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Abstract: Altered serotonergic neurotransmission has been found to cause impulsive and aggressive
behavior, as well as increased motor activity, all exemplifying key symptoms of ADHD. The main objec-
tives of this positron emission tomography (PET) study were to investigate the serotonin transporter
binding potential (SERT BPND) in patients with ADHD and to assess associations of SERT BPND between
the brain regions. 25 medication-free patients with ADHD (age 6 SD; 32.39 6 10.15; 10 females) without
any psychiatric comorbidity and 25 age and sex matched healthy control subjects (33.74 6 10.20) were
measured once with PET and the highly selective and specific radioligand [11C]DASB. SERT BPND maps
in nine a priori defined ROIs exhibiting high SERT binding were compared between groups by means of
a linear mixed model. Finally, adopted from structural and functional connectivity analyses, we per-
formed correlational analyses using regional SERT binding potentials to examine molecular interregional
associations between all selected ROIs. We observed significant differences in the interregional correla-
tions between the precuneus and the hippocampus in patients with ADHD compared to healthy con-
trols, using SERT BPND of the investigated ROIs (P< 0.05; Bonferroni corrected). When correlating SERT
BPND and age in the ADHD and the healthy control group, we confirmed an age-related decline in brain
SERT binding in the thalamus and insula (R2 5 0.284, R2 5 0.167, Ps< 0.05; Bonferroni corrected). The
results show significantly different interregional molecular associations of the SERT expression for the
precuneus with hippocampus in patients with ADHD, indicating presumably altered functional cou-
pling. Altered interregional coupling between brain regions might be a sensitive approach to demon-
strate functional and molecular alterations in psychiatric conditions. Hum Brain Mapp 38:792–802, 2017.
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INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is char-
acterized by inappropriate inattention, hyperactivity, impul-
sive behaviour and emotional dysregulation [American
Psychiatric Association, 2013; Rosler et al., 2010], as well as
by a certain constellation of deficits in executive functions.
ADHD is considered to be the most prevalent neurodeve-
lopmental disorder, prevalance rates are estimated to range
between 8% and 12% in childhood [Biederman and Far-
aone, 2005]. In about 30% of children diagnosed with
ADHD [Barbaresi et al., 2013], especially inattentive symp-
toms persist into adulthood.

Frequently prescribed stimulant and non-stimulant psy-
chopharmacological treatment for patients with ADHD are
suggested to unfold efficacy through modulation of dopa-
minergic (DA) and norepinephrinergic neurotransmission
in cortical and subcortical brain circuits and improvement
of neurocognitive deficits [Castells et al., 2011; Chamber-
lain et al., 2009; Retz et al., 2011]. Although the serotonin-
ergic system is not a direct target for ADHD medication,
evidence from pharmacological, genetic and animal stud-
ies suggest an involvement of the serotonergic neurotrans-
mission in the neurobiological mechanisms of ADHD [for
review see (Banerjee and Nandagopal, 2015)].

Although methylphenidate does not inhibit the seroto-
nin transporter, amphetamines enhance serotonergic
release [Bymaster et al., 2002; Kuczenski and Segal, 1997].
A recently published positron emission tomography (PET)
animal study found that atomoxetine applied at clinical
dosage blocks the norepinephrine transporter as well as
the serotonin transporter (SERT) [Ding et al., 2014] and
atomoxetine has been shown to significantly alleviate
symptoms in adult ADHD patients [Adler et al., 2009].
This has led some researchers to suggest that serotonergic
transmission might also be of relevant to ADHD treatment
and neuropathology [Gainetdinov et al., 1999].

