanatomical structures in the cortical
response inhibition network process different codes or
contents of information during response inhibition. The
different codes may be related to stimulus processing and
response selection mechanisms during inhibitory control.

Similar to other cognitive control processes [Cavanagh
and Frank, 2014], response inhibition mechanisms are
mediated via oscillations in the theta frequency band
[Beste et al., 2011, 2017; Dippel et al., 2016; Huster et al.,
2013; Isabella et al., 2015; Quetscher et al., 2015]. A possi-
ble reason why theta oscillations are important is that a
large-amplitude low-frequency temporal scheme is ideal
for organizing activities across large spatial distances
[Buzs�aki and Draguhn, 2004] and for integrating sensory
and response-related information during cognitive control
[Cavanagh and Frank, 2014; Hoffmann and Beste, 2015;
Nigbur et al., 2011; T€ollner et al., 2017]. Both stimulus and
response selection codes may therefore be evident in theta
frequency oscillations during inhibitory control. Despite
the fact that research on inhibitory control has traditionally
focused on response selection mechanisms [Aron et al.,
2014; Bari and Robbins, 2013], several lines of evidence
suggest that stimulus processing mechanisms are also
important to consider [Boehler et al., 2009; Chmielewski
and Beste, 2016a,b] and are better suited to predict
response inhibition performance than the classically inves-
tigated response selection mechanisms [Boehler et al.,
2009; Stock et al., 2016]. Therefore, both stimulus and
response-related processes are important to consider. If the
inferior prefrontal cortex had a specific “braking” function
[Aron et al., 2015] it could be hypothesized that only
response selection, but not stimulus codes, should be proc-
essed by theta oscillations in this area. As inferior frontal
areas show more remote connections to visual areas than
the SMA [Hagmann et al., 2008], the SMA may be more
relevant for processing stimulus codes via theta oscilla-
tions. Distinguishable codes may therefore show specific
associations with distinct functional neuroanatomical
structures in the response inhibition network.

We examined the above questions using a Go/Nogo
task. We combined different signal decomposition meth-
ods with beamforming approaches for EEG data. Using
residue iteration decomposition (RIDE), we dissociated
stimulus and response selection processes (codes) in the
neurophysiological signal [M€uckschel et al., 2017 ; Ouyang
et al., 2011]. RIDE decomposes EEG data into several com-
ponent clusters with dissociable functional relevance
[Ouyang et al., 2011, 2015a]: the S-cluster refers to

stimulus-related processes (like perception and attention),
the R-cluster refers to response-related processes (like motor
preparation/execution) and the C-cluster refers to interme-
diate processes between S and R (like response selection)
[Ouyang et al., 2011]. Time-frequency analyses were then
applied to the single trial RIDE-decomposed data to exam-
ine whether theta band activity is evident in the S and the
C-clusters; that is, whether theta oscillations contain stimu-
lus and response codes. Using beamforming approaches,
the functional neuroanatomical structures processing these
codes via theta oscillations were delineated.

METHODS

Participants

In total n 5 38 volunteers (18 females, mean age 24.1;
range 20–27) took part in the study. All participants were
right-handed and reported no history of neurological or
psychiatric disorders. All participants were students of the
local university and received course credits or a financial
reimbursement for their participation. The study was
approved by the ethics committee of the Medical Faculty
of the TU Dresden and conducted in accordance with the
Declaration of Helsinki.

Task

The participants were seated at a distance of �70 cm
from a 24 inch flat screen in a dimly lit room. All partici-
pants performed a Go/Nogo type sustained attention to
response (SART) (Robertson et al., 1997) paradigm. Digits
“1” to “9” were presented in random order on the screen.
Participants were instructed to respond by pushing the
“enter” button of a custom keyboard when any digit except
for “3” was shown (“GO” trials). Whenever the digit “3”
was presented, the participants had to inhibit the button
press (“NOGO” trial). Participants were instructed to
respond as fast and accurately as possible. Each digit was
presented on the screen for 250 ms and was followed by a
mask the duration of which randomly varied between 1,100
ms and 1,600 ms. The paradigm comprised 480 GO and 60
NOGO trials (ratio 8:1) which were presented in a random-
ized order. The ratio of 8:1 (GO:NOGO trails) was chosen
to increase demands on response inhibition processes [Dip-
pel et al., 2016, 2017]. All digits were presented in the cen-
ter of the screen and in white Arial font on a black uniform
background. As described by Dippel et al. [2016], the font
size of all digits (67, 80, 93, 107, or 120pt) was pseudo-
randomized to prevent the influence of perceptual factors,
like bottom-up attentional processes, on response inhibition.