Several lines of evidence suggest that serotonin is
involved in impulsive behaviour and extensive motor
activity [Dalley and Roiser, 2012; Winstanley et al., 2006].
Serotonergic neurons in the medial and dorsal raphe pro-
ject into the striatum, ventral tegmental area and nucleus
accumbens as well as into the amygdala, hippocampus
and the frontal cortex [Muller and Jacobs, 2009]. Serotonin
regulates dopaminergic neurotransmission via projections
to the dopaminergic neurons in the midbrain and neuronal
interactions between these neurotransmitters are found to
profoundly modulate impulsive behaviour [Oades, 2008;

Wood and Wren, 2008]. Furthermore, a deficit to withhold
attention for an adequate time, related to a specific con-
text, can lead to emotional dysregulation, a symptom of
ADHD that affects patients markedly throughout lifetime.
Brain regions implicated in emotional dysregulation com-
prise the striatum, amygdala and the medial prefrontal
cortex, regions that are strongly modulated by serotonergic
neurotransmission [Shaw et al., 2014].

Neuroimaging studies have been demonstrating that
patients with ADHD display altered neural activation for
inhibition and attention in frontal, parietal and thalamic
brain regions as well as in the basal ganglia [Aron and Pol-
drack, 2005; Hart et al., 2013]. In comparison to healthy con-
trol subjects (HC), the administration of fluoxetine, a
selective serotonin reuptake inhibitor, prior to functional
magnetic resonance imaging (fMRI) measurements, has
been shown to normalize neuronal activation during a stop
signal task measuring motor inhibition in the orbitofrontal
cortex and in the basal ganglia in 18 patients with ADHD
[Chantiluke et al., 2015]. Fluoxetine, as well as its metabolite
norfluoxetine, also binds to the norepinephrine transporter,
although to a far lesser extent [Wong et al., 1993]. In addi-
tion, Fluoxetine has been found to be effective to improve
attention and alleviate hyperactivity in children with
ADHD and non-bipolar comorbid mood-disorders [Barrick-
man et al., 1991; Quintana et al., 2007].

With a remarkable heritability estimated to be 77%
[Faraone et al., 2005], ADHD exemplifies a spectrum disor-
der with behavioural and personality traits, which under-
lie a combination and an interaction of genetic and
environmental factors [Fliers et al., 2012]. The gene encod-
ing the serotonin transporter (SERT; SLC6A4) as well as
the genes encoding certain serotonergic receptors comprise
various single nucleotide polymorphisms that have been
examined in ADHD and other neuropsychiatric disorders
and were found to be influencing the susceptibility to
ADHD [Faraone and Khan, 2006; van der Meer et al.,
2014]. Thus, the SERT gene is alleged to play a main role
in ADHD pathogenesis.

Studies applying PET or single photon emission tomog-
raphy (SPECT) in adult patients with ADHD have
explored glucose, blood flow metabolismand [for review
see (Zimmer, 2009)] and especially the dopaminergic and
noradrenergic neurotransmitter systems. Dysfunctional
dopaminergic signaling, including investigations on the
dopamine transporter [Fusar-Poli et al., 2012] and dopa-
mine receptors [del Campo et al., 2013; Volkow et al.,
2009], has been identified in different brain regions,
though results remain inconsistent. In a recently published
PET study, we found no difference in norepinephrine
transporter in subcortical regions between patients with
ADHD and HC [Vanicek et al., 2014]. A PET study has
investigated serotonin transporter binding potential (SERT
BPND) in patients with ADHD [Karlsson et al., 2013],
using [11C]MADAM, which is a frequently used tracer for
estimating brain SERT levels. The results depict no

Abbreviations

AAL Automated anatomical labelling
ADHD Attention deficit hyperactivity disorder
HC Healthy control subects
PET Positron emission tomography
SERT Serotonin Transporter
SPECT Single photon emission tomography
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differences compared to HC. However the findings are
preliminary, since the sample size is too small to exempli-
fy reasonable size for power analysis and the tracer. As
mentioned above, evidence from behavioral, neuroimaging
and genetic studies suggest an involvement of the seroto-
nergic system in ADHD. The SERT terminates serotonin
from the synaptic cleft, therefore withholding a pivotal
role in the regulation of serotonergic signaling. The SERT
BPND has been investigated in the past with [11C]DASB
and PET in various neuropsychiatric disorders [Spies
et al., 2015].