EEG Recording and Preprocessing

Continuous EEG activity was recorded with a 500 Hz
sampling rate using 60-channel EEG equipment (Brainamp
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DC, BrainProducts). The recording reference was located
at electrode site Fpz. Impedances were kept below 5 kX.
EEG data processing and analysis were conducted using
Matlab (version 8.3.0.532, MathWorks) and the Matlab
toolbox FieldTrip [Oostenveld et al., 2010]. First, the EEG
data were band-pass filtered using filter boundaries of 1
and 80 Hz (IIR filter). Additionally, a 50 Hz notch filter
was applied (48db/oct). Next, the EEG data were seg-
mented into intervals that ranged from 3.5 seconds before
visual stimulus onset until 3.5 seconds thereafter. This was
separately done for GO and NOGO trials. Only correct tri-
als were included in the analysis; that is, GO trials with a
response and NOGO trials without a response within a
time window of 100–1,500 ms after the onset of target
stimulus presentation. These steps were followed by a first
manual artifact rejection to remove gross technical and
movement-related artifacts. Physiological artifacts such as
eye blinks, saccades and pulse artifacts were corrected for
by means of an independent component analysis (RUN-
ICA, logistic Infomax algorithm), which is implemented in
the FieldTrip toolbox. Bad/missing channels were restored
using a FieldTrip-based spline interpolation. All channels
were baseline-corrected with the baseline interval at 2500
to 2300 ms. Then, the data were re-referenced to an aver-
age reference. After averaging on the single-subject level,
the electrodes used for the quantification of event-related
potentials (ERPs) (P1 and N1: P9/P10, N2 and P3: Cz)
were selected in a data-driven manner based on scalp top-
ographies. ERPs were quantified as the mean amplitude
within an ERP specific time window (P1: 90–120 ms; N1
150–180 ms; N2 270–310 ms; P3 480–520 ms) for each single
subject. The choice of electrodes and time windows was sta-
tistically validated as described by M€uckschel et al. [2014].
For this, the above time intervals were taken and the mean
amplitude within the defined search intervals was deter-
mined for each of the 60 electrodes. Then, a Bonferroni cor-
rection for multiple comparisons (critical threshold,
P 5 0.0007) was used to compare each electrode against the
average of all other electrodes. Only electrodes that dis-
played significantly larger mean amplitudes (i.e., negative
for the N- potentials and positive for the P-potentials) than
the average were chosen. This procedure revealed the same
electrodes as previously chosen by visual inspection.

Residue Iteration Decomposition

To dissociate stimulus and response selection processes
(codes) in the EEG signal, RIDE was applied after the re-
referencing step. The idea behind RIDE is that an ERP con-
sists of different components with variable inter-
component delays [Ouyang et al., 2015a]. Based thereon,
RIDE decomposes single-trial ERPs into components with
static latency and components with variable latency. Based
on their timing and timing variability properties, these
components are associated with various stages of cognitive
processing. RIDE is a temporal decomposition method based

on an iteration procedure showing robust results [Ouyang
et al., 2015a]. RIDE makes use of latency variability only to
separate component clusters irrespective of their scalp distri-
butions and waveforms [Ouyang et al., 2015a]. For this pur-
pose, the decomposition is separately conducted for each
single electrode [Ouyang et al., 2015b]. The RIDE decomposi-
tion was performed following established procedures
[M€uckschel et al., 2017; Ouyang et al., 2011; Verleger et al.,
2014] by using the RIDE toolbox and manual available on
http://cns.hkbu.edu.hk/RIDE.htm. The aim of the RIDE
algorithm is to disentangle the superposition of stimulus-
related (S), response-related, and central VC component clus-
ters. The time markers (“latencies”) used for deriving the S-
cluster (“LS”) are the time points of stimulus onset and for
the R-cluster (“LR”) the time points of the response onset. In
contrast to this, the time markers for deriving C (“LC”) are
estimated and iteratively improved. Hence, the latency of the
C-cluster may be initially estimated in each single trial as
reflecting some global waveform [Verleger et al., 2014].
According to Ouyang et al. [2013], who already conducted
the RIDE decomposition on a NOGO task, the R-cluster can-
not be determined for correctly inhibited NOGO trials due
to the lack of a motor response/RTs. Therefore, the decom-
position model does not contain an R-cluster. Any response-
related processes (like motor preparation/execution) are
hence represented by the C-cluster.