In the last decades neuroimaging investigations have
begun to change the conceptual focus from activation
paradigms towards connectivity analysis, from univariate,
where activation in cue-related regions is explored, to mul-
tivariate analysis, where correlations of activation across
brain regions are evaluated [Bullmore, 2012]. To disclose a
possible involvement of a specific neurotransmitter system
in neuropsychiatric disorders, PET imaging has predomi-
nantly been used to observe regional availability of a par-
ticular transporter or receptor in a specific brain region.
Though, through performing interregional correlation anal-
yses, PET imaging has also been applied to explore brain
connectivity in HC, major depressive disorder, autism and
obsessive-compulsive disorder, Alzheimer’s disease and
epilepsy [Baldinger et al., 2014; Horwitz et al., 1984; Lee
et al., 2008; Morbelli et al., 2013; Vanicek et al., 2016].

The serotonergic system represents one of the chief
modulatory neurotransmitter systems in the human brain,
where neurons from the raphe nuclei innervate nearly all
cortical regions and several subcortical structures. There-
fore, serotonin is associated with almost all emotional and
cognitive functions. Since the SERT expression is modified
via available and released serotonin [Benmansour et al.,
2002], investigations on the relation of SERT expression
between different brain regions may exemplify a valuable
method to understand the function on a more global level
of this neurotransmitter system. Studies from our group
showed that molecular associations of the serotonergic
neurotransmitter system (serotonin-1A receptor and SERT)
differed between depressive patients and HC [Baldinger
et al., 2014; Hahn et al., 2014; Lanzenberger et al., 2012],
implicating that interregional molecular correlation analy-
ses is a promising method to generate more insight to the
complexity of neurotransmitter systems and their role in
neuronal pathophysiology.

Therefore, we applied [11C]DASB and PET to assess
SERT BPND in SERT rich regions to observe differences in
SERT availability between adult patients with ADHD and
HC. Furthermore, we performed a correlational analysis,
to examine interregional association of SERT binding as an
index for interregional molecular balance of serotonergic
neurotransmission. We hypothesized that SERT BPND and
interregional molecular associations of SERT availability
across brain areas will reflect a characteristic pattern that
differs between patients with ADHD and HC.

METHODS

Subjects

Twenty-five adult patients with ADHD (age 6 SD;
32.39 6 10.15; 10 females) and 25 age and sex matched HC
(aged 33.74 6 10.20) were recruited through the ADHD out-
patient clinic at the Department of Psychiatry and Psycho-
therapy, Medical University of Vienna and from the local
community via advertisement. Patients were free from psy-
chopharmacologic treatment for at least six months prior to
the screening visit while HC were na€ıve to all psychophar-
macologic treatment. Four patients used methylphenidate
in the past, one patient atomoxetine and one antidepressant
medication. Written informed consent was obtained from
all participants after detailed explanation of the study pro-
tocol and subjects received financial reimbursement for
their participation. This study was approved by the Ethics
Committee of the Medical University of Vienna and the
General Hospital of Vienna (EK 552/2010).

Medical Examination and Clinical Exploration

Subjects underwent standard medical examination
including a general physical and neurological status, elec-
trocardiography and routine laboratory tests at the screen-
ing- and final visit in order to ensure physical health.
Female participants underwent a urine-pregnancy test at
the screening visit and prior to PET measurement. A
multidrug-urine test was performed at the screening visit in
order to exclude current substance abuse. Participants were
interviewed by experienced psychiatrists using Conners’
Adult ADHD Diagnostic Interview for DSM IV (CAADID,
Conners 1999) to evaluate current and childhood attentional
and hyperactivity/impulsivity symptoms and to attest
ADHD diagnosis. (ADHD: impulsive symptoms: 20.056