RIDE uses a time window function to initially estimate
the latency of the C and R-cluster RIDE component. Each
time window is assumed to mostly cover the range within
which each component is supposed to occur. For the cur-
rent study, the S-cluster was determined in a time window
from 2200 ms prior to stimulus onset to 400 ms after stim-
ulus onset. The C-cluster was determined in the time win-
dow from 100 to 800 ms after stimulus onset. Using the
provided time markers, RIDE decomposes ERP compo-
nents in an iterative way, applying L1-norm minimization
(i.e., obtaining median waveforms). For details on the iter-
ation procedure, please refer to Ouyang et al. [2015a]. The
iteration is performed to improve the estimation of the
components until they converge (criterion: smaller than
1023 difference for the values of two successive iterations).
For the current study, each trial was decomposed into two
clusters (S and C). Full details on the RIDE method can be
found in Ouyang et al. [2011, 2015a,b].

Time Frequency Transformation

On the basis of the single trial time-domain and RIDE-
decomposed data, a time-frequency transformation (TFT)
was conducted employing Morlet wavelets (w) in the time
domain to different frequencies (f):

w t; fð Þ5Aexp
2t2

2r2
t

� �
exp 2ipftð Þ

where t is time, A5 rt
ffiffiffi
p
p

ð Þ21=2
, rt is the wavelet duration,

and i5
ffiffiffiffiffiffiffi
21
p

. We used a ratio of f0
rf
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plots where f0 is the central frequency and rf is the width
of the Gaussian shape in the frequency domain. The time
frequency analysis was performed on undecomposed sin-
gle trial ERP data as well as for the RIDE-decomposed sin-
gle trial S-cluster data and the single trial C-cluster data.
After that, the total wavelet power in the S-cluster and the
C-cluster data were calculated. In order to identify the
electrodes and time-window of significant theta band
activity in a data driven manner, cluster-based permuta-
tion tests were computed as implemented in FieldTrip
[Maris and Oostenveld, 2007]. By means of the Monte
Carlo method, the reference distribution of the permuta-
tion test was approximated using 1,000 random draws.
The power within the identified time window (300–400
ms) for each frequency band of interest (ERP data: 5 Hz;
RIDE data: 4, 7 Hz) was tested against an equally sized
baseline interval. The cluster-based permutation test there-
fore relies on dependent sample t-tests comparing every
channel and frequency band within the specified time
window.

Beamforming

Source reconstruction on the basis of the time-frequency
decomposed data was performed using a dynamic imag-
ing of coherent sources (DICS) beamformer. Beamforming
analysis was conducted using fieldtrip as previously pub-
lished by M€uckschel et al. [2016]. This was done for the
time-frequency decomposed normal EEG data and for the
time-frequency decomposed RIDE data. The DICS beam-
former was applied to average-referenced data (Gross
et al., 2001). A pre-stimulus interval from 2900 to 2100
ms was selected as the baseline interval. To obtain the
power and cross spectral density matrix, a multitaper fre-
quency transformation was conducted. The frequencies of
interest for beamforming analysis were chosen in a data-
driven approach. For the source reconstruction applied to
the undecomposed data, 5 Hz (smoothing window 6 1.67)
was chosen as the central frequency due to the observed
power peak around 5 Hz. We validated this by computing
the difference of NOGO and GO trial power (please refer
to Supporting information Fig. SB). For this difference
plot, the power peak is located at 5.25 Hz at 320 ms. Based
thereon, we chose 5 Hz as the central theta frequency
which best reflects the observed theta band activity.