4.34 hyperactive symptoms: 20.05 6 4.42; HC: impulsive
symptoms: 0.556 0.92 hyperactive symptoms: 0.35 6 0.79).
For five patients hyperactivity/impulsivity symptoms were
not recorded, thus we excluded these patients and their
matched HC from this analysis. Structured Clinical Inter-
view for DSM IV Axis I and Axis II disorders (SCID-I,
SCID-II) was performed to exclude comorbid psychiatric
disorders. Smoking status was recorded and subjects were
subdivided into groups best describing their smoking status
according to quantity of consumption (non-smokers, five
cigarettes/week, five cigarettes/day, five to ten cigarettes/
day, ten cigarettes/day, ten to 15 cigarettes/day, 15 ciga-
rettes/day and 20 cigarettes/day; ranks 1-8, respectively).
ADHD patients did not significantly differ in smoking sta-
tus compared to HC (Mann-Whitney U 5 161.5, Z521.25, P
5 0.30). Subjects with PET- or MRI-incompatible implants
or in pregnancy or breastfeeding were also excluded.

Data Acquisition

All PET scans were carried out at the Dept of Biomedi-
cal Imaging and Image-guided Therapy, Division of
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Nuclear Medicine, Medical University of Vienna using a
full-ring scanner (General Electric Medical Systems, Mil-
waukee, WI, USA) in 3D acquisition mode. We applied
[11C]DASB [Haeusler et al., 2009], which is currently
among the most suitable PET tracers for in vivo SERT
quantification as reported previously in detail [Lanzen-
berger et al., 2012]. A 5 min transmission scan using
retractable 68Ge rod sources for tissue attenuation correc-
tion was performed prior to the emission scan. Data acqui-
sition started with a bolus i.v. injection. Brain radioactivity
was measured in a series of 50 consecutive time frames
(12 3 5 s, 6 3 10 s, 3 3 20 s, 6 3 30 s, 4 3 1 min, 5 3 2 min,
14 3 5 min) with a total measurement time of 90 min after
bolus. Acquired data were reconstructed in volumes con-
sisting of 35 transaxial sections (128 3 128 matrix) using
an iterative filtered back-projection algorithm (FORE-ITER)
with a spatial resolution of 4.36 mm full-width at half
maximum 1 cm next to the center of the field of view. For
coregistration, magnetic resonance (MR) images were
acquired from all participants on a 3 Tesla (T) Philips
scanner (Achieva) using a 3D T1 FFE weighted sequence,
yielding 0.88 mm slice thickness and inplane resolution of
0.8 3 0.8 mm.

Data Quantification

Each time frame of the dynamic PET scan was realigned
to the mean of frames with no head motion, identified by
visual inspection. Subsequently, each summed image (PET
integral image from realigned data) was coregistered (rigid
body transformation) to each subject’s MRI using a nor-
malized mutual information algorithm implemented in
SPM12 (Wellcome Trust Centre for Neuroimaging, Lon-
don, UK; http://www.fil.ion.ucl.ac.uk/spm/). Individual
MRIs were spatially normalized to the T1-weighted MRI
template provided in SPM. Resulting transformation matri-
ces were applied to the coregistered PET images, warping
them into MNI standard space. Parametric images of
BPND [Innis et al., 2007] values were calculated using the
multilinear reference tissue model with two parameters
(MRTM2) implemented in PMOD image analysis software,
version 3.509 (PMOD Technologies Ltd., Zurich, Switzer-
land; http://www.pmod.com). Thalamus was used as the
receptor-rich region and cerebellar grey matter as the ref-
erence region because it contains negligible availability of
SERT and has been demonstrated to represent the optimal
reference region for [11C]DASB [Parsey et al., 2006].

Regions of Interests (ROIs)

Selected ROIs included SERT rich brain regions, based
on previous PET, in vivo, human brain studies [Savli et al.,
2012], including the anterior cingulate cortex, amygdala,
dorsal raphe nuclei as well as the hippocampus, insula,
precuneus, posterior cingulate cortex, striatum and thala-
mus. Binding potential values were extracted from an

automated anatomical labelling (AAL)-based atlas [Savli
et al., 2012], including manually delineated ROIs for the
dorsal and medial raphe nucleus.