To compare the undecomposed data to the RIDE cluster
data, we conducted an additional source reconstruction
with central frequencies of 4 Hz and 7 Hz for the unde-
composed data (please refer to the supplemental Figure
A). For the source reconstruction analysis of the RIDE-
decomposed cluster data, the central frequencies of 4 Hz
(6 1.33) and 7 Hz (6 2.33) were chosen to represent the
lower and upper theta frequency band, respectively. The
two frequencies were visually identified on the basis of
time frequency plots and validated using cluster-based
permutation tests. According to the data-driven approach,

the 4 and 7 Hz frequencies show only little overlap
between their smoothing windows. Therefore, the source
estimations obtained for the 4 and 7 Hz frequencies are
less biased by the respective other frequency band while
still reflecting activity in the theta frequency band. For
source estimation, DICS beamforming was performed
using Fieldtrip’s implemented forward model and the
MNI brain template. For details on the forward model
construction, the reader is kindly referred to Oostenveld
et al. [2003]. The time-frequency window chosen for beam-
forming analysis was based on the cluster analysis find-
ings of theta band activity at about 400 ms. To ensure that
the DICS beamformer was only applied to significant TF
intervals of at least three full cycles per core frequency of
interest, a time window of 800 ms ranging from 0 to 800
ms after stimulus onset was used. After the realignment of
the employed EEG electrodes to the forward model, the
leadfield matrix was computed by partitioning the forward
model’s brain volume into grids with 10 mm resolution.
Next, the leadfield matrix was calculated for each grid
point. A common spatial filter based on all conditions
with the regularization parameter set to 5% was separately
applied to each condition to estimate the power of the
sources.

Statistics

For statistical analyses, time-domain ERPs were com-
pared between GO and NOGO trials using dependent
samples t-tests. Dependent samples t-tests were also used
to compare the mean theta power of electrode clusters that
were identified using non-parametric cluster-based permu-
tation tests. As indicated by Shapiro-Wilk tests and con-
firmed by visual inspection, all analyzed variables were
normally distributed (all W> 0.91; df 5 37; P> 0.095). In
the results section, the reported mean values are followed
by the standard deviation.

RESULTS

For GO trials, the average RT was 401.8 ms (6 80.9 ms).
In 6.2% (6 8.5) of GO trials, the participants failed to
respond within the defined response window. For NOGO
trials, false alarms occurred in 18.1% (616.7) of the trials.

The time domain data showing the ERP components is
given in Figure 1A.

The P1 ERP amplitude was significantly larger in
NOGO trials (4.42 mV 6 2.77) than in GO trials (2.70 mV 6

2.09), as shown by a dependent samples t-test
(t[37] 5 29.99; P< 0.001). In contrast, the N1 ERP was
more negative in GO trials (–5.64 mV 6 3.40) than in
NOGO trials (–4.54 mV 6 3.91) (t[37] 5 23.90; P< 0.001). As
indicated by a significant t-test (t[37] 5 5.98; P< 0.001), the
N2 was larger, that is, more negative, in NOGO trials
(–1.89 mV 6 2.79) than in GO trials (–0.77 mV 6 0.91). Addi-
tionally, the P3 ERP amplitude was significantly more

r M€uckschel et al. r

r 5684 r



Figure 1.

ERPs, TFT, and source reconstruction for GO and NOGO trials.