Statistical Analysis

Data was analysed using linear mixed models for the
outcome measure SERT BPND with group, sex, and ROI as
fixed factors, with ROI as repeated factor, and subjects
and matched participant pairs as random factors. Fixed
effects were included in the model in a multifactorial
approach whereas interaction effects were dropped in case
of non-significance. In case of significant interactions or
main effects, post-hoc pairwise comparisons were comput-
ed and Bonferroni corrected for multiple comparisons. In a
second exploratory approach to examine the effects of age
and smoking status, a mixed model was calculated using a
stepwise procedure with backward elimination, i.e., start-
ing with all candidate variables (including subject groups
and ROI) followed by a stepwise deletion of interactions
and variables with largest P-values. Finally, mixed models
using the same procedure were applied to investigate the
effects of clinical variables CAARS-inattentiveness and
CAARS-hyperactivity/impulsivity. According to Akaike’s
information criterion [Akaike, 1974], repeated measure-
ments were modelled using the diagonal structure. SPSS
version 19.0 for Windows was used for statistical compu-
tations. The two-tailed significance level was set at 0.05.

Interregional molecular association matrices were calcu-
lated between each ROI pair using Spearman’s rank corre-
lation coefficient (Dq) for each group separately. For the
assessment of statistically significant differences (P< 0.05)
in balance between patients with ADHD and HC, correla-
tion matrices were transformed using Fisher’s r-to-z-
transformation and a 10,000 fold permutation test was per-
formed. Results were Bonferroni correction for multiple
comparisons.

RESULTS

Linear mixed models analysis revealed a main effect of
ROI (F800.22 5 72.08, P< 0.001) and of subject group
(F29.35 5 261.37, P< 0.001; Table 1; Fig. 1), but no main
effects for sex (F1.21 5 21.26, P 5 0.1) and no interaction
effects (all P> 0.1). Post-hoc pairwise comparisons revealed
significant attenuated SERT BPND in patients with ADHD
compared to HC in the striatum (P 5 0.029; uncorrected) as
well as trend in the anterior cingulate cortex and insula
(P 5 0.066 and P 5 0.085; uncorrected). After applying Bon-
ferroni correction for multiple comparisons, we were not
able to detect any significant differences (Table I).

When investigating the potential effects of age, mixed
models analysis for ROI SERT BPND based on AAL atlas
revealed an interaction effect between ROI and age
(F3.53 5 69.79, P< 0.002), in addition to a main effect of ROI
main effect of age (F7.15 5 21.26, P 5 0.014). Post-hoc
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correlation analyses between regional SERT BPND and age
revealed negative correlations in the thalamus and insula
(R2 5 0.284, R2 5 0.167, Ps< 0.05; Bonferroni corrected;
Fig. 2). Furthermore, negative correlations in the anterior
cingulate cortex (R2 5 0.128), posterior cingulate cortex
(R2 5 0.119) and the precuneus (R2 5 0.129) were detected,
however not significant after Bonferroni correction. These
correlations did not differ between HC and ADHD patients.
Smoking status had no effect on SERT BPND nor did they
lead to any significant interactions. Additionally, no main or
interaction effects were observed for clinical variables
(CAARS-Inattentiveness, CAARS-Hyperactivity/Impulsivity)
and SERT BPND.

When comparing interregional SERT BPND correlations
between patients with ADHD and HC, we found a signifi-
cant difference in the correlation of precuneus with amyg-
dala, hippocampus, insula, DRN and ACC, of the
hippocampus with insula and ACC as well as of the PCC
and the ACC. Only the differences in interregional molec-
ular correlations of precuneus with hippocampus survived
Bonferroni correction for multiple comparisons (P 5 0.0324;
see Table II, Figs. 3 and 4).