(A) ERP data for GO und NOGO trials, shown in blue and red

colors, respectively. Time point 0 denotes the onset of target

stimulus presentation. The scalp topography plots show the volt-

age distribution across the scalp for each ERP component sepa-

rately. Red colors denote positive potentials, blue colors denote

negative potentials. Left: P1 and N1 ERPs at electrodes P9 and

P10. Right: N2 and P3 ERPs at electrode Cz. (B) TFT power

plots for GO and NOGO trials at electrode Cz. The y-axis

denotes frequency, the x-axis denotes the time in ms relative to

the stimulus onset. The scalp plots show the results of the non-

parametric cluster based permutation tests (5 Hz, 350–450 ms),

by contrasting NOGO against GO trial activity or against base-

line activity. Red colors denote positive power differences;, blue

colors denote negative power differences. Electrodes belonging

to significant positive clusters of electrodes are marked with a

red cross. (C) Results of the DICS beamforming source recon-

struction for NOGO trials at a central frequency of 5 Hz. The

colors denote the difference of source power estimate ratios to

baseline activity. All colors denote positive differences, that is,

stronger activity compared with baseline activity. [Color figure

can be viewed at wileyonlinelibrary.com]
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positive in NOGO trials (0.76 mV/m2 6 1.56) than in GO
trials (0.18 mV 6 0.83) (t[37] 5 27.31; P< 0.001). There were
no latency effects (all P� 0.4). The results of the consecu-
tive TFT analysis are shown in Figure 1B. As can be seen
in Figure 1B, there was an activity peak in NOGO trials
around 300–400 ms after target stimulus onset, which cov-
ered the theta frequency band from 4 to 7 Hz, with a
power peak at about 5 Hz (4.75 Hz at 340 ms). This theta
activity was not evident in the GO condition (refer Figure
1B; for a difference plot, please refer to Supporting infor-
mation Fig. SB). To validate this difference in theta power,
non-parametric cluster-based permutation tests were con-
ducted, which contrasted NOGO and GO condition for the
frequency range of 4–6 Hz. This test revealed a positive
fronto-central cluster of electrodes including electrodes Cz,
FCz, and Fz (P< 0.002; see topoplots in Fig. 1B). Addition-
ally, the theta activity increase in NOGO trials was com-
pared with a baseline interval, revealing a positive fronto-
central cluster of electrodes (P< 0.002; refer to topoplots in
Fig. 1B). Next, beamforming source reconstruction techni-
ques were applied to analyze the source of the theta burst
in the NOGO condition, which had a central frequency of
5 Hz (see Fig. 1C). The beamformer revealed that the esti-
mated sources for the theta activity increase were located
in a cluster of medial frontal regions including the left and
right SFG (peak MNI coordinates in mm: 210/–9/80) and
the SMA (0/1/80). To incorporate the whole theta fre-
quency range from 4 to 7 Hz and to enable a comparison
with the RIDE cluster analysis, beamforming source recon-
struction was also applied to central frequencies at 4 and 7
Hz. The identified sources were similar to those of the
5Hz central frequency and comprised the SMA (4 and 7
Hz) and SFG (4 Hz) (please refer to the Supporting Infor-
mation Fig. SA).

To dissociate stimulus and response selection processes
in the EEG signal, the RIDE decomposition algorithm was
applied to the time-domain data. The results of the RIDE
decomposition are shown in Figure 2A.

The applied model decomposed the ERP data into an S-
cluster and a C-cluster (see Fig. 2A). Based on visual
inspection, both clusters showed a negative potential in
the time window of the N2 ERP, but only the C-cluster
showed a positive potential in the time window of the P3.
The consecutive analysis focused on NOGO trials only
because we were mainly interested in inhibitory control
processes. A TFT was applied to both clusters on NOGO
trials. For the C-cluster, strong theta band activity was
found at about 300–400 ms after target stimulus presenta-
tion, with a maximum in the lower theta frequency band
at about 4 Hz (power peak at 4 Hz, 371 ms), but extending
to the upper theta frequency band (�7 Hz). This matches
the undecomposed data showing activity in the theta fre-
quency from 4 to 7 Hz. For the S-cluster, strong theta
band activity was however also found at about 300–400
ms, but here, the power maximum was in the upper theta
frequency band at about 7 Hz (7 Hz, 308 ms; for a

difference plot please refer to Supporting Information Fig.
SC). To validate these differences, cluster-based permuta-
tion tests were conducted, which compared the 4 and 7
Hz theta activity in the time window of 300–400 ms for S-
and C-cluster separately. Additionally, theta activity was
compared between S- and C-cluster for 4 and 7 Hz fre-
quency band separately. The results are depicted in Figure
2B. For all comparisons, a positive fronto-central cluster of
electrodes, including electrodes Cz and FCz, emerged (all
P� 0.024, see Figure 2B). Dependent-samples t-tests were
used to compare the mean power of all electrodes within
the identified electrodes cluster between the RIDE S-
cluster and C-cluster for 4 and 7 Hz separately. For the 4
Hz frequency band, the power was significantly larger in
the C-cluster cluster (776.60 6 604.08) than in the S-cluster
(560.02 6 285.01) (t[37] 5 2.98; P 5 0.005). In contrast to this,
theta power at 7 Hz did not differ significantly between S-
cluster (736.96 6 609.20) and C-cluster (743.53 6 630.55)
(t[37] 5 0.319; P 5 0.752). Most importantly, the S-cluster
theta activity was significantly larger at 7 than at 4 Hz
(t[37] 5 22.69; P 5 0.011). No significant difference was
found between 4 and 7 Hz in the C-cluster (t[37] 5 20.511;
P 5 0.612). Beamforming source reconstruction techniques
were applied to determine the neuroanatomical sources of
the modulations in the lower and upper theta activity
band. Those analyses were separately conducted for the C-
cluster at 4 and 7 Hz as well as for the S cluster at 7 Hz.
The results are shown in Figure 2C. Theta activity in the
S-cluster at 7 Hz was related to activity in the left and
right SMA (0/1/80). Similar SMA sources (–1/1/73) were
detected for 7 Hz theta activity in the C-cluster. For 4 Hz
in the C-cluster, the beamformer determined sources in
the left and right SMA (0/0/70). Yet and importantly,
additional sources were found in frontal regions including
the triangular part of the right inferior frontal gyrus (rIFG;
50/46/6).

DISCUSSION

In this study, we focused on the role of theta oscillations
in inhibitory control. We examined whether there are dis-
tinguishable stimulus and response-related processes
(codes) and in how far these dissociable codes are proc-
essed in distinct functional neuroanatomical structures
within the response inhibition network.

The results show that theta band activity was stronger
in NOGO trials than in GO trials. This is well in line with
the current literature [Beste et al., 2011, 2017; Dippel et al.,
2016; Huster et al., 2013; Isabella et al., 2015; Quetscher
et al., 2015] and suggests that cognitive control processes
are enhanced during response inhibition. More impor-
tantly, we used RIDE on the EEG data to dissociate stimu-
lus and response selection codes, which are reflected by
the S and the C-cluster, respectively [M€uckschel et al.,
2017; Ouyang et al., 2011]. The subsequent time frequency
analysis of the S-cluster (reflecting stimulus codes)
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revealed that the strongest oscillations were in the upper
theta frequency band (�7 Hz). Opposed to this, the time-
frequency decomposition of the C-cluster (reflecting
response selection codes) (Verleger et al., 2014) revealed
that oscillations were strong in both the lower (�4 Hz)
and upper (�7 Hz) theta frequency band. This may

suggest that stimulus and response selection codes are
gated via distinct oscillations within the theta frequency
band. However, it needs to be noted that the differences
found in the lower theta frequency band cannot be clearly
dissociated from the upper part of the delta frequency band.
Yet, theta frequency oscillations have been suggested to be
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important for cognitive control processes because stimulus
and response selection processes need to be integrated (Cav-
anagh and Frank, 2014). This may well be achieved on the
basis of codes in the theta frequency band because a large-
amplitude low-frequency temporal scheme is ideal for orga-
nizing activities across large spatial distances (Buzs�aki and
Draguhn, 2004). This is a prerequisite for integrating sensory
and response-related processes during cognitive control
(Cavanagh and Frank, 2014). It may be speculated that the
concurrent coding of stimulus and response selection mecha-
nisms within the same frequency band makes it easy to inte-
grate these codes for goal-directed behavior.

Notably, the beamforming analyses showed that concur-
rent stimulus and response selection codes in theta oscilla-
tions were processed in distinct cortical regions of the
response inhibition network, that is, the SMA and the right
inferior frontal cortex. For the S-cluster, only one source
was found in the SMA. Opposed to this, theta oscillations
in the C-cluster, which likely reflect response selection
mechanisms between stimulus evaluation and responding
[M€uckschel et al., 2017; Verleger et al., 2014], were associ-
ated with the SMA as well as an area in the right inferior
frontal cortex. The latter finding is in line with studies
suggesting that the inferior frontal cortex supports an inhi-
bition function during response inhibition processes [Aron
et al., 2004, 2015; Garavan et al., 2006; Kelly et al., 2004;
Konishi et al., 1998]. It has been argued that the (ventral)
right inferior frontal cortex does not reflect attentional
detection of an external signal [Aron et al., 2014], though
this has not directly been shown. The finding that only
theta oscillations of the C-cluster, but not the S-cluster,
were associated with activation differences in right inferior
frontal regions during inhibitory control (refer to Fig. 2)
may be interpreted as that there is no stimulus-related
processing in inferior frontal regions. It seems that signals
related to response selection processes (i.e., C-cluster) are
only evident in inferior frontal regions during inhibitory
control. However, the data suggest that these signals are
also evident in the SMA. This suggests that the “braking
function”, or mechanisms important to inhibit automated
response tendencies, are distributed across several areas of