DISCUSSION

In this cross-sectional PET study we aimed to investigate
SERT availability in adult, medication free patients with
ADHD. When comparing groups, we observed lower
SERT availability for all ROIs pooled together in patients
with ADHD compared HC. For separate brain regions and
after correction for multiple comparisons, results show no
significant differences in SERT BPND between patients
with ADHD and HC. When comparing interregional SERT
BPND correlations between groups, we found a significant
increase for interregional SERT BPND correlations of the
precuneus with hippocampus. In addition, we observed a
negative correlation for SERT BPND and age for patients
and HC in the thalamus and the insula.

Previously published PET and SPECT imaging studies
found no changes in SERT availability between patients
with ADHD and HC [Hesse et al., 2009; Karlsson et al.,
2013]. Though, findings are preliminary and should be
interpreted with caution, since Karlsson et al. investigated
SERT BPND in eight patients with ADHD, a sample size
insufficient in power to detect putative differences [Karlsson
et al., 2013]. Another study observed SERT availability with
[123I]FP-CIT, a SPECT radiotracer showing only moderate spe-
cificity to the SERT in subcortical regions [Hesse et al., 2009]

TABLE I. SERT BPND by region of interest

Region of interest HC ADHD p-value

Anterior cingulate cortex 0.318 60.071 0.278 60.076 0.066
Amygdala 1.025 60.158 0.958 60.181 0.183
Dorsal raphe nucleus 3.522 60.653 3.463 60.526 0.697
Hippocampus 0.605 60.127 0.563 60.118 0.194
Insula 0.558 60.103 0.518 60.101 0.085
Precuneus 0.240 60.052 0.198 60.070 0.723
Posterior cingulate cortex 0.246 60.078 0.228 60.085 0.433
Striatum 1.748 60.248 1.603 60.209 0.029*
Thalamus 1.880 60.266 1.772 60.256 0.096

Mean SERT BPND and standard deviations are listed from auto-
mated AAL, including manually delineated ROI dorsal raphe
nuclei for patients with ADHD and HC.
*Marks significant differences between patients with ADHD and
HC, though, after Bonferroni correction for multiple comparisons,
differences are not significant different.
AAL: anatomical labelling atlas; ADHD: attention deficit/hyperac-
tivity disorder; HC: healthy control subjects; SERT BPND: seroto-
nin transporter binding potential; ROIs: regions of interest.

Figure 1.

Average [11C]DASB distribution in 25 patients with ADHD normalized to MNI T1 template.

Highest SERT BPND is found in the dorsal raphe nuclei ROIs. The color table represents binding

potential at each voxel, blue indicates lowest and red highest SERT BPND. Crosshair is set on the

dorsal raphe nuclei in MNI space. [Color figure can be viewed at wileyonlinelibrary.com]
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and demonstrated no alteration between patients and HC.
We found attenuated SERT binding in patients with ADHD
at uncorrected P-value in the striatum, a region that has
been found to exhibit ADHD specific morphological and
functional alterations [Plichta et al., 2009; Qiu et al., 2009].
Elevated SERT availability has been shown to be correlated
with cognitive performance in the caudate as well as in oth-
er brain regions in HC [Madsen et al., 2011] whereas a neg-
ative association has been found between SERT binding
and impulsive behavior in suicide attempters [Ryding et al.,
2006]. Our finding may suggest a contribution of the SERT

to the pathophysiology in ADHD, which may be key for
impulsive symptoms. Nevertheless, and in line with previ-
ous SERT imaging in ADHD, we found no differences in
SERT BPND after correction for multiple testing in patients
with ADHD in comparison to HC.

The findings further demonstrate a decrease of SERT
BPND with increasing age in the thalamus, insula, precu-
neus and anterior and posterior cingulate cortex in patients
and HC. This validates previous SERT investigations [Hesse
et al., 2003; Yamamoto et al., 2002] as well as PET studies
observing the noradrenergic transmitter system [Ding et al.,

Figure 2.