the response inhibition network. Given that the SMA has
direct connections to the motor system and controls motor
excitability independently from the primary motor cortex
[Gerschlager et al., 2001; Rizzo et al., 2004] it seems rea-
sonable that the SMA also processes response selection
codes. This is further underlined by studies showing that
the SMA is also involved in response initiation [Kawa-
shima et al., 1996] and selection [Rowe et al., 2010] as well
as inhibition [Nachev et al., 2005], which all underline a
general role of the SMA in motor behavior and response
selection [Mostofsky and Simmonds, 2008]. However, the
finding that theta oscillations in the S-cluster were also
associated with the SMA, suggests that the SMA is
involved in the processing of stimulus codes and response
selection mechanisms. It may be speculated that the SMA
serves as an interface between external stimulus codes and
internal response selection codes. Response selection pro-
cesses during inhibitory control may become informed by
external signals via processes in the SMA. In line with this
interpretation, it has recently been shown that different
informational contents (codes) are processed in overlap-
ping structures of the medial frontal cortex, including the
SMA [M€uckschel et al., 2017]. Because the SMA shows
more direct structural connections to visual association
areas than the inferior frontal cortex [Hagmann et al.,
2008], it seems reasonable that the SMA, and not the infe-
rior frontal cortex, seem to process stimulus codes and
may serve such an interfacing function. Further in line
with this interpretation, several lines of evidence have
shown that medial frontal areas are affected by perceptual
modulations of cognitive control [Labrenz et al., 2012;
Westerhausen et al., 2010]; also during response inhibition
processes [Bodmer and Beste, 2017]. However, this study
focused on theta oscillation-mediated processes and the
results show that theta frequency oscillations showed
strong differences between GO and Nogo trials, as well as
between the different RIDE clusters.

Yet, future studies should further evaluate whether
other oscillations (e.g., alpha frequency oscillations) are
also modulated and also contain different informational
content. This may be useful because especially posterior

Figure 2.

RIDE-decomposed S- and C-cluster data. (A) Waveforms show-

ing the S-cluster (left) and C-cluster (right) decomposition of

GO and NOGO trial data at electrode Cz. GO und NOGO tri-

als are shown in blue and red colors, respectively. Time point 0

denotes the stimulus onset. The scalp topography plots sepa-

rately show the voltage distribution across the scalp for each

potential that resembles one of the ERPs from the undecom-

posed analysis. Red colors denote positive potentials, blue col-

ors denote negative potentials. (B) TFT power plot for NOGO

trials in the S-cluster and C-cluster at electrode Cz. The y-axis

denotes frequency, the x-axis denotes the time in ms relative to

the stimulus onset. The scalp plots separately show the results

of the non-parametric cluster based permutation tests for the S-

and C-cluster. The theta frequency power at 4 and 7 Hz in the

time range of 350–450 ms was compared against baseline activ-

ity. Red colors denote positive power differences, blue colors

denote negative differences. Electrodes belonging to significant

positive clusters of electrodes are marked with a red cross. (C)

Results of the DICS beamforming source reconstruction for the

NOGO trial S- (4 and 7 Hz) and C-cluster (4 Hz). The colors

denote the difference of source-power estimate ratios to base-

line activity. All colors denote positive differences, that is, stron-

ger activity compared with baseline activity. [Color figure can be

viewed at wileyonlinelibrary.com]
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alpha dynamics reflect fluctuations in attentional selection
processes that are known to contribute to performance in
the applied experimental paradigm. In this regard, it
should also be noted that even though the applied decom-
position method allows to dissociate stimulus and
response selection processes (codes) in the neurophysio-
logical signal [M€uckschel et al., 2017 ; Ouyang et al., 2011],
especially the C-cluster may still be heterogeneous and
may require further decomposing [Ouyang et al., 2017]. So
while the current study provides evidence that there are
dissociable codes and associated functional neuroanatomi-
cal network during response inhibition, it is possible that
the identified network can further be subdivided in the
future.

In summary, the study suggests that there are distinct
stimulus and response selection codes in theta oscillations
during response inhibition processes. Notably, the results
suggest that the functional neuroanatomical network asso-
ciated with response inhibition processes can be subdi-
vided with respect to the kind of codes that are processed
within the theta frequency band. Although SMAs seem to
process stimulus codes and response selection codes, the
inferior frontal cortex only processes response selection
codes.
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