Negative correlation of SERT BPND and age in the thalamus and

insula in both patients with ADHD and HC. Scatterplots show-

ing a significant negative correlation between SERT BPND and

age in the thalamus (R2 5 0.284) and insula (R2 5 0.167). ROIs

were extracted from automated AAL. Age is given in years,

significance level was set to P< 0.05 and results were Bonfer-

roni corrected for multiple comparisons. AAL: anatomical label-

ling atlas; ADHD: attention deficit/hyperactivity disorder, SERT

BPND: serotonin transporter binding potential, ROIs: regions of

interest. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE II. Significant differences in interregional molecular correlations of the SERT BPND

Region of interest Dq P-value
P-value Bonferroni

corrected

Precuneus—amygdala 0.3846 0.0206a 0.7416
Precuneus—hippocampus 0.74308 0.0009a 0.0324b

Precuneus—insula 0.52231 0.0072a 0.2592
Precuneus—dorsal raphe nucleus 0.68 0.0134a 0.4824
Precuneus—anterior cingulate cortex 0.50923 0.0077a 0.2772
Hippocampus—posterior cingulate cortex 0.42 0.0218a 0.7848
Hippocampus—insula 0.30385 0.0243a 0.8748
Anterior cingulate cortex—posterior cingulate cortex 0.42769 0.0259a 0.9324

We observed significant stronger interregional associations of SERT BPND between the listed ROIs in patients with ADHD and healthy
control subjects (Spearman’s delta rho; P< 0.05; corrected for multiple comparisons).
aMarks significant differences between patients with ADHD and HC.
bMarks significant differences between patients with ADHD and HC after Bonferroni correction for multiple comparisons.
ADHD: attention deficit/hyperactivity disorder; HC: healthy control subjects; SERT BPND: serotonin transporter binding potential; ROIs:
regions of interest.
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2014; Vanicek et al., 2014], which demonstrated a negative
correlation of monoaminergic transporters with age in HC
as well as in patients with ADHD.

In addition to the comparison of SERT BPND between
groups, we performed an interregional molecular correla-
tional analysis to evaluate associations of SERT BPND

between the selected ROIs. Our approach is similar to MRI
studies, where structural and functional connectivity analy-
ses aim to capture the complexity of large-scale brain net-
works and findings show widespread and distinct
alterations in connectivity in ADHD [Matthews et al., 2014].
These methods were adapted to PET imaging in order to
explore if interregional correlations of SERT mirror morpho-
logical correlates in the pathophysiology of ADHD. The
assumption that regional up- or down-regulation of a
single protein, such as the SERT, might be sufficient to dif-
ferentiate healthy from disordered brains may seem over-
simplifying. Therefore, this approach might allow for an
even more precise understanding of inherent specificities of
the serotonergic system rather than simply comparing trans-
porter binding in various regions between subject groups.

Using this interregional molecular correlational analysis
we found significant interregional differences of SERT BPND

correlations for the precuneus and the hippocampus. The
serotonergic system projects from raphe nuclei to the precu-
neus and the hippocampus, therefore modulating regional
and network specific function of these brain regions. The
precuneus is part of the posterior components of the default
mode network, a network that is activated during no-goal

directed processes, which has been shown to be dysfunc-
tional in ADHD [Castellanos et al., 2008]. Using resting-state
fMRI, altered functional connectivity between the precuneus
and other brain regions, specifically the ventromedial pre-
frontal cortex, a region which is highly innervated and mod-
ulated by serotonin action, has been demonstrated. In
addition, the precuneus has also been found to be involved
in timing functions, exhibiting increased activation patterns
in patients with ADHD relative to HC using fMRI [Hart
et al., 2012]. Timing deficits have been observed in patients
with ADHD and linked to impulsiveness [Rubia et al.,
2009].

The hippocampus is associated with learning and mem-
ory and is implicated in encoding novel stimuli, process-
ing spatial information as well as in attention [Goldfarb
et al., 2016; Jarrard, 1995; Kaplan et al., 2014; Van Petten,
2004]. Being a component of the limbic region, the hippo-
campus is highly modulated by serotonergic neurotrans-
mitter system, receiving projections from midbrain
serotonergic cells [Hensler, 2006]. During a decision-
making task, measured with [15O]H2O and PET, regional
blood flow has been found to be reduced in the hippocam-
pus in patients with ADHD [Ernst et al., 2003]. The altered
activation in the hippocampus as well as in other regions
in ADHD is interpreted as a diminished involvement of
brain regions associated with complex cognitive-emotional
functions. A MRI study found reduced hippocampal vol-
ume and connectivity of the hippocampus with the pre-
frontal cortex, whereas structural findings were associated

Figure 3.

Molecular interregional molecular correlations of patients with

ADHD and HC. Left map shows the correlation (Spearman’s q)

of SERT BPND in HC indicating interregional differences in func-

tional coupling. Right map denote the condition in patients with

ADHD. The color table represents the strength of interregional

associations, red indicates lowest and yellow highest interregion-

al associations. ADHD: attention deficit/hyperactivity disorder,

SERT BPND: serotonin transporter binding potential, ROIs:

regions of interest. HC: healthy controls. [Color figure can be

viewed at wileyonlinelibrary.com]
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with depressive symptoms [Posner et al., 2014]. Though
other structural MRI investigations have showed inconclu-
sive data in ADHD, depicting higher or no differences in
hippocampal volume between patients with ADHD and
HC [Castellanos et al., 1996; Plessen et al., 2006].

Imaging and behavioral studies have demonstrated that
serotonergic neurotransmission affect impulsive behavior
[Dalley and Roiser, 2012], motor planning and sensory
perception [Biskup et al., 2016] and modulates the default
mode network [Hahn et al., 2010]. Recently, it has been
found that, compared to HC, patients with ADHD show
elevated functional connectivity of the default mode net-
work and attenuated functional connectivity in a state of
diminished brain serotonin levels, evoked through acute
tryptophan depletion [Biskup et al., 2016]. We found a
higher molecular correlation of the SERT between the pre-
cuneus and the hippocampus in patients with ADHD and
in general lower correlations in HC, which may reflect
higher impulsivity in patients and might be explained by
a more diverse, region specific modulated serotonergic
system in HC and by more rigid and less variable seroto-
nergic signaling in ADHD.

This PET study has limitations that compromise the inter-
pretation of its results. Regarding group differences in

regional SERT binding a main effect was observed, but only
trends for significant differences were obtained in separate
brain regions. Although the sample size of this study is
common for investigations with PET [Kranz et al., 2015; Vol-
kow et al., 2007], it is still possible that more subjects are
required to identify more subtle differences. On the other
hand, the significance in the main effect but not for single
ROIs might be driven by a more reliable variance estimate
for the former one. Next to the thalamus and the insula, we
found an association between age and SERT binding in the
anterior cingulate cortex, posterior cingulate cortex and the
precuneus, though not significant after applying Bonferroni
correction. Previous PET studies found a decline in SERT
with age in the raphe nuclei, though, we did not observe an
age-related decline of SERT in the dorsal raphe nuclei. The
dorsal raphe nuclei is relatively small structures in the mid-
brain where signal to noise ratio is rather low. Therefore, it
is possible that there is an age-related decline in SERT in
this region, although we did not detect an association. In
addition, no blood sampling was carried out in this study.
This impedes the evaluation of potential differences in the
cerebellum, which was however suggested to represent an
optimal reference region [Parsey et al., 2006].

CONCLUSION

In conclusion, we observed altered interregional SERT
BPND correlation of the precuneus and the hippocampus
in patients with ADHD, underlining the involvement of
these brain areas in the pathophysiology of ADHD. On the
other hand, SERT binding does not differ after applying
correction for multiple comparisons on a regional level
between patients with ADHD and HC. Given the fact that
the SERT expression is modulated by regional serotonergic
release, our results are compatible with alterations of inter-
regional coupling within the serotonergic system in
ADHD.
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